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Abstract. This chapter conceives the history of neural networks emerging from two
millennia of attempts to rationalise and formalise the operation of mind. It begins
with a brief review of early classical conceptions of the soul, seating the mind in the
heart; then discusses the subsequent Cartesian split of mind and body, before moving
to analyse in more depth the twentieth century hegemony identifying mind with brain;
the identity that gave birth to the formal abstractions of brain and intelligence we
know as ‘neural networks’.

The chapter concludes by analysing this identity - of intelligence and mind with
mere abstractions of neural behaviour - by reviewing various philosophical critiques
of formal connectionist explanations of ‘human understanding’, ‘mathematical insight’
and ‘consciousness’; critiques which, if correct, in an echo of Aristotelian insight, sug-
gest that cognition may be more profitably understood not just as a result of [mere
abstractions of] neural firings, but as a consequence of real, embodied neural behaviour,
emerging in a brain, seated in a body, embedded in a culture and rooted in our world;
the so called 4Es approach to cognitive science: the Embodied, Embedded, Enactive,
and Ecological conceptions of mind.
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1. Introduction: the body and the brain

What force directs these actions? Where lies the body-magic that brings forth my
world? Where sits this mind? If science can fully respond to these questions then it might
be possible to one day simulate the human ability to act mindfully, with intelligence, on
computer.

For much of the twentieth century the dominant paradigm of intelligence seated the
mind in the brain; thus, if computers can model the brain then, theory goes, it ought to
be possible to program computers to act intelligently. In the latter part of the twentieth
century this insight - that intelligence is grounded in the brain - fuelled an explosion of
interest in computational “neural networks” : high fidelity accurate simulations of the
brain (cf. ‘computational neuroscience’) or engineering approximations used to control
intelligent machines (connectionism). However, the view that intelligence is rooted solely
in the brain is a relatively modern one and one that, in recent years, is being challenged
by embodied approaches to artificial intelligence; a perspective that, in turn, can be
traced back to the classical era.

The classical view of the mind was encompassed by the earlier notion of soul, leading
Aristotle (in the De Motu Animalium, 350 B.C.E.) to famously enquire “how the soul
moves the body, and what is the origin of movement in a living creature”. In stark
contrast to modern notions identifying mind with brain, Aristotle posited “the heart is
the seat of the senses” - the sensorium - and the controller of both voluntary and invol-
untary movement; unlike, say, Alcmaeon and Hippocrates, in Aristotle’s metaphysics of
movement and tripartite division of the soul (into the appetitive, sensitive and rational
parts; localised respectively in the liver, heart, and brain) there was simply no place for
the brain in the casual chain that ultimately gave rise to animal behaviour.

Such classical ideas had influence well into the renaissance period until, in 1649,
Descartes laid the foundations of a new - dualist - division of body (res extensa) and
the immaterial soul/mind (res cogitans); the mind interacting with the material brain
[the organ which controlled the body] - at an interface famously located in the pineal
gland. Around this time support for this view of the brain - as the organ that controlled
behaviour - found empirical support in the work of a contemporary of Descartes, the
English physician Thomas Willis, who in 1667 began to identify links between the phys-
ical structure of the brain and certain pathological behaviours (e.g. epilepsy and other
convulsive diseases).

Emerging from what later became known as the British Empiricist school of philoso-
phy, John Locke was perhaps the first philosopher to define the self through a ‘continuity
of consciousness’:

.. that conscious thinking thing, (whatever substance, made up of whether
spiritual, or material, simple, or compounded, it matters not) which is
sensible, or conscious of pleasure and pain, capable of happiness or misery,
and so is concerned for itself, as far as that consciousness extend.

In addition, in his 1690 ‘essay concerning human understanding’ Locke famously sug-
gested that at birth the mind was to be considered a blank slate (‘tabula rasa’):
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Let us then suppose the mind to be, as we say, white paper, void of all
character, without any ideas. How comes it to be furnished? I answer,
in one word, from experience.

Thus, contrary to prevailing Cartesian philosophy (which held the basic logical propo-
sitions are innate), Locke maintained that we are born without innate ideas, and that
all ‘knowledge’ comes from ‘experience’; that knowledge is causally dependent on expe-
rience and that knowledge is justified solely by experience. Subsequently building on
these intuitions in a supplementary chapter of the fourth edition of his essay, in 1690
Locke introduced the notion of an ‘Association of Ideas’ to label the principle accounting
for the mental peculiarities of individuals.

In the philosophy of mind a ‘theory of mind’ typically attempts to explain the nature of
ideas, concepts and other mental content in terms of the ‘cognitive states’ of underlying
‘cognitive processes’. A cognitive state can thus encompass knowledge, understanding,
beliefs etc. In a ‘representational theory of mind’ the cognitive states are conceived in
terms of relations to ‘mental representations’ (which have content). In this view the
underlying cognitive processes are simply understood in terms of ‘mental operations’ on
the mental representations. In Locke’s ‘associationist theory of mind’ this association
of ideas - or associationism as it later became known - suggested that the mind is
organised, at least in part, by principles of association and that items that ‘go together’
in experience will ‘go together’ in thought; subsequently David Hume refined Locke’s
generic notion of ‘going together by association’ by reducing it to three core empirical
principles: identity, contiguity in time and place, cause and/or effect.

The associated ideas (‘representations’) could be memories, ideas, images, thoughts
etc., with complex ideas being constructed from ‘simples’ and simple ideas being derived
from sensations. Such raw sensations/perceptions were not governed and defined by
principles of association, but were externally caused by things ‘outside the head’, which
for Hobbes, Hume and Locke meant objects of the world. Hence for some time associa-
tionism was closely linked with the broad British Empiricist movement in philosophy.

Building on earlier ideas from Galileo and Descartes, Locke’s epistemology famously
identified objects [of reality] by their primary and secondary qualities. Examples of
primary qualities include: solidity; extension; figure; number; motion; rest etc. Clearly
the primary qualities have a direct link to their bearer; a primary quality says something
about its bearer. E.g. If an object instantiates the primary quality of rest, then the
object [of which it is a property] must be at rest. In this manner Locke suggested such
primary qualities are essential to their bearers and are intrinsic qualities of their bearer
and hence are fundamentally independent of the perceiving mind.

Conversely, Locke hypothesised the ‘secondary qualities’ to be the properties [of ob-
jects] that produce sensations in observers; things such as colour, sound, taste, smell
etc. In this conception secondary qualities are the powers of objects - by configurations
of their primary qualities - to cause experience in subjects; the effect objects have on
some people. For Locke primary qualities exist in the world but secondary qualities exist
only in the mind of the perceiver; there is no blueness or sweetness in the world, only
extension in motion.

Thus Locke’s associationism entails (i) compounding processes, where complex items
are formed from simple items; (ii) decompositional processes, where complex items are
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broken down into their simple elements and (iii) sequencing processes, where associations
follow one another (e.g. in time). In sequencing processes groups of items (e.g. memo-
ries) follow one another in one of two ways: (a) by intrinsic association, whereby some
items have a natural connection (i.e. a connection independent of the observer) with
each other. E.g. chilli pepper and ‘hotness’ and (b) by extrinsic association, whereby
some items have an observer dependent connection (either voluntarily or by happen
chance). E.g. If the first person one fell madly in love with had long red hair, then one
might thereafter associate these qualities with beauty, sex and love.

In his essay Locke suggested that such extrinsic associations had three properties: (i)
they are either voluntary or happen by chance; (ii) the strength of the ‘impression’ of
ideas can reinforce the association (i.e. powerful ideas may be forever linked in the mind.
Cf. perception of beauty) and (iii) some items will ‘go together’ more easily than others;
thus some will find mathematical associations easy, some artistic etc. Thus, although
at birth the mind is a blank slate empty of ideas, individuals may find some ‘ideas’
easier to associate than others. These ‘ideas’ are conceived as mental representations;
in this way we entertain particular ideas when in particular mental states. Thus the
Scottish philosopher, historian and economist David Hume famously suggested that
mental processes are merely sequences of such associated mental ideas. But what are
such mental ‘ideas’ actually ‘about’?

To what do ‘ideas’ actually refer? This, of course, is the problem of intentionality:
‘how do mental ideas connect with [become to be about] things in the world?’ Hume’s re-
sponse was to suggest that mental ideas are fundamentally representations ‘like images’;
thus positing a pictorial resemblance between idea and world. Unfortunately Hume’s
pictorial mechanism is not without problems. Firstly, it is both too general (not all
ideas are like pictures; cf. justice) and not general enough (consider a picture of Eiffel
Tower; this image may look like the Eiffel Tower, from one perspective, but that image
is not necessary to the notion of the Eiffel Tower; the tower that Gustave Eiffel built);
secondly, it provides no account of mental reference (resemblance is not sufficient for
representation; a cartoon may look more like its creator than its subject, but can still
represent the subject); thirdly, it offers no account of truth and falsity. Contra Tractatus
Wittgenstein [2.17] “What the picture must have in common with reality in order to be
able to represent it after its manner - rightly or wrongly - is its form of representation”,
images are not propositions; images [in themselves] are neither true or false.

Furthermore, although Hume’s associationism - where mental/cognitive processes are
simply defined as associations between representations - can easily accommodate [folk]
psychological explanations of mind, it fundamentally lacks a workable account of rep-
resentational content. I.e. what is it about a ‘representation of a dog’ that constitutes
it as representing a dog rather than a banana (or anything else), rather than not being
representational at all? Even in the present era [according to the American philosopher
Mark Bickhard] the problem of “accounting for representational content is the central
issue in contemporary naturalism: it is the major remaining task facing a naturalistic
conception of the world. Representational content is also the central barrier to con-
temporary cognitive science and artificial intelligence: it is not possible to understand
representation in animals nor to construct machines with genuine representation given
current (lack of) understanding of what representation is” [15].
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The preliminary theoretical base for a neural conception of mind (and hence also for
contemporary neural networks) was independently proposed by Alexander Bain [10] and
William James [61]. Central to their work is the notion that both thoughts and body
activity resulted from neuronal processes in the brain; for Bain every possible activity
required the firing of a distinct set of neurons. At the time the scientific community
was skeptical of Bain’s ideas because they appeared to require an inordinate number of
neural connections within the brain (albeit it is increasingly apparent that the brain is
an exceedingly complex organ and that the same brain ‘hardware’ can process multiple
problems and multiple inputs - see Section 10.4.3).

In some ways James’s theory was similar to Bain’s, however in James’s model he
suggested that memories and actions resulted from electrical currents flowing between
neurons; this was perceived as a significant advantage as, by focusing on the flow of
electrical currents between neurons, it did not require as many distinct neural groups to
store memories or motivate action.

1.1. William James and neural associationism. In “Minds, Brains, Computers”
Harnish centrally views William James “The Principles of Psychology” [61] as suggesting
that thinking (indeed all aspects of conscious life) had the following key properties:

• Thinking is conscious.
• Thinking is open to introspective examination.
• Thinking is private; ‘my thought belongs with my other thoughts and your

thought belongs with your other thoughts’.
• Thinking ‘flows like a stream’: a metaphor that gives rise to the idea of the

‘stream of consciousness’; a concept with significant resonance in twentieth cen-
tury literature, most famously in the works of Virginia Woolf and James Joyce.
• Thinking is ‘about something’ (i.e. it is fundamentally “intentional”).
• Thinking is an evolved function (i.e. it is not a ‘gift from god’).

For James the key question in psychology is ‘how does the mind solve the problem
of what to think next?’ The answer James arrived at was that thinking fundamentally
operates using two general ‘principles of association’ which James sought to explain on
a quasi-neurological basis:

• Principle 1:When two elementary brain processes have been active together or
in immediate succession, one of them, on reoccurring, tends to propagate its ex-
citement into the other; a mechanism remarkably similar to the learning scheme
outlined in 1949 by the Canadian psychologist Donald Hebb [52] (see Section 3.1).
• Principle 2: The amount of activity at any given point in the brain cortex is the

sum tendencies of all the other points that discharge into it - a similar mechanism
to that described in 1943 by McCulloch & Pitts [77] in their mathematical model
of neural firing (see Section 2.1) - such tendencies being proportionate:

– to the number of times the excitement of each point may have accompanied
the point in question;

– to the intensity of the excitements;
– to the absence of any rival point, functionally disconnected with the first,

into which the discharges may have been diverted.
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Using these principles James offers the following explanation of three types of associa-
tive mental processes involved in spontaneous thought: unrestricted association; partial
association and focussed association.

Total association: in which there is unrestricted association between previous
events and/or arbitrary concepts. E.g. James famously describes ‘The memory
of a walk followed by a romantic dinner’.

A B

Figure 1. Total Association

Let A be the memory of the walk where the pattern of excitement distributed
across neurons [a, b, c, d, e]. Let B be romantic thoughts where the pattern of
excitement distributed across neurons [l, m, n, o, p]. To store this unrestricted
total association James suggests the memories A and B must “vibrate in unison”
hence ‘A must excite B’ and ‘B must excite A’, see Figure 1.

Partial association: in which only some of the past experiences have associated
consequences; but ‘why are some memories linked and not others?’ James sug-
gests that, “in no revival of past experience are all the items of thought equally
operative in determining what the next thought shall be. Always some ingredi-
ent is prepotent over the rest.” For James the item which is prepotent is the one
which is most in our interest, “some one brain-process is always prepotent above
its concomitants in arousing elsewhere”.

James claims partial recall is the most common form of association-based recall
and occurs when only some of past experiences have the required ‘associated
consequences’. To determine what experiences are [partially] associated together
James outlines four principles; these are:

Habit: the more often something done the more likely it is to be associated.
Recency: more recent events are more likely to be recalled.
Vividness: the more intense an experience the more likely it is to be recalled.
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Emotional congruity: similar emotion backgrounds are more likely to be
associated together; hence feeling miserable makes it more difficult to recall
times of joy.

At any time the strongest principle of association is that which pertains.
To see how these principles of association work imagine if one is thinking A

and A is associated with B, (by say habit), then one will subsequently think B
unless a stronger principle applies.

Focalised recall / association by similar sequences: in which not all memo-
ries are obviously associated (‘go together’). As an example James considers:
‘How might thoughts of a gas flame lead to thoughts of football?’ James unfolds
the process in this way: think of the gas-flame which conjures up visions of the
moon [via a shared ‘similarity of colour’; pale-whiteness]; this, in turn, is linked
to the thoughts of football [via ‘similarity of shape’; roundness]. So via focussed
recall thought can move from A to B (from gas-flame to football) even though
neither gas-flame nor football have any properties in common by themselves.

Contrasting the above examples of ‘spontaneous thought’ James also offers expla-
nation for voluntary thought; a subject often thought problematic for associationists.
James addresses the issue by offering an associationist account of the process of ‘recall
of a forgotten thing’ (and claims a similar mechanism underlies means-end analysis).

To recall a forgotten item James envisages a situation where two groups of three
memories [a,b,c] and [l,m,n] are fully associated (& interconnected) with the ‘forgotten
item’ Z.

a

b

c

Z

l

m

n

Figure 2. To recall a memory

By the process of total association activation of [a,b,c] will eventually propagate to
activate [l,m,n] which together [a,b,c, l,m,n] will serve to activate the forgotten memory
Z, see Figure 2.

Means-end analysis is performed in a similar way. If [a,b,c] is the goal states, its
activation will eventually propagate to excite suggestion-states [l,m,n] which together
will excite the solution Z, albeit in his analysis Harnish points out that James never
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considers if all reasoning is performed via means end (or even if his version of means-
end analysis will work in practice; for example, Harnish suggests that balancing a bank
account would be difficult to describe in this way).

1.2. The neuron: fine grain structure of the brain. In “Aristotle’s laptop: the
discovery of our informational mind”, Aleksander and Morton [9] suggest research into
the building blocks of the brain effectively began with the discovery that all living things
are made of cells. Thus, in 1838 the German botanist Matthias Schleiden first identified
‘cell like’ structures in plants; an idea later extended by physiologist Theodor Schwann
who observed similar ‘cellular structures’ in the organs of animals; a discovery which, in
turn, led to the development of ‘cell theory’: the idea that all living materials - whether
in plants or animals - are composed of cells. In the context of the brain this posed the
question: ‘are the cells of the brain just a way of creating a fused functional structure
or is there something special that the cells of the brain do (at the individual cell level)
which is different to the function of other cells?’

Central to the search to resolve this issue was the ability to stain tissue such that it
shows up better under microscopes (e.g. see Figure 3), research pioneered by the Bo-
hemian anatomist Johannes Evangelista Purkinnje. Johannes worked at the University
of Prague where he successfully made the then thinnest known slices of brain tissue; to
make thes slices Purkinnje was amongst the first to use a device called a microtome; a
tool to cut extremely thin slices of material.

Figure 3. An example brain slice clearly showing neuron-bodies, the
dendritic-tree and axon-fibres

In 1837 cell staining led to the discovery of the cellular structure of the cerebellum
(a part of the brain at the back of the skull which is now known to be involved in the
refinement of the control of the movement); in his research Purkinnje described and drew
the structure of some large neurons (now known as Purkinje cells) labelled corpuscles and
speculated that they had a role (collecting, generating and distributing) in intercellular
communication.

Hence at this time there were two competing visions of brain operation - the reticularist
and neuronist. The reticularist conception was that the cells of the brains formed a
fused mechanism, functioning as a whole, whereas the neuronist conception postulated
that brain function could be traced to the individual particular activity of brain cell
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themselves : the ‘neurons’. In particular, Otto Dieters & Camillio Golgi identified an
’axis cylinder’ - the axon - as having a connective relationship to other cell dendrites.

A little later Camillio Golgi (1843-1926) successfully developed staining techniques
using silver nitrate to identify nervous tissues; by so doing previously unseen fibres in
the nervous tissue were brought to the fore and in so doing he clearly outlined the
structure of neurons. These stains revealed beautiful network-like structures of many
neurons. Around this time Santiago Ramon y Cajal (who eventually shared the Nobel
prize with Golgi) went on to produce drawings of neural tissue which remain amongst
the most impressive in the history of neuroscience. In so doing Cajal developed the
fundamental insight that dendrites were conduits to the axons, which in turn connected
to terminals on the dendrites of other neurons; and identified the neuron as a single
element with, effectively, a one-way function.

Nonetheless, if neural doctrine sought to declare the neuron as a building brick of
the brain, there still needs to be an interaction between the neurons to allow a network
of neurons to develop a cooperative function. This idea shaped research in neurology
during the last decade of the 19th century, when Sir Charles Sherrington conceived of the
electrochemical neuron; outlining a way axons could electro-chemically ‘make contact’
with dendritic structure at a site we now identify as the ‘synapse’.

In 1952 Alan Lloyd Hodgkin and Andrew Huxley suggested that in firing the axon
initiates a charge polarity reversal which travels down the axon fibre to initiate neuro-
transmitter action at the synapse at the end of the fibre. In this way one neuron has
the capacity to electro-chemically link with others and it became possible to think of
the nervous system as a network of distinct cells that encode and transmit informa-
tion throughout the brain. With this insight a modern conception identifying the mind
with brain; and the brain with a large mass of distinct, but richly inter-linked neurons,
arrived; the door was opened to the mechanisation of thought.

2. First steps towards modelling the brain

Early Cybernetic work in the field of machine intelligence began in various attempts to
emulate neurological function and learning in animal brains and this history of Artificial
Neural Networks (ANNs) begins with the excitement of the early pioneers in the 1940s
and 1950s. I subsequently revisit some of the paths that led to neural networks falling out
of favour in the late sixties, before highlighting a selection of key theoretical developments
from the so called ‘winter of connectionism’ (throughout the 1970s and early 1980s)
before foregrounding two novel insights in machine learning which overcame at least
some of the limitations that Minsky and Papert had so devastatingly identified in 1969
[80]. The final section of this history reviews a small selection of some the more exciting
recent developments in the field.

2.1. The McCulloch-Pitts neuron model. The foundations of what has become
known as ‘neural computing’, ‘neural networks’ or ‘connectionism’ were laid in 1943
by the neurophysiologist Warren McCulloch and the mathematician Walter Pitts [77].
In order to describe how the basic processing elements of the brain might function,
McCulloch and Pitts showed how simple electrical circuits connecting groups of ‘linear
threshold functions’ could compute various logical functions [77].



10 J. MARK BISHOP

McCulloch and Pitts (MCP) realized that (a) neurons can receive positive or negative
encouragement to fire, contingent upon the type of their ‘synaptic connections’ (excita-
tory or inhibitory) and (b) in firing the neuron has performed a ‘computation’ as, once
the effect of the excitatory/inhibitory synapses are taken into account, it is possible to
mathematically determine the net effect of incoming patterns of signal (i.e. the ‘firings’
from other neurons) on each neuron.

In their seminal paper “A logical calculus of ideas immanent in nervous activity”
McCulloch and Pitts list five governing assumptions of neural operation, defining what
has become known as the ‘McCulloch-Pitts (MCP) neuron’. These are:

(1) the neuron is a binary device; it has two states of operation - firing or not firing.
(2) each neuron has a fixed threshold.
(3) the neuron can receive input from so called ‘excitatory’ synaptic inputs all of

equal weight.
(4) the neuron can receive input from inhibitory synapses whose action is ‘absolute’;

input on any one inhibitory synapse prevents the neuron from firing.
(5) there is a ‘time quantum’ over which to integrate all the synaptic inputs to the

neuron.

Thus, neuronal operation proceeds as follows: during the time quantum, if there is
no input on an inhibitory synapse, the number of excitatory inputs is summed and if
this meets or exceeds the neural threshold, the neuron fires; if not, the neuron becomes
inactive.

In this model McCulloch and Pitts provided a first (albeit very simplified) mathemat-
ical account of the chemical processes that define neuronal operation and in so doing
they also realised that the mathematics that describe what the neuron is doing, exhib-
ited exactly the same kind of logic that Shannon deployed for describing the behaviour
of switching circuits: the calculus of propositions.

Hence, in their paper [77] McCulloch and Pitts demonstrated that if ‘synapse polarity’
is chosen appropriately, any single pattern of input can be ‘recognised’ by the neuron (i.e.
cause the neuron to ‘fire’). In other words, the central result of their paper is that logical
truth tables of arbitrary complexity can be constructed by McCulloch-Pitts neurons. I.e.
Any finite logical expression can be realised by a suitable network of McCulloch-Pitts
neurons; indeed, some years later first Kleene [63] and subsequently Minsky [79] proved
that rational-weighted recurrent neural networks with boolean activation functions are
computationally equivalent to classical finite state automata.

The McCulloch-Pitts’ result demonstrated that networks of artificial neurons could
be mathematically specified which would perform ‘computations’ of immense complexity
and power; in so doing, McCulloch and Pitts opened the door to a new form of com-
putation; a form of computation based on the design of networks of artificial neurons
rather than (Turing [125]) machine programming.

2.2. The ‘modern’ McCulloch-Pitts neuron. In the modern MCP threshold model
adaptability comes from representing each synaptic junction by a variable (usually ra-
tional) valued weight Wi, indicating the degree to which the neuron should react to the
ith particular input.
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By convention positive weights represent excitatory synapses and negative inhibitory
synapses; the neuron firing threshold is represented by a variable T . In modern use T is
usually clamped to zero and a threshold implemented using a variable bias weight, b (a
bias is simply a weight connected to an input clamped to +1).

In the MCP model the firing of the neuron is represented by the number +1 and
not firing by 0. This is equivalent to the neuron representing a proposition as TRUE
or FALSE for, as McCulloch and Pitts wrote [77], “in psychology .. the fundamental
relations are those of two valued logic”.

Activity at the ith input to an n input neuron is represented by the symbol Xi and
the effect of the ith synapse by a weight Wi, hence the net effect of the ith input on the
ith synapse on the MCP cell is thus Xi ×Wi. Thus the ‘modern’ MCP cell (see Figure
4) is denoted as firing if:

n∑
i

Xi ×Wi + b ≥ 0(1)

Output

Input 1

Input 2

Input 3

Weight 1

Weight 2

Weight 3
Activation function
eg. Sigmoid, exponential, ramp

Bias, b

Figure 4. A schematic depicting the modern McCulloch-Pitts neuron model

NB. In a further modern generalisation of the MCP neuron, the MCP output is
defined by an arbitrary function of the weighted sum of its input. This function is
called the neuron’s activation function. Example activation functions include: linear
summation; the Heaviside (unit step or threshold) function, usually denoted by H,
which is a discontinuous function whose value is 0 for negative argument and +1 for
positive argument; and the oft deployed sigmoid function (which offers a continuous,
differentiable, approximation to the Heaviside function).

2.3. Artificial neural networks and neural computing. An Artificial Neural Net-
work, or ANN for short, is a connected group of MCP neurons. A single layer neural
network only has one layer of MCP neurons between the input vector, X and the output
vector O. In a multi-layer neural network the output of each neuron at the output layer
will form one element of the output vector of the network; at a hidden layer (any layer of
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neurons whose outputs do not constitute the output of the network) the neuron output
will form the input to one or more neurons at a subsequent layer.

A recurrent neural network is a network where the output of one or more neurons is
fed back to the input of neurons on that layer [or earlier layer(s)] in the architecture.

Thus neural computing fundamentally defines a mode of computing that seeks to in-
clude the style of computing used within the brain; it is a style of computing based on
learning from experience as opposed to classical, tightly specified, algorithmic, methods
(i.e. Aleksander and Morton [8] define Neural Computing as, “the study of networks of
adaptable nodes which, through a process of learning from task examples, store experien-
tial knowledge and make it available for use.”).

2.4. Computational and connectionist theories of mind. The notion of mental
representation is fundamental to any computational theory of mind, according to which
cognitive states and processes are constituted by the instantiation, transformation and
maintenance of information-bearing structures (i.e. ‘representations’); these structures
may be constituted ‘symbolically’ in the Searlian sense (i.e. as shorthand for a syntactic
computational structure which does not imply meaning; thus the symbol structure ‘CAT’
may or may not denote ‘a cute furry animal that purrs’, but certainly does denote the
structurally ordered collection of three formal shapes; the letters ’‘C’, ‘A’ and ‘T’) or
sub-symbolically (e.g. by vectors of real/rational numbers).

In a [Turing] computational theory of mind, the cognitive states are defined by [Turing]
‘computational relations’ to the underlying mental representations; and the cognitive
processes are in turn thus simply defined by [Turing] computational operations on those
mental representations. Strong computational theories of mind (cf. Searle [107]) further
envisage the underlying mental representations to be fundamentally computational in
character and hence fundamentally conceive the mind - encompassing all our thoughts,
beliefs, intelligence, problem solving ability etc. - as but one form of suitably complex
[Turing] machine computation.

In contrast the most generic connectionist theory of mind remains neutral on exactly
what constitutes [connectionist] ‘mental representations’; for example their structure
may be fundamentally non-computational in character (i.e. a structure which cannot
be generated via a classical Turing machine model of computation; perhaps, for exam-
ple, a structure characterised by a chaotic dynamic system such as Hava Siegelmann’s
‘analogue shift map’ [113]; a super-Turing mode of [information] processing) and/or the
relation between cognitive state and mental representation is non-computational and/or
the relationship between one cognitive state and the next is non-computational.

Conversely in a computational connectionist theory of mind, the cognitive states are
simple computational relations to the underlying connectionist architecture and the un-
derlying connectionist (mental) representations and the cognitive processes (the changes
in the connectionist states) are fully Turing computational. E.g. in a classically connec-
tionist neural network architecture, knowledge (e.g. the arity-zero predicate ‘CAT()’)
can be considered as being represented either (a) by an activation value on a specific
neuron or (b) distributed as a pattern of activation across groups of neurons.

However, uni-variate knowledge representation is limited to the representation of ar-
ity zero predicates and, as Dinsmore [38] and Fodor [41] suggest, this is too strong a
restriction for representing the complexity of the real world and hence for modelling
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general intelligent behaviour. However, more recent versions of connectionism (e.g. the
NESTOR spiking neuron [Stochastic Diffusion] Neural Network [84] [86] can more easily
represent knowledge of higher arity (see also Section 10.4.4).

2.5. Connectionism as a special case of associationism. By considering that the
input nodes of an artificial neural network represent data from sensory transducers (the
’sensations’); the internal (hidden) network nodes encode ideas; the inter-node weights
indicate strengths between these ‘ideas’ and the output nodes define behaviour, then we
see a correspondence between connectionism and associationism (cf. Gardenfors [45] on
the problem of modelling representations). However there are several ways in which this
link might fail:

(1) In Associationist Networks the items that are associated together are specific
idea(s) and in - local - connectionist networks (where one node encodes one
item) this also holds; however, in ANNs that use a more distributed form of
knowledge encoding, this correspondence no longer holds (see Figure 5).

Figure 5. The link between Connectionism and Associationism

(2) Sensu stricto, in pure associationism ‘ideas’ are pure copies of ‘sensations’. In
any neural network where any of the weighted connections from the input to
the first neuron(s) is not unity this is not true (as the input information will be
scaled by the weight value).

2.6. What functions can artificial neural networks perform? Ever since Mc-
Culloch & Pitts first established that a network of MCP is Turing complete (i.e. it
can “compute only such numbers as a Turing Machine; second that each of the latter
numbers can be computed by such a net” [77]) researchers have sought to apply neural
networks to mathematical tasks that, if carried out by humans, could be said to involve
intelligence.

In contrast to conventional algorithmic approaches to intelligent problem solving by
machine, ANNs are typically taught to solve particular problems by repeated exposure
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to a set of input-output task exemplar vector pairs; the neural network training set.
Subsequently, when deploying the artificial neural network on a real-world problem,
the expectation is that a well designed neural network will generalise appropriately.
I.e. The network should not only respond correctly to patterns that are in its training
set (i.e. generate the specified output vector as defined by a relevant input-output
vector pair from the training set), but also (a) generate appropriate responses to novel
input vectors that lie in-between the input vector exemplars given in the training set
(interpolation) and (b) generate appropriate output vectors for input vectors that fall
outside the input space defined by the exemplar input-output vectors pairs in the training
set (extrapolation).

ANNs have been used to model to three broad classes of complex function:

Vector association: an associative neural network is one that maps a given input
vector to a particular output vector. Either a single layer or multi-layer neural
network can be used to perform vector association as, given the networks weight
vector (defining the synaptic weights of all the neurons in the network) and its
activation function(s), the operation of the network will be to map - associate -
a given input vector to a particular output vector.

Vector classification: with judicious choice of weight vector, activation func-
tion(s) and a k element output vector, a network of MCP cells can be designed
to map an input vector into one of k classes. Typically this is achieved by exam-
ining each element of the output vector [1..k] with the class label being assigned
to the element of the output vector that has [typically] the largest numeric value.

Function approximation: An n element input vector is mapped to an m element
output vector, where the mapping defines some complex function. E.g. Given
a three element real valued input vector [age, weight and height of a subject] a
network could perhaps be trained to output a 1-D vector defining [an estimate]
of their risk of suffering a medical condition such as diabetes or pulmonary em-
bolism.

In addition to their ability to model complex functions neural networks are often
claimed to have advantages over the alternative, algorithmic, problem solving approaches;
these include:

• offering a potential solution to the so called 100-step processing limit : many
complex problems involving intelligence take many millions of processing steps to
solve on a powerful desktop computer however the brain operates with relatively
slow processing units and it has been hypothesised that, in many tasks, there is
time only for 100 neural processing operations to occur and it is not clear how
to solve these problems in under this 100 step processing limit, without invoking
the massive parallelism of ANNs in the brain;
• being good at learning functions that do not obviously instantiate simple rules:

for example, learning so called ‘intuitive’ [sub-cognitive] non-verbal processes;
• an ability to be resilient to minor changes (minor damage) to their structure:

that is, network performance typically degrades gracefully with small changes to
the weight vector.
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3. Learning: the optimisation of network structure

To enable a neural network to associate, classify or approximate a function appro-
priately we need to optimise its internal structure to minimise the network’s prediction
error between its output vector O and its target output vector T for a given input vector
I. This the task of optimisation (or learning) in a neural network is the process whereby
the network attempts to iteratively adjust all its weights and thresholds (its structure)
so as to minimise the overall prediction error across all the pairs of input-output vec-
tors in its training set. In a typical network there may be many millions of weight and
threshold values and many thousands of input-output training vector pairs; a neural
network learning rule is thus simply a - typically iterative - procedure for automatically
calculating these values - there will usually be far too many to calculate by hand.

3.1. Hebbian learning. The publication of McCulloch and Pitts foundational work
defining a simple mathematical model of a neuron was followed in 1949 by the publi-
cation of influential ideas on neural network learning by the psychologist Donald Hebb.
In his monograph, ‘The Organization of Behavior’, Hebb suggested that ‘neural path-
ways’ [between simple cells/neurons] are strengthened each time that they are used and
claimed the insight fundamental to understanding the ways in which humans learn; the
underlying idea being to use correlations in the signalling activity of connected cells to
cause an increase or decrease in connection strengths between them. This basic process
has since become known as ‘Hebbian learning’ [52].

Let us assume that the persistence or repetition of a reverberatory activ-
ity (or “trace”) tends to induce lasting cellular changes that add to its
stability.

.. when an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
changes take place in one or both cells such that A’s efficiency as one of
the cells firing B, is increased.

I.e. When two neurons are simultaneously excited then the strength of the connection
between them should be increased; as Fodor and Pylyshyn later remarked [41]:

This should bring to mind the old Associationist principle that the strength
of association between ‘Ideas’ is a function of the frequency with which
they are paired ‘in experience’ and the Learning Theoretic idea that the
strength of a stimulus-response connection is a function of the frequency
with which the response is rewarded in the presence of the stimulus.

In Hebbian learning the task is to learn to associate a specified output vector B
with an input vector A, the two vectors being fully connected by channels with inter-
connection weights Wij . The learning scheme is concerned with the automatic evolution
of connection weights, such that vector A forces the generation of vector B. The principle
Hebb outlined was not sufficiently defined to build a complete model of fully autonomous
weight learning, but a number of simple variants can trace their ancestry back to Hebb.
One of the simplest Hebb variant is to “adjust the strength of the connection between
units Ai, Bj in proportion to the product of their simultaneous activation”. I.e. The
change in weight connecting input Ii and output Oj is proportional (via a learning rate
eta, η) to the product of their simultaneous activations:
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∆Wij = ηIiOj(2)

A neural network utilising such a rule has various interesting properties. One is that it
does not require a perfect copy of the input to produce the required output, though the
replicated response will be weaker (less accurate) as the patterns diverge. Similar effects
are produced if the network is damaged, either by removing neurons or inter-connections.

Using the basic Hebbian rule, it is possible to modify connection weights automati-
cally to generate any single linear mapping between the input and output vector. This
is accomplished by making successive small modifications to the connection weights be-
tween each pair of units Ai, Bj , with the size of the weight change, the learning rate,
set as a parameter of the learning process. If the weight changes are small enough, the
Hebbian associator will eventually arrive at a set of weights that correctly generate the
desired output vector when presented with the given input vector.

Hebbian learning demonstrated that it is possible to train a pattern associator to
adjust its connection weights to form a desired mapping between input and output.
However, in its most basic formulation the learning system is unstable and needs external
regulation to stop weight adjustment once the desired output is reached. Kohonen [65]
suggests a modification of the basic Hebb rule, introducing a simple forgetting factor for
synaptic (weight) adjustment, to alleviate this problem:

∆wij(n) = ηyk(n)xj(n)− αyk(n)wij(n)(3)

3.2. Rosenblatt’s perception. A figure, later to emerge as a controversial force in
nascent field of connectionism, was Marvin Minsky. In 1954 Minsky published his doc-
toral dissertation on Neural Networks [78]. Four years later, a former classmate of
Minsky’s, Frank Rosenblatt, published a first description of his famous neuron-like com-
putational element, The Perceptron [101], which uses both the fixed and learning versions
of the McCulloch and Pitts neurons. In Rosenblatt’s model the synapses became variable
multipliers of the input which are systematically adjusted to remove error. At the time
it could be clearly seen that there was great excitement in the field, with Rosenblatt
claiming that [in the Class C Perceptron] “for the first time we have a machine capable
of having original ideas” [101].

A few years later Rosenblatt’s research led to the development of the Perceptron
Convergence Procedure (PCP), as outlined in his 1962 monograph, ‘The Principles of
Neurodynamics’ [102]. The PCP was perceived as an important advance on the Hebb
Rule for weight learning in complex networks; indeed it was claimed that [in the Percep-
tron] the ‘rules that drive the brain mechanisms’ are being uncovered’ and the device
notably garnered much press attention for having this ‘brain-like’ structure.

The full (‘classical’) Perceptron model can be divided into three layers (see Figure 6):
• The first layer of units defines the retina of the perceptron; this is comprised of

a regular array of ‘Sensory-Units’ (or S-Units).
• The second layer of the perceptron is comprised of ‘Association-Units’ (or A-

Units). The input to each A-Unit is the weighted sum of the output of a randomly
selected set of S-Units. These weights are not learnt and hence do not change.
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Figure 6. The structure of Rosenblatt’s Perceptron

Because the weights are fixed, A-Units only respond selectively to particular
patterns on the retina, effectively functioning as local feature detectors.
• The third layer of the perceptron consists of ‘Response-Units’ (or R-Units). Each

R-Unit maintains a set of variable weighted connection to a specific set of A-
Units. An R-Unit outputs [+1] if the sum of its weighted input is greater than
a threshold T , [-1] otherwise. In some perceptron models, an active R-Unit will
inhibit all A-Units not in its input set.

3.2.1. Rosenblatt’s ‘Perceptron Convergence Procedure’. In the perceptron convergence
procedure Rosenblatt established that if the perceptron response to the current input
vector is correct, then no change should be made to the weights to the R-Units; con-
versely, if the response of an R-Unit is incorrect then it is necessary to either:

• decrement all active weights - where an active weight is any weight connected to
a non-zero input - if the R-Unit fires when it is not meant to and increase the
threshold;
• increment active weights and decrement the threshold, if the R-Unit does not

fire when it should.

3.2.2. Rosenblatt’s ‘Perceptron Convergence Theorem’. Simply stated Rosenblatt’s - fixed
increment - Perceptron Convergence Theorem asserts that the above procedure is guar-
anteed to find a set of weights to perform a specified mapping on a single layer perceptron
if such a set of weights exist - e.g. if the problem is ‘linearly separable’.

3.3. The Widrow-Hoff (or ‘simple delta’) learning rule. In 1960, Bernard Widrow
and Marcian Hoff of Stanford developed an adaptive learning model called ADALINE
(the ADAptive LInear NEuron - later to be renamed ADALINE: the ‘ADAptive LINear
Element’) and subsequently refined as MADALINE (the Multiple ADAptive LINear
Elements). In the ADALINE learning is effectively applied to a linear version of the
McCulloch-Pitts neuron (with a simple Heaviside [or threshold] function, H, applied to
define a binary output as required).
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The ADELINE neuron consists of a set of weighted inputs W , a bias term θ and a
summation element. The output of ADELINE is typically [a thresholded version of] this
linear weighted sum of its inputs:

y = H(
n∑

i=1

IiWi + θ)(4)

Given an input vector I, an output vector O, a target vector T and a weight matrix
W, ADELINE weight update is defined by a simple ‘delta’ rule:

∆Wji = η(Tj −Oj)Ii(5)
= ηδjIi(6)

Where Wji is the change to be made to the weight linking the ith input to the jth
output unit (given the current input/output training vector pair); η is defined as the
learning rate constant and δj can be considered as an error term, δ, describing the
difference between the desired output and the actual output.

ADALINE was originally developed to classify binary patterns; a subsequent develop-
ment, MADALINE, was famously used as an adaptive filter designed to help eliminate
echo on phone lines, and hence offers perhaps the first example of an Artificial Neural
Network being applied to a ‘real-world’ engineering problem.

4. The fall and rise of connectionism

At the end of the sixties - only a few years after the pioneering work of McCulloch
& Pitts, Rosenblatt and Widrow & Hoff - the iconoclastic pair of Minsky and Papert
virtually single-handedly halted research in this nascent field of neural computing, with
the publication of their 1969 critique ‘Perceptrons’ [80]. This work highlighted certain
limitations to Rosenblatt’s single-layer perceptron (SLP); in particular, they showed that
SLPs are unable to calculate non-linearly separable functions such as the mathematical
function of ‘parity’ or the topological function of ‘connectedness’.

With the publication of ‘Perceptrons’ and early successes in the field of symbolic ar-
tificial intelligence - the approach favoured by Minsky and Papert - it rapidly became
extremely unpopular to continue research into learning neural networks; the so-called
‘winter of connectionism’ had arrived. Furthermore, underlying the elegance of the Min-
sky and Papert critique there are stories of bad blood between Minsky and Rosenblatt,
leading commentators such as Aleksander and Morton [9] to ponder, “Was it the fury
of colleagues or a genuine desire for a truly scientific assessment that caused Seymour
Papert and Marvin Minsky at MIT to launch an explicit attack on Perceptron-like sys-
tems?” Certainly Minsky and Rosenblatt had been to the same school in the Bronx and
there were persistent rumours of very personal rivalries at play.

4.1. The rise and rise of ‘symbolic’ artificial intelligence. If the overarching
methodology of the first attempt to build machines that can ‘think for themselves’ had
been to develop ‘models of the brain’, then the first roots of an alternative approach can
be traced back to the ‘Dartmouth Conference’ of 1956, where the term ‘Artificial Intelli-
gence (AI)’ was first coined. McCorduck gives an account of the Dartmouth Conference
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in the book ’Machines who think [76], which offers a personalised history of AI based on
interviews with key researchers. McCorduck observes that the Dartmouth Conference
successfully gathered together all the major participants in AI at the time (a list which
included Marvin Minsky, Nathaniel Rochester, John McCarth, Claude Shannon, Ray
Solomonoff, Oliver Selfridge, Trenchard More, Arthur Samuel, Herbert A. Simon, and
Allen Newell) for a month long ‘brainstorming session’:

We propose that a 2 month, 10 man study of artificial intelligence be
carried out during the summer of 1956 at Dartmouth College in Hanover,
New Hampshire. The study is to proceed on the basis of the conjecture
that every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to simulate
it. An attempt will be made to find how to make machines use language,
form abstractions and concepts, solve kinds of problems now reserved for
humans, and improve themselves. We think that a significant advance
can be made in one or more of these problems if a carefully selected group
of scientists work on it together for a summer [75].

Although the Dartmouth Conference did not achieve its main aim of facilitating a
‘genuine pooling’ of information and co-operation, and hence to John McCarthy (one
of the key organisers) was not a complete success, it did offer the opportunity for two
relatively unknown scientists, Allen Newell and Herb Simon to present their work.

Herbert Alexander Simon was an American polymath later to win the 1978 Nobel Prize
in Economics for his pioneering research into decision-making processes within economic
organisations and Allen Newell was a researcher in computer science and cognitive psy-
chology at the RAND Corporation. Together with the RAND systems programmer John
Clifford Shaw they developed the first ‘classical’ (these days occasionally more derisively
termed ‘good old fashioned’) artificial intelligence program called the ‘Logic Theorist’.
This was a program encapsulating ‘reasoning as search’, ‘ad hoc rules of thumb’ called
heuristics (borrowing a term from George Pólya) and ‘list processing’ (a computer data
processing technique pioneered by Shaw).

Thus in operation the Logic Theorist explored a search tree, wherein the root node
was an initial hypothesis and each of the branches followed a logical deduction (made
using the rules of logic) from a node. If a theorem can be proved then it is clear that the
goal state (i.e. the proposition to be proved) must lie somewhere in the tree, with the
sequence of branches leading to it constituting the proof. As search trees of this form
are prone to expand exponentially some means of pruning is required, or combinatorial
explosion of branches will eventually make searching the tree intractable. In the Logic
Theorist such branch trimming - of ‘paths unlikely to reach the goal state’ - was carried
out by rote application of simple rules of thumb (heuristics).

In this manner the Logic Theorist was able to prove 38 of the first 52 theorems from
Whitehead and Russell’s Principia Mathematica [132]. Subsequently Newell and Simon
refined the Logic Theorist into a system they called the ‘General Problem Solver’ [89].
And it was from these roots - the seeds of which being so fruitfully first sown at the
Dartmouth conference - that an alternative style of artificial intelligence was ushered onto
the scientific stage. In contrast to connectionism and machine learning this was to be
a fundamentally new approach, explicitly defined by ‘symbol processing’ and ‘heuristic
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search’; as Dreyfus and Dreyfus later ironically observed [39], ‘making a mind versus
modelling the brain: artificial intelligence back at a branch point’..

4.2. The rebirth of connectionism. Throughout the 1970s and early 1980s, neural
network research was at a low ebb with few people still active in the field; nonetheless
important advances in the field continued to be made: Igor Aleksander refined Bledsoe
and Browning’s work on pattern recognition and ‘reading by machine’ [23] into a new
‘weightless’ (or n-tuple) neural network paradigm [5] (discussed in Section 4.3) and the
continuing work of scientists such as Hopfield (see Section 5), Grossberg (see Section 6)
and Kohonen (see Section 7) was influential in building momentum towards the even-
tual resurgence of interest in connectionism in the 1980s, ushered in by the ‘Parallel
Distributed Processing’ (PDP) movement in psychology and the cognitive sciences (see
Section 8).

The explosive resurgence of interest in connectionism took the AI community by sur-
prise: for example, a 1987 conference on PDP methods, held by the Oxford Experimental
Psychology Society, had an audience of 700, more than double the anticipated maximum
attendance; whilst in San Diego, America, the first IEEE International Conference on
Neural Networks attracted almost 2000 participants. As Dreyfus and Dreyfus later re-
marked, it was as though “Neural Network modelling may be getting a deserved chance
to fail; as did the symbolic approach” [39].

In the following sections I review some of the most notable neural network models
developed during the so called ‘winter of connectionism’; models which eventually led
to the rebirth of the field via new multi-layer network architectures. These opened up
exciting new developments in neural computing that finally enabled ANNs to overcome
the challenging benchmark problems so elegantly defined just over a decade earlier by
Minsky and Papert. I conclude the historical review with discussion of a selection of
some notable recent developments in the field.

Following the brief review of neural computing I examine some of the core philosoph-
ical and technical issues which have been, and in some cases continue to be, problematic
for the field. I commence this section with an examination of some of the technical
challenges to the single layer perceptron first identified by Minsky and Papert and
subsequently review some of the broader critiques of connectionism (as, for example,
identified by Fodor and Pylyshyn [41]) before finally concluding with a review of three
important philosophical critiques of computational connectionism that, at least in part,
have motivated recent moves towards the embodied, embedded, enactive and ecological
approaches to mind.

4.3. The logical (or weightless) neural network. I commence this review of neu-
ral network developments post publication of ‘Perceptrons’ with an examination of a
relatively little known neural network architecture first invented by Bledsoe and Brown-
ing [23] and subsequently developed and refined over many years by Igor Aleksander
and colleagues [6]; the building block of this network is now known as the ‘logical’ (or
‘weightless’) neuron.

Throughout the 1970s, Igor Aleksander was one of the very few scientists in the UK
to continue researching neural computing following the crushing impact of the Minsky
and Papert critique of single-layer perceptrons [80].
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Figure 7. The Binary Discriminant Neuron

Building upon Bledsoe and Browning’s earlier insights into n-tuple pattern classifica-
tion [23], Aleksander noted that if the inputs and outputs to an MCP cell are constrained
to be binary, the MCP cell computes the ‘Binary Discriminant Function’; the operation
of such a [Binary Discriminant] neuron (see Figure 7) being to classify (discriminate) its
binary input data into one of two sets: TRUE or FALSE. Hence a BDN with n binary
(0/1) inputs can classify 2n possible binary patterns. For example, a BDN with three
input lines, (a, b, c) can perform any binary discrimination between 23 = 8 possible
binary input pattern vectors (including functions Minsky and Papert had identified as
hard for the single layer perceptron such as XOR and parity).

In a radical departure from a conventional neural model which uses real-valued weights
(e.g. as found in the classical MCP cell), in 1970 Aleksander, deploying Bledsoe and
Browning’s n-Tuple sampling technique, outlined the operation of a ‘weightless neuron’
[5]; see Aleksander [6] for an early summary of these ideas. In contrast to the conven-
tional MCP cell it is possible to fully model the behaviour of the Binary Discriminant
Neuron simply by maintaining a truth-table (a list) of the desired [binary] input-output
mappings; Aleksander’s key insight was to realise that a simple hardware device that
could maintain such a list is a RAM chip (see Figure 8). In this manner all that is
needed to define an n input binary MCP cell is a RAM chip with 2n memory locations.

To specify a memory location in a RAM chip a binary number is applied to its, n,
ADDRESS input lines. To implement the function of the BDN the desired output value,
given a specified n-Tuple [RAM address], is stored in the RAM at the location in the
RAM memory specified by the n-Tuple [RAM address].

If for each of the 2n possible binary input patterns to an n-input BDN this weightless
‘learning’ is carried out using a suitable RAM chip, then by simply causing the RAM to
output the data stored in the RAM [at the address defined by the n-bit input vector to
the BDN] the output of the RAM chip will perfectly replicate the logical function of the
Binary Discriminant Neuron.

NB. The key differences between the two forms of Binary Discriminant Neuron (the
logical neuron and the MCP implementation of a BDN) are that (i) the analogue MCP
cell stores the required function as a list of n real-valued weight values whereas the RAM
neuron stores the function as a list of 2n binary values; (ii) a single analogue MCP cell
can only compute Linearly Separable functions whereas a RAM neuron can perform any
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Figure 8. The use of a RAM chip as a Binary Discriminant Neuron

desired input/output mapping; in this sense the logical [RAM] neuron functions as an
unconstrained, universal neuron.

To use a set of logical neurons as a [logical] neural network, the data to be classified
are represented as a vector of m boolean values. This vector is subsequently sampled,
according to some predefined fixed schema (typically either randomly or sequentially),
with n such samples forming one n-Tuple address to one of the RAM neurons; with k
(k = mDIV n) such RAMs required to map onto all the m bits of the Boolean input
vector. NB. The input vector can be either exclusively sampled, such that each value is
used only once, or oversampled by a factor of o, where each value is used o times.

To learn a pattern (n) boolean sampled values from the input vector are used to
form an n-bit address into one of the network RAMs (using one such RAM per n-Tuple
sample) and a boolean TRUE value is stored at this location in the RAM. To classify the
binary data, the input vector is sampled as before; however, instead of storing a TRUE
value at each of defined RAM locations, a count of the TRUE values stored at these
addresses across all the RAMs in the network is maintained. This count is the system’s
response to the unknown input vector.

After training a network of k RAMs with one input vector it is trivial to see that a
(re)presentation of the same input vector will result in a system output of k (as the

∑
k

RAMs, each outputting a logical TRUE, will be k. If there is a ‘1-bit’ difference in the
input vector this will generate an address not seen by one of the RAMs in the network
which would thus output FALSE. The response of the network to this pattern would
thus be (k − 1).

However the elegance of this type of network is that, after training with a set of training
patterns, combinatorial and sampling effects ensure that the network is able to reliably
classify patterns not in the training set with a maximal response; if these patterns are
‘similar’ to those in the training set, then the system has generalised successfully.

Figure 9 shows four training patterns (IMAGE ONE, TWO, THREE & FOUR) being
learnt into a small logical network of four RAM neurons, which, by using a tuple (or
sample size) or four, completely map onto each of the 4 = 16 elements of the sixteen ele-
ment [4x4] binary input vector. It can easily be seen that after this training there will be
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eight patterns that will result in maximum FOUR RAMs firing (the four training images
plus new unseen vectors defined by OR-ing together input vectors [2+3], [2+4], [3+4],
[2+3+4]); for a comprehensive review of the capabilities, limitations and extensions of
the weightless network paradigm see Ludemir et al [70].
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Figure 9. Generalisation in a Logical (or ‘weightless’) neural network

In this way a simple and cost effective route to instantiating large neural networks in
hardware had been found and as early as the 1984 Aleksander and colleagues [7] were able
to demonstrate such systems differentiating, for example, high resolution facial images
at real-time video speed; a notable engineering achievement at the time.

5. Hopfield networks

One of the most influential researchers to continue working in the field of neural
computing in the new era (i.e. post publication of the Minsky and Papert critique of
perceptrons) was the physicist John Hopfield. Hopfield famously made the connection
between ANNs and physics and in 1982, using ideas imported from statistical physics,
analysed the behaviour of a simple binary network of MCP type cells in which the output
of each neuron is connected to the inputs of all other neurons in the network. Hopfield
considered that in such a network, at any given instant, the output of all the neurons
should be considered together as a [transient] ‘state’ of the network [55].

Hopfield proved that on presentation of an arbitrary starting vector, such a network
would go through a series of transient states before falling into one particular stable
pattern of neural firing after a finite number of iterations. In this way the network
functions as a [bi-directional] pattern associator, associating an arbitrary input vector



24 J. MARK BISHOP

to an output vector. Hence, learning in the Hopfield network simply entails designing the
weights of the network such that the net is forced to remain stable in certain preferred
states. Hopfield suggested that a binary network consisting of N neurons, can reliably
store 0.15N different stable energy states.

Hopfield networks - also known as ‘resonance networks’ or ‘bidirectional associative
memory (BAM)’ - consist of a fully connected network of MCP cells with bi-directional
weighted connections. In the simple Hopfield model the neuron can take on one of two
states, on or off [-1, +1]. These states are defined by the application of a threshold MCP
model:

IF (
n∑
i

Xi ×Wi + b > 0) THEN Xi = +1 ELSE Xi = −1(7)

Hopfield analysed both synchronous network (all neurons update together) and asyn-
chronous networks (where each neuron fires independently, with a mean attempt rate of
W attempts per second). Soon after Hopfield first published information on this class of
devices, Hopfield nets were applied to difficult optimisation and constraint satisfaction
problems (such as the task assignment) [57].

In operation the outputs of a simple binary Hopfield network are first clamped to
respective elements of the input vector. The network is then unclamped and each neuron
left to operate via application of the threshold MCP model (in asynchronous mode at W
evaluations of the model per second) until the network arrives at a stable energy state
at which point the outputs of each neuron define the network output vector.

To learn a binary class vector (or ‘memory’) in a binary Hopfield network (see Figure
10), the network weights need to be adjusted such that the memory is a stable energy
state of the network. Hopfield showed that in a network of N neurons with M class
archetypes (i.e. training vectors), for each vector in the training set and for each neuron
in the network, the weight connecting neuron i with neuron j (i 6= j) should be updated
by application of simple Hebbian learning as follows:

Wij =
M∑
i=1

Xs
i ×Xs

j(8)

.. where Wij is the weight connecting neuron i to neuron j and Xs
i is the ith element of

training vector S. NB. Hopfield networks can be used to build auto-associative networks
because the matrices produced by the Hebb rule or by computing the pseudo-inverse are
symmetric.

If after training the weights of a Hopfield network are such that a set of vector
archetype patterns are stable and the network is subsequently presented with an ar-
bitrary input vector, the network will transit through a series of states before settling to
one of the learnt vector archetypes (e.g. in a binary Hopfield network, the vector closest
in Hamming distance to the input vector).

In retrospect it is clear that Hopfield’s 1984 paper was important for several reasons:
(1) It describes a useful class of neural networks that are suitable for implementation

in hardware (e.g. within three years of publication of the 1984 paper AT &
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Figure 10. Weights in a binary Hopfield network to learn a binary vector
representing ‘Mark’ [-1 -1 +1 +1 -1 +1]

Bell laboratories had announced the first hardware neural network chips based
on Hopfield’s ideas; Caltech colleague Carver Mead also developed silicon chips
based on Hopfield’s principles).

(2) Hopfield networks could be used on difficult optimisation problems [57].
(3) Hopfield outlined an original method of analysis of his networks (e.g. proving

convergence) drawing on concepts from statistical physics (e.g. the concept of
‘energy landscapes’).

(4) Hopfield’s work led to the development of The Boltzmann Machine [3]. The
Boltzmann machine consists of simple processing units which are connected via
bi-directional links. The links are represented by real valued weight vectors and
the processing units can be either on or off. In this way the Boltzmann machine
can be seen as a stochastic, generative extension to the Hopfield network.

NB. Although Boltzmann machines were one of the first examples of a neu-
ral network architecture capable of learning internal representations, due to a
number of serious practical issues relating to learning time, Boltzmann machines
with unconstrained connectivity have not proven useful for practical problems in
machine learning (see [66]) and will not be discussed further herein.

6. The ‘adaptive resonance theory’ classifier

The Adaptive Resonance Theory (or ART) classifier belongs to the class of unsuper-
vised learning Artificial Neural Networks. In the field of ‘machine learning’ the problem
of unsupervised learning is that of trying to find hidden structure in unlabelled data; in
neural networks it is the problem of adjusting neural network weights without reference
to an explicit target output vector. The ART-1 classifier was first described in 1987
[28], however Adaptive Resonance Theory traces its lineage back to Grossberg’s 1976
research in competitive learning [49].

In the context of connectionism, the ART classifier is unusual in that it has a relatively
complex heterogeneous architecture. Unlike say, the Kohonen feature map (see Section
7), an ART network consists of several different types of functional unit (‘neuron’), each
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computing a specialised operation. A novel and important feature of ART is its ability to
switch modes between plastic (the learning state in which the internal parameters of the
net are modified) and stable (where the net acts as a fixed classifier), without detriment
to previous learning. Effectively the ART classifier attempts to reconcile the input vector
by searching through other category ‘archetypes’ according to their degree of similarity
(as determined by the ‘reset module’ and the network ‘vigilance parameter’).

If the algorithm cannot find a suitable archetype, it creates a new one by adding an
‘uncommitted neuron’ to the recognition layer. The vigilance parameter has considerable
influence on the system: higher vigilance (tending to 1.0) produces highly nuanced
‘memories’ (i.e. many, fine-grained categories), while lower vigilance results (around 0.4
or less) in more general, ‘fuzzy’ memories (i.e. fewer, more generic, categories).

feedforward
weights

output
layer

input
layer

input

reset

vigilance
test

control - 2

control - 1

feedback
weights

feedback
weights

Figure 11. The binary ART classifier

Grossberg and Carpenter have developed several versions of ART (ART-1, ART-2,
ART-3 etc) as the architecture evolved to become more refined and summarising all
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is beyond the scope of this chapter; herein I will concentrate on the simplest ART-1
classifier [28].

The ART-1 network (see Figure 11) acts on binary data and comprises two layers (or
‘fields’) connected by weights:

(1) Real valued feedforward weights, W, connect the comparison field (the neural
input layer) to the recognition field (or neural output layer).

(2) Binary feedback weights, T, connect the recognition field to the comparison field.
The neurons in the recognition field are also fully interconnected laterally via negative

weights, so passing a negative quantity proportional to each output neuron activation
to the inputs of all the other neurons in the output layer; in this way neurons in the
recognition field exhibit lateral inhibition, so enabling each neuron in the recognition
field to ‘represent’ a category (class archetype or‘memory’) into which input vectors are
classified. Data-flow at each layer is controlled by the logical gating signals (control-1
and control-2). The ‘reset’ module effectively performs the comparison between input
vectors and the network class exemplars and decides on adding new class exemplars as
appropriate. Each neuron in the comparison field receives three [binary] inputs:

• The ith component of the input vector.
• The ith component of the feedback (class archetype) vector.
• The binary ‘control-1’ (or ‘gain-1’) signal.

6.1. Data resonance. After initialisation, each time an input vector X is presented to
the ART classifier, a modified version of the input data ‘resonates’ between the compar-
ison and recognition layers as it cycles through three phases: recognition, comparison
and search until either a classification is made or a new class is assigned and a new node
added to the recognition layer. The ART classifier then performs weight-update and
becomes ready for new input.

Initialisation: On initialisation the vigilance threshold is set and weight values
are set to initial values:
• The vigilance threshold r set to a value in range 0 < r < 1.
• Feedforward weights are initialised to Wi = 1

(1+n) where n is the number of
input neurons.
• Feedback weights are all initialised to one Ti = 1.

New input vector received: When a new input vector is received by the clas-
sifier control signals are set to the following values and operation moves to the
recognition phase.
• Control - 1 is HIGH whenever valid input is present.
• Control - 2 is HIGH whenever valid input is present.

Recognition phase: Each node in the input layer receives input from three sources:
(1) The input data vector Xi.
(2) The feedback vector signal.
(3) The control-1 signal (which in the recognition phase is set to +1).

Each neuron in the comparison field layer outputs one iff two out of its three
binary inputs are active and in this way a new comparison vector is generated.

The new comparison vector causes activation at the recognition layer by the
usual weighted sum of inputs (via the real-valued feedforward weights, W ). The
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combined effect of the lateral inhibition at the output layer and the activation
caused by the input ensure that for any given input only one output neuron is
active. This ‘winning node’ is the neuron whose real valued input weights most
closely match the current comparison vector; the control signal ‘control-1’ is set
LOW as this occurs.

The winning node then passes its binary class exemplar back to the comparison
layer by multiplying its winning activation level (+1) by its binary feedback
vector, T .

Comparison phase: In the comparison phase there are two vectors active at the
comparison layer: the data vector, X and the feedback vector, T . As the control-
1 signal is now zero, the application of the ‘two thirds rule’ determines the
new comparison vector (i.e. the state of each node at the comparison layer),
Z is simply defined by the logical AND of (X AND T ). The reset module now
compares the new comparison vector Z to the input vector X. This process
is evaluated by dividing the number of ‘ones’ in common between the binary
comparison vector Z and the binary input vector X, by the total number of
’ones’ in the input vector. I.e.

s =
T ·X
X ·X

(9)

IF (s is greater than the vigilance threshold, r) THEN classification of the
input vector is made to the winning recognition node j and ART enters the
weight-update phase; otherwise the control signal ‘control-2’ is set LOW and
ART enters the search phase.

Search phase: In the search phase the LOW control-2 signal causes the current
winning recognition node, j to be disabled; at this point if there are no other
nodes left in the recognition layer, then a new node is added to the recognition
layer and ART enters the weight-update phase; otherwise control-1 reset to 1
and ART re-enters its recognition phase.

Weight-update phase: In ART weight-update the two sets of weights, T and W ,
are updated as follows:

• For the binary feedback weights T :

Tij(t+ 1) = Tij(t)×Xi(10)

• For the real valued feedforward weights W :

Wij(t+ 1) =
Tij(t)×Xi

0.5 +
∑n

i=1 Tij(t)×Xi
(11)

In this way ART-1 offers a novel solution to the problems of plasticity and stability
in neural network learning. Whilst there remain unused nodes in the recognition layer
pool, ART can continue to develop new classes as required by the presentation of novel
input vectors (i.e. new memories/classes can always be added); conversely, the addition
of a new class does not disturb previously learnt classifications made by the network (i.e.
old memories remain stable). These are very attractive properties of the ART classifier.
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7. The Kohonen ‘feature-map’

Like the ART classifier, the Kohonen network also belongs to the class of unsupervised
neural networks. In its original form it was significantly biologically inspired. A Kohonen
network consists of an array of adaptable neurons - the outputs of which form a ‘feature
map’. Over time each neuron becomes ‘tuned’ to a particular input vector, by adaption
of its weight vector. After training, similar input vectors will excite similar regions of
this ‘feature map’.

A Kohonen feature map can be considered as a fully inter-connected network of N
MCP style cells (defined by a weight vector n), with in addition each neuron also having
a further set of weighted inputs to an M element external input vector (defined by the
weight vector m), see Figure 12.

INPUTS

m

n

NEURONS n

EXTERNAL

INPUTS

INTERNAL

Figure 12. The Kohonen Feature Map

oi = fa(fm
i (t) + fn

i (t− 1))(12)

fm
i (t) =

∑
i

ximi for all external inputs(13)

fn
i (t) =

∑
i

oini for all internal connections(14)

fa is typically a sigmoid squashing function whose output is always positive. The n
internal weights are clamped as a function of the sinc operator and distance, (see Figure
13).
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Figure 13. The ‘Mexican hat’ operator, or sinc function, defining inter-
nal weight values as a function of distance

7.1. Learning in a Kohonen feature map. Learning in the Kohonen feature map
proceeds as follows:

(1) All neural weights are initialised to small random values.
(2) On presentation of an input vector from the training set, the first task of the

network is to find the focus neuron, Xc; this is the neuron c whose external
weights M most closely resemble the input vector X (e.g. the Euclidean distance
between the input vector and the neuron external weight vector is minimised):

Xc = MIN(DIST (X,M))(15)

E.g. For Euclidean Distance:

|x−m| = |x1 −m1|+ |x2 −m2|+ |x3 −m3|+ ...(16)

Where |a− b| is the modulus of (a− b).
(3) Update the weight vectors that lie within a neighbourhood Nc(t) of c such that:

mi(t+ 1) = mi(t) + α(t)(x(t)−mi(t))(17)

Where Nc(t) and α(t) are empirically defined by monotonically decreasing
functions of time, e.g. Nc(t) = φ/t.

7.2. An artificial example: classifying pairs of real valued random input vec-
tors. To illustrate Kohonen weight learning the external weights for a 2D Kohonen
feature map, with a 2D external input vector, is first initialised with small random
weights [0 ≤ x < 1] and then repeatedly presented with pairs of random values in the
interval [0 ≤ m < 1]. Network behaviour is illustrated by plotting the weights of each
neuron as a point on the plane [0..1, 0..1] with lines linking topologically adjacent neu-
rons. Initially the plot shows the network weights as randomly distributed and thence
the plot as a random mesh of points; over time as Kohonen learning takes place, the
external weights to each neuron adapt and the network unfolds such that neurons are
distributed evenly and preserve their topological relationships on the plane, (see Figure
14).
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Figure 14. An illustration of Kohonen network weight adaption with
random pairs of real-valued inputs

7.3. Practical applications.

Dimension Reduction: using a Kohonen Feature Map. A series of n-dimensional
input vectors can be mapped, (classified), onto a two dimensional feature map.
As the network decides the classification without external supervision it is an
‘unsupervised’ learning algorithm. A Kohonen network ‘student classifier’ may
have n different inputs corresponding to grades in particular subjects etc. and
m output neurons. After training the map would classify students into one of m
‘attainment’ groups.

Speech Recognition: using a Kohonen feature map. Each neuron is taught to
respond most strongly to a specific phoneme with the input vector defined by
the Fourier transform of the speech signal. In use:
• At each sample period a specific neuron will be most active.
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• If this is consistent over a given time window (e.g. 4 samples out of 7) then
that phoneme on the map is classified as active.
• A word is identified as a [recognisable and learnt] trajectory of phonemes

across the feature map over a specified time window.

7.4. Supervised feature-map learning. The standard Kohonen methodology is paradig-
matically an unsupervised learning algorithm; however, there may be occasions when it
is desired to associate particular input vectors with particular nodes on the feature map
and ‘learning vector quantisation’ (LVQ) as one algorithm to achieve this. LVQ is a
supervised learning algorithm that can be used to fine tune such a feature map (e.g.
by the use of additional, new, training vectors to improve performance of individual
neighbourhoods). The algorithm works as follows:

(1) Select training vectors with a known classification and present to the network.
(2) Calculate winning neuron (the focus neuron, c)
(3) Modify the weight vector of focus neuron as follows:

If the network correctly classified the input:

mi(t+ 1) = mi(t) + α(t)(x(t)−mi(t))(18)

If the network incorrectly classified the input vector:

mi(t+ 1) = mi(t)− α(t)(x(t)−mi(t))(19)

8. The multi-layer perceptron

One of the key moments in neural network research, which led to a “renaissance”
in the field of artificial neural network research in the 1980s, was the development of
a learning rule that can be applied to multi-layer neural networks; networks with so
called ‘hidden neurons’ (i.e. processing nodes not directly connected to the network
output). The rule which gained most attention at the time - being widely popularised
by Rumelhart, Hinton, Williams [104] and the PDP group at the University of California
- was called back propagation (or the Generalised Delta rule) which propagates an error
term back through the network - from the output units to the input units - making
weight changes such that overall prediction error of the net is minimised.

Historical note: in his book on Support Vector Machines, Vapnik cites Bryson et
al 1963 [27] with the first publication of the back propagation algorithm; however it
wasn’t until 1974, in the PhD research of the control engineer Paul Werbos, that the
procedure was applied in the context of neural networks [130]. Coincidentally, around
the same time as the work of the PDP group, back propagation was also independently
(re)discovered by Le Cun and published (in French) in 1985 [67].

A full introduction to the back propagation learning rule is beyond the scope of this
chapter, however a brief description is offered below.

8.1. Back propagation (or the generalised-delta rule). Many problems in approx-
imation theory can be viewed as a process of curve fitting, i.e., the fitting of lines [or
surfaces] to a set of points in a 2 or more dimensional space.

• In 2-D space - lines are fitted to points.
• In 3-D space - planes are fitted to points.
• In n-D space - hyperplanes are fitted to points.
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It is possible to view learning in a multi-layer network (MLP) as the process of curve
fitting that occurs as the MLP adapts its structure to model the training data. If there
are K (weights + biases) in the MLP network then, over time, the learning process
traces out a path in (K+1) dimensional weight/error space. If the learning process is
good, at the end of the learning process the network will arrive at a low point in this
error / weight space.

The generalised delta rule (GDR) works by performing gradient descent in error /
weight space and is a generalisation of the standard delta (or Widrow-Hoff) learning
rule discussed in Section 5 above. That is, using the GDR, after each training pattern
has been presented, the resulting network prediction error on that pattern is computed.
This is calculated by comparing the actual output of the network with the desired output
as specified by the current training pattern. Subsequently each weight in the network is
modified by moving down the error gradient towards the minimum (for that input/output
pattern pair). The ‘gradient descent’ learning technique involves changing each weight
in proportion to the negative of the derivative of the error (as defined by the current
training vector pair).

The basic form of the generalised delta rule is identical to the simple delta rule dis-
cussed in Section 3.3 above):

∆Wji = ηδjIi(20)

At the output layer the error signal is:

δj = η(Tj −Oj)f ′jnetj(21)

and for a hidden layer the error signal is:

δj = f ′jnetj
∑

δkWkj(22)

Where k represents the index of each output node, f ′jnetj is the derivative of a semi-
linear activation function acting on the jth unit, which maps the total input to the
unit to an output value. NB. A semi-linear function must be differentiable, continuous,
monotonic and non-linear. Thus, using a sigmoid activation function we get:

oj =
1

1 + e−netj
(23)

Where netj =
∑

iWjiOi +θj and θj is a bias term which can be learned like any other
weight by considering it connected to a unit which is permanently on. The derivative of
f is thus:

doj

dnetj
= oj(1− oj)(24)

Hence for an output unit the error signal is:

δj = (tj − oj)oj(1− oj)(25)
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and for a hidden unit the signal is:

δj = oj(1− oj)
∑

δkWkj(26)

8.1.1. The learning rate eta. The above learning procedure requires only that the change
in weight is proportional to dE

dW , whereas true gradient descent requires infinitesimally
small steps to be taken. The constant of proportionality is the learning rate constant, η.
The larger this value, the larger the changes in weight at each iteration and the faster
the network learns. However if the learning rate is too large, then the network will go
unstable and oscillate. The PDP group suggested that one way to increase the learning
rate, without leading to oscillation, is to introduce a momentum term. I.e.

∆Wji(n+ 1) = ηδjoi + α∆Wji(n)(27)

.. where n indexes the current input/output presentation number, η is the learning
rate constant and α is the momentum constant. In effect the ‘momentum’ term defines
how much past weight changes affect the current direction of movement, providing a
force analogous to momentum in weight space, which acts to filter out high frequency
variations in the error surface. For example, if the network arrives at a gradually de-
scending ravine in weight error space, the steepest error gradient may be mainly across,
rather than down, the ravine. The use of a momentum term tends to filter out such
sideways movement, while compounding movement down the ravine.

8.1.2. One learning iteration of the Generalised Delta rule. In one learning iteration of
the Generalised Delta learning rule the following sequence of events occur:

• The network is presented with an input pattern (all the input units of the network
are set to the required values).
• The input vector is used to compute the output values by feeding forward through

the net and computing activation values for all the other units.
• The output vector for this pattern is compared to the required, or target, pattern

and the error term is calculated for every output unit.
• Error terms are recursively propagated backwards through the net to the other

units in proportion to the connection strengths between the units.
• The weights are then adjusted in such a way as to reduce the error terms, by

performing gradient descent in weight error space, in a similar manner to the
simple delta rule.
• The process is repeated for all the input/target pattern pairs in the training set.

The process of presenting to the network all the patterns over which it is to be trained
is defined as an epoch of learning. Training continues for as many epochs as are necessary
to reduce the overall error to an acceptably low value.

9. Radial basis function networks

A radial basis function (RBF) network consists of an input layer; a hidden layer and
an output layer. At the input layer the nodes distribute the network input vector to
all the nodes in the hidden layer; at the hidden layer each node contains a centre and
a function called a ‘basis function’; finally each node at the output layer multiplies the
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activation of each hidden layer node by a coefficient and sums the resulting values to
produce a network output, see Figure 15.

R
1

c
2

c
3

R
n

X
1

X
2

X
n

c
1

c
n

R
2

R
3 S y

Summation

Basis Function

Figure 15. The Radial Basis Function network

A RBF network is defined by two parameters:

• A set of ‘Centres’ each defined by a vector, R, of the same dimensionality as the
RBF network’s input vector; a centre is associated with each node of the RBF
hidden layer.
• A set of coefficients {cij} which weights the connection between the ith node in

the RBF hidden layer and the jth node in the RBF output layer.

In the RBF network the basis functions take the place of the activation function
of a MCP cell in an MLP network. Each basis function φ operates on a scalar value
and returns a scalar value, which is the output of the hidden layer node. Examples of
commonly used basis functions include (a) the thin plate spline: φ(x) = x2log(x) and

(b) the Gaussian function φ(x) = e−
x2

2w (where w represents the width of the Gaussian).
At the hidden layer node each node calculates the Euclidean distance between the

current input vector, x, and the node’s centre vector, R. The jth node’s basis function
operates on the resulting distance to produce the output of the jth hidden layer node:

oj = φ(||x−R||)(28)

At the output layer each node multiplies the ‘activation values’ of each hidden layer
node o by a scalar coefficient, ci and sums the resultant values to produce the RBF
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output value for that node yi. Thus, for each node in the output vector the output value
of the RBF is defined as:

yi =
m∑
1

cijoi(29)

..where m is the number of nodes in the hidden layer, oi represents the output of the
ith hidden layer node and cij is the coefficient weighting the connection between the ith
hidden node and the jth output layer node.

The overall output equation for each output node of the RBF is thus:

yi =
m∑
1

cijφ(||x−R||)(30)

.. where Ri is the centre belonging to the ith hidden layer node.

9.1. Learning in an radial basis function network. Before RBF training com-
mences, the centres, R, must be chosen. Centres must be chosen to represent the train-
ing data set and the correct choice of centres is critical for good RBF performance :- too
many or too few decreases network accuracy.

Various heuristics have been tried to determine the optimum number and position of
centres; these include: positioning centres according to a simple distribution (e.g. a uni-
form or Gaussian distribution over data space); or choosing a distribution related to the
training data distribution (e.g. via the application of a suitable clustering algorithms).
The only remaining parameters which need to be trained are the coefficients c (as all
the other RBF values are known).

The input and output training sets provide pairs of values for x and y. For each
input-output xy pair, an equation is produced:

y = c1φ(x,R1) + c2φ(x,R2) + c3φ(x,R3) + ...cnφ(x,Rn)(31)

.. where φ(x,Ri) = φi(||x − R||). As there is usually more than one pattern in the
training set a group of equations is produced:

y1 = c1φ(x1, R1) + c2φ(x1, R2) + c3φ(x1, R3) + ...cnφ(x1, Rn)(32)
y2 = c1φ(x2, R1) + c2φ(x2, R2) + c3φ(x2, R3) + ...cnφ(x2, Rn)(33)
y3 = c1φ(x3, R1) + c2φ(x3, R2) + c3φ(x3, R3) + ...cnφ(x3, Rn)(34)

ym = c1φ(xm, R1) + c2φ(xm, R2) + c3φ(xm, R3) + ...cnφ(xm, Rn)(35)

And as there will [usually] be many more training pairs than there are unknown
coefficients we have an over determined set of equations.

y1 = φ(x1, R1) · c(36)
y2 = φ(x2, R2) · c(37)
y3 = φ(x3, R3) · c(38)

ym = φ(xm, Rm) · c(39)
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In matrix form this can be more succinctly expressed as y = A × c. Solving this
equation simply involves finding the inverse of A. There are a variety of techniques that
can be used to produce this inverse and hence solve for the coefficients c; these include:

• LU (Lower Upper) decomposition; factors a matrix as the product of a lower
triangular matrix L and an upper triangular matrix U .
• QR decomposition; factors a matrix as the product of an orthogonal matrix Q

and an upper triangular matrix R.
• Singular value decomposition.

Singular decomposition is generally regarded as being the preferred method, as it can
accommodate cases where the training patterns are closely related to each other.

In summary, RBFs have some similarities to perceptrons:

• they learn from a set of training set exemplars;
• they are able to generalise from training data;
• they store information in a distributed manner;
• and they map well onto parallel processing hardware.

.. and some differences:

• MLPs are defined by weights and thresholds; RBFs by centres and coefficients;
• training in MLPs is relatively slow and computationally expensive compared to

RBFs;
• perceptrons weight and sum their inputs before passing them through an activa-

tion function; RBFs pass each input through a basis function before weighting
and summing.

However, because RBF networks can learn problems which a single layer perceptron
cannot (e.g. the so called ‘hard’ problems) they are considered more powerful than SLPs.

10. Recent developments in neural networks

With the development of the multi-layer perceptron and the widespread adoption of
the back-propagation learning rule (and the alternative basis-function framework de-
veloped by Broomhead and Lowe) some of the key criticisms of simple single layer
Perceptions from Minsky and Papert were finally addressed and the subsequent decades
witnessed an explosion of papers detailing the application of neural network technology
in different fields; these include: system identification and control [59]; game-playing
and decision making [119]; pattern recognition [6]; sequence recognition (gesture, speech,
handwritten text recognition); medical diagnosis; financial applications (automated trad-
ing systems); mobile robot localisation [62] [19]; data mining (knowledge discovery);
colour recipe prediction [18] and e-mail spam filtering etc.

I will complete this section with a brief summary of some of the recent key develop-
ments in artificial neural networks technology.

10.1. Support vector machines. Similar to the RBF, sensu stricto the support vector
machine (SVM) is a machine learning architecture rather than a neural network. The
original SVM was co-invented by Corinna Cortes and Vladimir Vapnik [36] in 1995 and
rapidly because the machine learning algorithm of choice for the cognoscenti (until the
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more recent development and popularisation of so called ‘deep learning networks’ by
Hinton and Schmidhuber).

Given a set of training examples belonging to two classes, the SVM algorithm builds
a model that assigns new examples into one class or the other, such that the examples
of the separate categories are divided by a clear gap that is as wide as possible. SVMs
perform non-linear classification using the so called ‘kernel trick’ by which they implicitly
map their inputs into higher-dimensional feature spaces.

10.2. Reinforcement learning. Reinforcement learning defines a broad area of ma-
chine learning research concerned with describing how agents ought to take actions in
an environment so as to maximise ‘cumulative reward’. Effectively reinforcement learn-
ing, by a system of trial and error, works out what is the best action to take in any
given situation. Feedback is given by reward or punishment - a positive reward is given
for successfully achieving the task; a punishment (or ‘negative reward’) is given for any
action that impedes successful completion of the task.

The first neural network implementation of reinforcement learning was developed in
the work of Barto et al in the early 1980s [11] with more advanced reinforcement learn-
ing schemes, such as Q-learning, following in the 1990s. Q-learning algorithms typically
store the expected reinforcement value associated with each situation-action pair, in a
look-up table (Q-table), but this approach often fails to scale well. In 1997 Touzet sug-
gested replacing the Q-table with an MLP network or, most effectively with a Kohonen
feature map; as Touzet concludes [124] “we may have found with this implementation
the ‘ultimate’ Q-learning implementation”.

Reinforcement learning has been used in numerous difficult application areas includ-
ing: mobile robotics, game playing, pole balancing etc.

10.3. Artificial recurrent neural networks. The artificial recurrent neural network
(ARNN) defines a class of neural network where connections between neurons form a
directed cycle. This enables the network to create an internal state which allows it to
exhibit complex dynamic temporal behaviour akin to memory, which in turn enables the
ARNN to more easily process arbitrary sequences of inputs than non-recurrent archi-
tectures such as the Multi-Layer Perceptron. Albeit, by appropriate coding of input to
a MLP (e.g. It=0, It−1, It−2..It−k) it is possible to enable MLPs to processes temporal
data, but not as naturally as ARNNs.

The lineage of ARNNs can be traced to Hopfield’s architecture (albeit Hopfield’s
architecture was not engineered to process sequences of patterns). As a generalisation
of the fully recurrent Hopfield network, each neuron has a directed connection to every
other neuron (specified by a ‘real-valued’ weight). Some of the neurons in the network
will be defined inputs, some outputs, and the rest hidden neurons.

The ARNN consists of a finite number of neurons. The activation of each processor
i = 1..N is updated by the equation:

xi(t+ 1) = σ(
N∑

j=1

aijxj(t) +
M∑

j=1

bijuj(t) + c)(40)
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.. where N is the number of neurons, M is the number of external input signals, xj

are the activations of the neurons, u are the external inputs, and aij , bij , and c are the
real valued weights.

In pioneering work Hava Siegelmann and Eduardo D. Sontag [114] proved that an
ARNN with a finite number of neurons, rational valued weights (contra full precision
real number-valued weights), with the function u being the simplest possible ‘sigmoid’
(the saturated-linear function):

σ(x) :=


0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

(41)

.. defines a model of computation that is polynomially related to Turing machines;
more precisely, given any multi-tape Turing machine, one can simulate it in real time
by some network with rational weights. They subsequently generalised their proof to
show that the use of [just one] irrational values for weights results in a machine with
super-Turing power:

We prove that neural networks can recognize in polynomial time the same
class of languages as those recognized by Turing machines that consult
sparse oracles in polynomial time (the class P/poly); they can recognize
all languages, including of course noncomputable ones, in exponential
time.

In response to criticism of the use of ARNNs with irrational (real valued) weights,
Siegelmann remarks:

In a natural analog computation process, one starts from initial conditions
that constitute the (finitely describable) input, and the system evolves
according to the specific equations of motion to its final position, which
constitutes the output. The evolution is controlled by the exact equations
of motion with the exact physical constants. The analog physical system
‘solves’ the equations of motion exactly. For example, planetary motion
is used to measure time with very high precision although we know the
gravitational constant G only to two digits. The planets, of course, re-
volve according to the exact value of G, irrespective of its measurement
by humans.

In subsequent work from 1995 Siegelmann [113] further describes a highly chaotic
dynamical system she termed the ‘Analog Shift Map (ASM)’, which is proved to have
computational power beyond the Turing limit (i.e. it is ‘super-Turing’), computes exactly
like ARNNs and conjectures that it can be used to describe other natural [chaotic]
physical phenomena and hence that ARNNs can accurately model other chaotic physical
phenomena.

10.3.1. Reservoir Computing and Echo-State Networks. A reservoir computing system
typically consists of a [fixed] randomly configured dynamical system, the dynamics of
which map an input vector into a higher dimensional space, from where a simple learnt
read-out mechanism maps the resulting ‘reservoir’ state to the desired output. The
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reservoir itself typically consists of a collection of random, recurrently connected non-
linear processing units, with its overall dynamics being driven by the input vector.
Because the reservoir parameters are fixed, learning is only performed at the output
layer and hence can be made very efficient.

An example of reservoir computing is the ‘Echo State Network (ESN)’. The ESN con-
sists of a non-trivial (typically 50-1000 unit) artificial recurrent neural network with a
very sparsely connected hidden layer where the weight inter-connectivity vector is ran-
domly assigned. In this way the reservoir can exhibit dynamic memory by maintaining
its activation even in the absence of the input vector. In principle, the ARNN can learn
to approximate any given continuous function with arbitrary accuracy.

Because there are no cyclic dependencies between the trained readout connections
training an ESN becomes a simple linear regression task and hence learning is very fast.
In their Science article of 2004 Jaeger and Haas report [60]:

On a benchmark task of predicting a chaotic time series, accuracy is
improved by a factor of 2400 over previous techniques. The potential
for engineering applications is illustrated by equalizing a communication
channel, where the signal error rate is improved by two orders of magni-
tude.

10.3.2. Continuous Time Recurrent Neural Network (CTRNN). A CTRNN [13] deploys
a system of ordinary differential equations to model the effects on a neuron of incom-
ing spike trains to the neuron. In typical engineering applications CTRNNs are often
deployed in conjunction with ‘evolutionary learning algorithms’ to learn the network pa-
rameters. Because of the simplicity of the ‘evolutionary learning’ algorithm (which can
be configured to simultaneously learn network architecture (number of neurons) and in-
ter neuron weights) and because CTRNNs do not model neural activations at the spike
train level, they are relatively simple to simulate and compute and hence have been
deployed in various real-world application areas (e.g. evolutionary robotics, vision and
minimally cognitive behaviours).

10.4. The spiking neuron neural network. In contrast to classical ANN models,
spiking neurons do not simply aggregate individual action potentials as a mean firing
rate but act on temporal sequences of spikes. Like classical connectionist models, spiking
neural networks (SNNs) have been studied both for their computational/engineering
properties and as models of neurological processes. In contrast to the MCP model, in
addition to neuronal and synaptic weight, Spiking neurons fundamentally embrace time
in their operation. Typically a spiking neuron model only ‘fires’ when an internal state
(akin to neuronal ‘membrane potential’) reaches a specific value; at this point the neuron
fires and transmits a signal to other neurons which, in turn, will increase or decrease
their potentials. Various schemes exist for encoding the outgoing spike train as a real-
value number, specifying either the frequency of spikes, or the timing between spikes, to
encode information.

10.4.1. The ‘Integrate and Fire’ Neuron. The ‘Leaky Integrate-and-Fire’ (LIF) neuron
[47] is perhaps the simplest spiking neuron model and in its simplest form is simply
modelled as a “leaky integrator” of its input I(t):
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τm
dv

dt
= −v(t) +RI(t)(42)

.. where v(t) represents the membrane potential at time t, τm is the membrane time
constant and R is the membrane resistance.

Thus equation (42) simply describes a resistor-capacitor (RC) circuit where the ‘leak-
age’ term is due to the resistor and the integration (of I(t)) is due to a capacitor wired
in parallel to the resistor.

In the LIF model, the so called firing (or spiking) events are not explicitly modelled;
however, when the membrane potential v(t) reaches a certain threshold vth (its ‘spiking
threshold’), it is forced to a lower value vr (its ‘reset potential’) and the leaky integration
process (described by Equation 42) starts again with the initial value vr.

It is possible to make the LIF model slightly more biologically plausible by adding
an absolute refractory period ∆abs to cut in immediately after v(t) reaches vth. During
this period, v(t) is clamped to vr and the leaky integration process is re-initiated after
a delay of ∆abs following the ‘spike’.

10.4.2. The Hodgkin-Huxley model. In 1963 the English physiologists and biophysicists
Alan Lloyd Hodgkin and Andrew Huxley received the Nobel Prize in Physiology/Medicine
for their 1952 explanation and model of the ionic mechanisms underlying the initiation
and propagation of action potentials in the squid giant axon [54]. The Hodgkin-Huxley
model defines a set of nonlinear differential equations that, compared to classical ANNs,
provide a ‘hi-fidelity’ approximation to some of the electrical characteristics of real brain
neurons. In particular the Hodgkin-Huxley model uses a set of nonlinear differential
equations to describe how action potentials in neurons are initiated and propagated.

Although for many years the large computational demands of the Hodgkin-Huxley
model limited its application in large neural network computational simulations, recent
advances in computing technology, for example the IBM Blue Gene system, have enabled
the model to be deployed in very large scale simulations of animal, and human, brains.
For example, the Michael Hines NEURON simulator (as used in Henry Markram’s Blue
Brain and Human Brain Project) deploys the Hodgkin-Huxley (HH) axon ion channel
model to describe how action potentials in neurons are initiated and propagated.

The Blue Brain project was headed by the founding director Henry Markram [and
co-directed by Felix Schürmann and Sean Hill]. Markram’s involvement was in part
motivated by his child’s autism and his failure as a neuroscientist to understand the
condition, which prompted a life-long drive to better understand the human brain. Using
an IBM Blue Gene supercomputer running Michael Hines’s NEURON software, the
Blue Brain project did not simply consist of a large Artificial Neural Network, but
fundamentally centred around a “biologically realistic” model of neurons based on the
Hodgkin-Huxley model.

In July 2011 the Blue Brain project delivered a cellular mesocircuit of 100 neocortical
columns with one million cells in total, with an (entire) cellular rat brain model expected
to be completed in 2014, simulating around one hundred million cells. Flushed with their
early success Markram’s team confidently predict that a functional cellular human brain
(with a simulation requirement of over one hundred billion cells) will be possible by 2023.
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In this context in January 2013 the EU ‘Future and Emerging Technologies Flagship
Initiative’ awarded in excess of one billion euro (over ten years) to Markram’s ‘Human
Brain Project’, with a modest stated goal of using a powerful supercomputer to recreate
everything known about the human brain. Nature journal observed this to be “a hugely
ambitious goal that has been met with some scepticism”.

10.4.3. Liquid State Machines. A Liquid State Machine (LSM) consists of a large collec-
tion of neurons (nodes) in which each neuron receives time varying input from external
sources (the inputs) as well as from other neurons. Neurons are usually randomly and
recurrently connected to each other (but simple feed-forward variants are possible). The
recurrent nature of the connections turns the time varying input into a spatio-temporal
pattern of activations across the network neurons. The spatio-temporal patterns of ac-
tivation are mapped to the desired output function by simple output neurons.

Like the Echo-state network, the theoretical approach deployed by the LSM suggests
that to approximate a given input/output behaviour F on particular functions of time (or
spike trains) it is simply necessary to randomly pick some sufficiently complex reservoir
of recurrent circuits of spiking neurons, and then merely adapt the weights of a single
pool of feedforward spiking neurons to approximate the desired target output behaviour
[2], (F ). And further that there exists a simple local learning rule that can adapt such
pool of spiking neurons to approximate any given specific continuous function [72].

As Maass and Markram report [73]

.. this approach has the advantage that the same recurrent circuit can be
used simultaneously - with the help of additional other readout functions
that can be trained independently - to compute in parallel different out-
puts from the same input u(·). This provides a new paradigm for parallel
computation in real-time on time-varying input that appears to be rather
attractive from the biological point of view. In other words: m different
filters F1..Fm can be implemented with the same recurrent circuit (i.e.
the same L), yielding a giant saving of hardware (i.e. neurons).

10.4.4. Multi-variate Spiking Networks. NESTOR is an example of a spiking neuron
connectionist architecture whose constituent neurons inherently operate on rich (bi-
variate) information encoded in spike trains, rather than at a simple mean firing rate.
NESTOR was first proposed by Nasuto and Bishop in 1998 [83] as a spiking neuron
architecture designed to locate an object (memory) projected onto an artificial retina
(see Figure 16):

The NEural STochastic diffusion search netwORk (NESTOR) consists
of an artificial retina, a layer of fully connected matching neurons and
retinotopically organised memory neurons. The bi-variate information
output from retina/memory cells is encoded as a spike train consisting of
two qualitatively different parts: a tag determined by its relative position
on the retina/memory and a tag encoding the feature signalled by the
cell. This information is processed by the matching neurons which act as
spatiotemporal coincidence detectors; the task of NESTOR is to locate
an object (memory) projected onto its artificial retina.
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Figure 16. Structure of NESTOR

It is important to note that matching neurons obtain input from both
artificial retina and memory and thus their operation is influenced by
both bottom-up and top-down information. As Mumford notices [81],
systems which depend on interaction between feedforward and feedback
loops are quite distinct from models based on Marrś feedforward theory
of vision.

Thus matching neurons are fully connected to both retina and memory
neurons and accept for processing new information, contingent on their
internal state (defined by the previously accepted spike train).

Each matching neuron maintains an internal representation (a hypoth-
esis) defining a potential location of the memory on the retina and in
operation simply conjoins the positional tags of the incoming spike trains
from the retina/memory (corresponding to their retinotropic positions),
with its own hypothesis and, dependent upon the result, distributes its
successful or unsuccessful hypothesis to other matching neurons.

Effectively NESTOR is a connectionist implementation of the swarm
intelligence (SI) paradigm Stochastic Diffusion Search, (SDS) [17]; a sim-
ple agent based SI matching process whose operation depends on co-
operation and competition in a population of agents which are realised in
NESTOR as the matching neurons which instantiate a form of dynamic
assembly knowledge encoding.

Because NESTOR processes information as Inter-Spike Intervals, it naturally repre-
sents and processes high arity predicates avoiding one of the highlighted limitations of
classical connectionism as a model of cognitive processes (see Section 11.8).

10.5. Deep learning. In the context of connectionism, ‘Deep Learning’ defines a class
of artificial neural network algorithms that attempt to learn training data at multiple
levels, corresponding to different levels of abstraction. The first form of deep learning
algorithm can be traced to Fukushima’s Neocognitron [44] but the term ‘deep learning’
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did not really begin to emerge widely until the work of Hinton, who in 2007 demonstrated
that “It is much more sensible first to learn a generative model that infers the hidden
variables from the sensory data and then to learn the simpler mapping from the hidden
variables to the labels” [53]. In this work Hinton concluded that “a combination of three
ideas leads to a novel and effective way of learning multiple layers of representation.

• The first idea is to learn a model that generates sensory data rather than classi-
fying it.
• The second idea is to learn one layer of representation at a time. This decomposes

the overall learning task into multiple simpler tasks and eliminates the inference
problems that arise in directed generative models.
• The third idea is to use a separate fine tuning stage to improve the generative

or discriminative abilities of the composite model.”
Deep learning algorithms have been shown to perform extremely well on difficult ma-

chine learning problems. For example, in 2010 Ciresan et al demonstrated that standard
back propagation learning, applied in deep non-linear networks, can outperform all previ-
ous techniques on the MNIST handwritten digit benchmark, even without unsupervised
pre-training of hidden layer [34]. Similarly Hinton reports other versions of the approach
being successfully applied to tasks as diverse as de-noising images, retrieving documents,
extracting optical ow, predicting the next word in a sentence and predicting what movies
people will like [53].

The potential of deep learning is particularly powerfully demonstrated in the work
of the ‘Google Brain’ team, led by Andrew Ng and Jeff Dean who, in 2007, created a
deep learning network that successfully learned to recognise higher-level concepts (e.g.
human faces and cats) from unlabelled video streams [88].

11. “What artificial neural networks cannot do ..”

I conclude this chapter with a brief discussion of six philosophical issues relating to
connectionism; issues I have loosely delineated ‘epistemic’ and ‘ontological’:

‘Epistemic’ issues: An examination of three ‘philosophico-technical’ problematic
themes relating to computational connectionism:
(1) Minsky and Papert’s 1969 critique of single layer perceptrons.
(2) Fodor and Pylyshyn’s 1988 critique of connectionism per se.
(3) Nasuto’s 1998 critique of uni-variate knowledge representation in classical

connectionism.
‘Ontological’ issues: An examination of three modes pertaining to computa-

tional connectionism:
(1) Searle’s 1980 critique of computational ‘understanding’.
(2) Penrose’s 1989 critique of computational [mathematical] ‘insight’.
(3) Bishop’s 2002 critique of computational ‘consciousness’.

11.1. What the [single layer] perceptron cannot do. The first of the ‘epistemic’
themes relates to the single layer perceptron. One year at the tale end of the sixties,
1969, witnessed the publication of what perhaps must rate as one of the most influen-
tial texts ever published in the field of neural computing ‘Perceptrons: an introduction
to computational geometry ’ by Marvin Minsky and Seymour Papert (albeit although
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‘Perceptrons’ was certainly hugely influential, some commentators have suggested that
it plays much the same role in the evolution of A.I. as ‘The Necronomicon’ does in the
world of H.P. Lovecraft - as a book often cited but rarely read).

Ironically, at the time of its publication, some viewed ‘Perceptrons’ not so much as a
text which would effectively close-off the field of connectionism for the next decade or
more, but as a text which would help establish the nascent field of neural computing - and
perception studies in particular - on much firmer, more mathematically rigorous, ground.
Thus Jurg Nievergelt’s contemporaneous review (IEEE Transaction on computers, June
1969, pp. 572) concludes:

Minsky and Papert’s ‘Perceptrons’ is an important contribution to the
growing stock of mathematical models of computing devices. It estab-
lishes perceptron theory on a rigorous foundation, and will probably gen-
erate a revival of interest in perceptrons. It should also attract the atten-
tion of automata theorists to the subject, who may in the past have been
distracted by the lack of mathematical rigor with which perceptrons have
usually been treated.

Nievergelt identifies the main focus of the book as an analysis of the computational
power of the single layer perception (SLP) and reports its two key conclusions as being:
(a) that a [single layer] diameter limited perceptron cannot compute the ‘connectedness’
predicate and (b) that a single layer [fixed order] perceptron cannot compute the k-input
‘parity’ (XOR) problem.

S T

(a) (b) (c)

(d)

D

Figure 17. Can a diameter limited Perceptron compute the ‘connect-
edness’ predicate

11.2. The ‘connectedness’ predicate. A ‘diameter limited perceptron (DLP)’ is a
perceptron in which the inputs to its A-Units must all fall within a receptive field of size
D.
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In Figure 17 the A-Units can naturally be divided into three groups: those on the
left, the middle and the right of the image and only images (b) and (c) are connected.
Hence to compute the ‘connectedness’ predicate the weights of the perception must be
configured such that the perceptron will fire only on presentation of images (b) and (c).

• In considering images (a) & (c) it is apparent that only the left group A-units are
positions to identify the difference between the two classes; thus to identify the
connected image there need to be higher weights activated by the left A-Units
in image (c) than image (a).
• Similarly, in images (a) & (b) it is only the right group that can tell the difference,

hence to identify connectedness there need to be higher weights activated by the
right A-Units in image (b) compared to image (a).
• However the above two requirements give image (d) higher activation than either

image (b) or image (c); this implies that if a threshold is found that can classify
(b) & (c) as connected, then it will also - incorrectly - classify image (d) as
connected.

Thus the diameter limited perceptron cannot compute the ‘connectedness’ predicate.

11.3. The ‘order’ of a perceptron. The order of a perceptron is defined as the largest
number of inputs to any of its A-Units; for perceptrons to be useful this ‘order’ must
be fixed at some value smaller than the size of the retina. Consider a simple problem:
to design a perceptron to recognise (fire) if there is one or more groups of [2× 2] black
pixels on its input retina, (see Figure 18).

Figure 18. The [2× 2]‘blob’ detecting Perceptron

This ‘blob detection’ problem requires that the perceptron has as many A-Units as
there are pixels on the retina (fewer duplications due to edge effects). Each A-Unit
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covers a [2×2] square and computes the AND of its inputs. Clearly, if all the weights to
the R-Unit are unity and the threshold is just lower than unity, then the perceptron will
fire if there is a black square anywhere on the retina. The order of a perceptron to solve
this problem is thus four O(4) and it is clear that this remains constant irrespective of
the size of the retina.

11.4. The ‘odd-parity’ problem. To compute the ‘odd parity’ problem the perceptron
must fire if the number of active elements on its retina sums to an odd number.

11.4.1. Can an order (1) perceptron solve the odd parity problem? Consider the 3-input
odd parity problem, (see Figure 19). An ‘order (1) perceptron’ is functionally equivalent
to a simple MCP cell. To solve the odd parity problem an order (1) perceptron with three
A-Units (A1, A2 and A3) must fire - output one - when the number of active elements
on the retina is odd.

ID

R0

R1

R2

R3

R4

R5

R6

R7

S1 S2 S3 R

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

0

1

0

0

1

Figure 19. The 3-input ‘odd parity’ function

The desired perceptron response for a retina of size three is depicted in Figure 19.
Thus to depict the function described in Figure 19 the perceptron must learn a set of
weights, W1,W2,W3 that satisfy the following constrain:

(W1S1 +W2S2 +W3S3 > T ) = Response(43)

Case (R1) implies W3 > T since it is the only active weight. Similarly case (R2)
implies W2 > T . However case (R3) requires W3 + W2 < T . This is a contradiction,
hence an order (1) perceptron cannot solve the three input parity problem.

11.4.2. Can an order (2) perceptron) solve odd parity? To determine if there is any
order(2) perceptron that can solve 3-input odd parity it is necessary to show that a
‘mask perceptron’ cannot solve 3-input odd parity, as a mask perceptron is more general
than any perceptron with specific ‘hand engineered’ A-Units.

A mask perceptron of order (2) has one A-unit for every possible pair of points of
its input (three) retina. I.e. There is one mask for each of the possible two-input
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combinations; for a retina of size three [S1, S2, S3] there are three possible combinations
of two inputs mapping onto the input retina S[1..3]: a[S1S2], b[S1S3] and c[S2S3]; and for
each pair of inputs a, b and c there are four two input mask A-units each of which will
detect one of the four possible two input patterns: [0 0] [0 1] [1 0] [1 1].

Thus each one of these four possible input combinations is detected by the mask, and
each of the twelve (3x4) A-Units will only fire if that particular combination is present
at its positions on the input retina. If it can be proved that no O (2) mask perceptron
can accomplish the task, then no other O (2) perceptron can.

The firing patterns of the twelve A-Units, for the eight possible input patterns (R0 ..
R7), are shown in Figure 20; where An is the weight to A-Unit An.
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R3 R5 R6

R7 R4 R2 R1

Figure 20. Response of A-Unit masks to possible input patterns

(R7 > T&R0 < T ) =⇒ (R7 > R0) =⇒ (A3 +B3 + C3 > A0 +B0 + C0)(44)
(R4 > R5) =⇒ A2 +B0 + C2 > A2 +B1 + C3 =⇒ B0 + C2 > B1 + C3(45)

R4 > R6 =⇒ A2 +B0 > A3 +B2(46)
R2 > R3 =⇒ B2 + C0 > B3 + C1(47)
R2 > R6 =⇒ A1 + C0 > A3 + C2(48)
R1 > R3 =⇒ A0 +B1 > A1 +B3(49)
R1 > R5 =⇒ A0 + C1 > A2 + C3(50)

Adding inequalities [45 .. 50] together :

2A0 + A1 + A2 + 2B0 + B1 + B2 + 2C0 + C1 + C2 > A1 + A2 + 2A3 + B1 + B2 +
2B3 + C1 + C2 + 2C3
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=⇒ 2A0 + 2B0 + 2C0 > 2A3 + 2B3 + 2C3(51)
=⇒ (A0 +B0 + C0 > A3 +B3 + C3)(52)

But (52) this contradicts (44), hence the task is not solvable by an order (2) mask
perceptron.

11.4.3. Can an order (3) perceptron solve odd parity? It is trivial to solve 3-input odd
parity with a perceptron of order (3). To perform this function it is merely necessary
to ensure there is one A-Unit tuned to detect each example of odd parity on the retina,
with the threshold of the R-Unit set low enough such that the R-Unit will fire iff any
one A-Unit becomes active.

In their book Perceptrons: an introduction to computational geometry, Minsky and
Papert famously proved that what has been shown for a retina of size 3 is true for any
K-input retina; the order of K-bit parity detection is at least K.

11.5. Linearly separable problems. Two sets of points in a two-dimensional space are
linearly separable if they can be completely separated by a single line; generalising, two
sets of points are linearly separable in n-dimensional space if there exists a hyperplane
that can separate them.

The output function of a two input MCP cell can be represented in two dimensions,
using the x-axis for one input and the y-axis for the other. The firing equation for a
two input MCP cell (X1W1 +X2W2 > T ) can be represented by a line dividing the two
dimensional input space into two areas. Hence a two input MCP cell can classify any
two-input function that can be separated by a straight line dividing the input space.
Figure 21 clearly illustrates that the two input OR function is linearly separable.

X1W1 +X2W2 = T(53)

X2 =
T −X1W1

W2
(54)

11.6. Linearly inseparable problems. There are many problems that cannot be lin-
early divided; the so called ‘Hard Problems’ of perceptron learning. Perhaps the most
famous example of this class of problem is the ‘XOR’ problem, (see Figure 21).

Figure (22) demonstrates that the two input XOR function is not linearly separable in
two dimensions; however, the XOR problem can be made linearly separable by adding
another input. Thus, given two inputs (a) and (b), adding a third input c (where
c = a ∧ b) maps the problem into a three dimensional input space. Figure 23 clearly
shows that in this 3D input space, there exists a plane to separate the two classes and
hence that the two input XOR problem is linearly separable in three dimensions.

In their book ‘Perceptrons’, Minsky & Papert demonstrated that there were many sim-
ple tasks that could not be performed by Single Layer Perceptrons (SLPs) of fixed order,
although each of the problems was relatively trivial to compute using ‘conventional’ al-
gorithmic methods. It was this result that many believe instigated the mass migration
of research effort away from machine learning and artificial neural network paradigm,
towards what is now colloquially termed ‘Good Old Fashioned Artificial Intelligence’



50 J. MARK BISHOP

OR

(0,1) (1,1)

(0,0)

(1,0)

X2

X1

X2 = T/W2 - X1 W1 / w2

AND
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(0,0)

(1,0)

X2

X1

Figure 21. The two input OR and AND functions are linearly separable

(0,1) (1,1)

(1,0)(0,0)

TRUE

FALSE

FALSE

Figure 22. The two input XOR function is not linearly separable

(GOFAI). It was not until the development of efficient learning rules for multi-layer net-
works that Minsky & Papert’s ‘hard problems’ became [relatively] ‘easy’ problems for
artificial neural networks to solve.

11.7. Fodor & Pylyshyn. In 1988, in a comprehensive, trenchant and hugely influ-
ential critique by Fodor and Pylyshyn [41], the authors “threw a scare into the field of
connectionism, at least for a moment. Two distinguished figures, from the right side
of the tracks, were bringing the full force of their experience with the computational
approach to cognition to bear on this young, innocent field” [29]. In particular, Fodor
and Pylyshyn (ibid) highlighted that:
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(1,1,1)

(1,0,0)(0,0,0)

(0,1,0)

Figure 23. Mapping the two input XOR function into a 3D space

.. Classical and connectionist theories disagree about the nature of mental
representation; for the former, but not for the latter, mental representa-
tions characteristically exhibit a combinatorial constituent structure and
a combinatorial semantics. Classical and connectionist theories also dis-
agree about the nature of mental processes; for the former, but not for
the later, mental processes are characteristically sensitive to the combi-
natorial structure of the representations on which they operate.

In his paper ‘The constituent structure’ [116], Paul Smolensky summarises the central
arguments of Fodor and Pylyshyn’s paper as follows:

(1) Thoughts have composite structure. By this they mean things like:
the thought that John loves the girl is not atomic; it is a composite
mental state built out of thoughts about John, loves, and the girl.

(2) Mental processes are sensitive to this composite structure. For ex-
ample, from any thought of the form p∧ q - regardless of what p and
q are - we can deduce p.

Fodor and Pylyshyn elevate (1) and (2) to the status of defining the
Classical View of Cognition, and they want to say that this is what is
being challenged by the connectionists. I will later argue that they are
wrong, but now we continue with their argument ..

.. Now for Fodor and Pylyshyn’s analysis of connectionism. They
assert that in (standard) connectionism, all representations are atomic;
mental states have no composite structure, violating (1). Furthermore,
they assert, (standard) connectionist processing is association which is
sensitive only to statistics, not to structure-in violation of (2). Therefore,
they conclude, (standard) connectionism is maximally non-Classical; it
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violates both the defining principles. Therefore connectionism is defeated
by the compelling arguments in favour of the Classical View.

In practice this yields the following problems for connectionism: ‘productivity’, ‘sys-
tematicity’, ‘compositionality and inferential coherence’:

Productivity: Typically in symbolic approaches to AI, linguistic competence - fol-
lowing Noam Chomsky (1968, “Language and mind”) - is conceived as generative;
this allows the AI system to generate and understand a potentially unbounded
number of sentences.

Fodor and Pylyshyn state the productivity problem as follows:
There is a classical productivity argument for the existence of
combinatorial structure in any rich representational system (in-
cluding natural languages and the language of thought). The
representational capacities of such a system are, by assumption,
unbounded under appropriate idealization; in particular, there
are indefinitely many propositions which the system can encode.
However, this unbounded expressive power must presumably be
achieved by finite means. The way to do this is to treat the sys-
tem of representations as consisting of expressions belonging to a
generated set. More precisely, the correspondence between a rep-
resentation and the proposition it expresses is, in arbitrarily many
cases, built up recursively out of correspondences between parts
of the expression and parts of the proposition. But, of course,
this strategy can operate only when an unbounded number of the
expressions are non-atomic. So linguistic (and mental) represen-
tations must constitute symbol systems. So the mind cannot be
a PDP.

Systematicity: You don’t find minds that are prepared to infer that “John went
to the store” from (a) “John, Mary, Susan and Sally went to the store”, but not
from (b) “John, Mary and Susan went to the store”.

Compositionally: It is, for example, only insofar as ‘the girl’, ‘loves’ and ‘John’
make the same semantic contribution to “John loves the girl”, that they make to
“the girl loves John”, that understanding the one sentence implies understanding
the other; in this way compositionally is also closely related to systematicity.

It is clear from their definitions that productivity and systematicity arguments are
essentially the same and are fundamentally related to compositionality. However, clas-
sical connectionism recognises no combinatorial structure in its mental representations
(e.g. it doesn’t fit semantic and syntactic structure into its representations) which makes
it very difficult to see how to instantiate systematicity and productivity on a classical
connectionist architecture; leading Fodor and Pylyshyn [41] to conclude:

...if you need structure [compositionality] in mental representations any-
way to account for the productivity and systematicity of minds, why not
postulate mental processes that are structure sensitive to account for the
coherence of mental processes? Why not be a Classicist, in short?
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Subsequent ‘refutations’ of the Fodor and Pylyshyn’s critique generally took two
forms: argument, or counterexample.

In 1990 David Chalmers [29] remarked, “One is reminded of Nietzsche’s observation:
It is not the least charm of a theory that it is refutable” and subsequently offered up
perhaps the simplest a priori refutation of Fodor and Pylyshyn’s ‘systematicity’ critique:

(1) In F&P’s argument that no connectionist models can have composi-
tional semantics, there is no escape clause excluding certain models
(such as Classical implementations) from the force of the conclusion.
(By observation.)

(2) If F&P’s argument is correct as it stands, then it establishes that no
connectionist model can have compositional semantics. (From (1).)

(3) But some connectionist models obviously do have compositional se-
mantics; namely, connectionist implementations of classical models.
(By observation, accepted by all.)

(4) Therefore, F&P’s argument is not correct as it stands. (From (2),
(3).)

Chalmers concludes: “Fodor and Pylyshyn’s arguments establish that composition-
ality exists, but for their arguments [...] to succeed, they would need to establish a
rather stronger claim: that compositionally is everything”, but this is precisely the
claim Chalmers’ argument (above) aims to refute.

Whether all of Fodor and Pylyshyn’s carefully nuanced arguments are refuted quite
as easily as Chalmers suggests remains a moot point; nevertheless, it is interesting to
observe - twenty five years after their work was first published - the relatively small
number of fully connectionist planning systems, proof provers, game playing etc. This
offers at least partial empirical evidence that, to date, the philosophico-technical issues
raised by Fodor and Pylyshyn (so simple to resolve using classical approaches) remain
relatively difficult nuts for connectionists to crack. Thus, although a very strong neural
network playing backgammon program was developed by Tesauro [119], this program
effectively used the neural network for board evaluation (albeit recent work from Tanay
et al [118] demonstrates a fully agent based system capable of playing a strong game of
HeX).

11.8. The representational power of uni-variate neural networks. “Nothing seems
more certain to me than that people someday will come to the definite opinion that there
is no copy in the ... nervous system which corresponds to a particular thought, or a
particular idea, or memory”, (Wittgenstein, 1948).

Over the hundred years since the publication of William James’ Psychology [61],
neuroscientists have attempted to define the fundamental features of the brain and its
information processing capabilities in terms of mean firing rates at points in the brain
cortex’ (neurons) and computations. After Hubel and Wiesel [58], the function of the
neuron as a specialised feature detector was treated as established doctrine. From this
followed the functional specialisation paradigm, mapping different areas of the brain to
specific cognitive function, reincarnating an era of modern phrenology (which Fodor [40],
perhaps ironically, describes as,“a pseudoscience focused on measurements of the human
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skull, based on the concept that the brain is the organ of the mind, and that certain brain
areas have localized, specific functions or modules”).

Connectionism mapped well onto the above assumptions. Its emergence is based on
the belief that neurons can be treated as simple computational devices. The initial
boolean McCulloch-Pitts model neuron [77] was quickly extended to allow for analogue
computations. Further, the assumption that information is encoded in the mean firing
rate of neurons was a central premise of all the sciences related to brain modelling.

Over the last half century such ‘classical’ connectionist networks have attracted signifi-
cant interest. They are routinely applied to engineering problems [120], and as metaphors
of concepts drawn from neuroscience, have also been offered as models of both high [103]
and low level [4] [127] cognition. However the classical connectionist models of high level
cognition have also been strongly criticised [38] and the situation at the domain of low
level neural modelling is little better [1].

More recently spiking neuron, pulsed neural networks have begun to attract attention
[71]. Such models no longer aggregate individual action potentials as a mean firing rate
but act on temporal sequences of spikes. Like the classical connectionist models spiking
neuron neural networks have been studied both for their computational/engineering
properties and as models of neurological processes [126].

Although temporal coding of spike trains lends itself more readily to multi-variate
information encoding than rate encoding, both are typically discussed in a uni-variate
framework - an observation that also applies to classical connectionist frameworks. Fur-
thermore, although such networks can represent ‘type’ knowledge (e.g. of the form
’Apple iPhone’) say by the activation of a single neuron (or spatially distributed across
the activation of a group of neurons), because their constituent neurons merely process
uni-variate information, they can only easily instantiate ‘tokens’ in a very similar man-
ner (e.g. by activation on a particular node [or group of neurons]); in other words, they
typically process only ‘arty zero’ knowledge (an ‘arity zero’ predicate is one without an
argument).

However, Nasuto et al argue [83] that arity zero predicates are insufficient for represen-
tation of many complex relationships. For example, such limitations make it difficult to
interpret and analyse the network in terms of causal relationships; specifically it is diffi-
cult to imagine how such a system could develop symbolic representations and quantified
logical inference [105]. Such deficiencies in the representation of complex knowledge by
classical neural networks have long been recognised [111] [41] [12] [94].

Taking into account the above considerations in 1998 Nasuto et al [83] proposed
NESTOR: a spiking neuron connectionist architecture whose constituent neurons inher-
ently operate on rich (bi-variate) information encoded in spike trains, rather than as
a simple mean firing rate (see Section 10.4.4). NESTOR offers an elegant method of
representing the specific member of a class (a token) by the use of the arity one predi-
cate CLASS (INDIVIDUAL); in general this requires the use of bi-variate information
to identify both the CLASS and the INDIVIDUAL (and multi-variate information to
encode ever higher order predicates).

One of the most pervading concepts underlying computational connectionist models
of information processing in the brain is linear input integration of rate coded uni-
variate information by neurons. After a suitable learning process this results in neuronal
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structures that statically represent knowledge as a vector of real valued synaptic weights
in Euclidean space RN . Although this general framework has contributed to the many
successes of connectionism, for all but the most basic of cognitive processes, a more
complex, multi-variate dynamic neural coding mechanism is required; one which would
avoid spatially binding knowledge to a particular neuron (or group of neurons) and such
an architecture has been instantiated in the NESTOR spiking neuron network.

11.9. The Chinese room argument. The first of the three ‘ontological’ modes re-
lates to the possibility of genuinely instantiating ‘understanding’ in a computational
connectionist system.

Perhaps the most well known critic of computational theories of mind is John Searle.
His best-known work on machine understanding, first presented in the 1980 paper ‘Minds,
Brains & Programs’ [107], has become known as the Chinese Room Argument (CRA).
The central claim of the CRA is that computations alone are not sufficient to give rise
to cognitive states, and hence that computational theories of mind cannot fully explain
human cognition. More formally Searle stated that the CRA was an attempt to prove
the truth of the premise:

• Syntax is not sufficient for semantics;
Which, together with the following two axioms:
• Programs are formal, (syntactical);
• Minds have semantics, (mental content);

... led Searle to conclude that ‘programs are not minds’ and hence that computation-
alism - the idea that the essence of thinking lies in computational processes and that
such processes thereby underlie and explain conscious thinking - is false [110].

In the CRA Searle emphasises the distinction between syntax and semantics to argue
that while computers can act in accordance to formal rules, they cannot be said to know
the ‘meaning’ of the symbols they are manipulating, and hence cannot be credited with
‘understanding’ the results of the execution of programs those symbols compose. In
short, Searle claims that while computational connectionism may simulate aspects of
human cognition, it can never instantiate it. NB. Some commentators insist the CRA
relates purely to linguistic understanding; it is my contention that a close reading of
Searle’s paper reveals that it targets any aspect of [machine] ‘understanding’; specifically
- in the ‘Robot reply’ - the understanding of ‘actions in the world’.

In a 2002 volume further developing analysis on the CRA [20] comment ranged from
Selmer Bringsjord who observed the CRA to be “arguably the 20th century’s greatest
philosophical polarizer” [25], to Rey who claims that in his definition of Strong AI, Searle
“burdens the [Computational Representational Theory of Thought (Strong AI)] project
with extraneous claims which any serious defender of it should reject” [99]. Nonetheless,
continued academic interest in the argument thirty three years after it was first proposed
- see [98] [129] [117] [100] [42] [43] [90] [46] - offers testament to Searle’s core claim ‘that
programs are not sufficient for mind’.

It is beyond the scope of this chapter to do more than scratch the surface of the
extensive literature on the CRA other than to note that, to date, the two most widely
discussed responses to the CRA have been the ‘Systems reply’ and the ‘Robot reply’, (for
a broad selection of essays detailing these and other critical arguments see Preston and



56 J. MARK BISHOP

Bishop’s edited collection ‘Views into the Chinese room’ [95]); however in ‘A view into
the Chinese room’ Bishop [21] summarised Searle’s Chinese Room Argument (CRA) as
follows:

In 1977 Schank and Abelson published information [106] on a program
they created, which could accept a simple story and then answer ques-
tions about it, using a large set of rules, heuristics and scripts. By script
they referred to a detailed description of a stereotypical event unfold-
ing through time. For example, a system dealing with restaurant stories
would have a set of scripts about typical events that happen in a restau-
rant: entering the restaurant; choosing a table; ordering food; paying
the bill, and so on. In the wake of this and similar work in computing
labs around the world, some of the more excitable proponents of artificial
intelligence began to claim that such programs actually understood the
stories they were given, and hence offered insight into human comprehen-
sion.

It was precisely an attempt to expose the flaws in the statements emerg-
ing from these proselytising AI-niks, and more generally to demonstrate
the inadequacy of the Turing test [in what has become known as the ‘stan-
dard interpretation’ of the Turing test a human interrogator, interacting
with two respondents via text alone, has to determine which of the re-
sponses is being generated by a suitably programmed computer and which
is being generated by a human; if the interrogator cannot reliably do this
then the computer is deemed to have ‘passed’ the Turing test ] which led
Searle to formulate the Chinese Room Argument.

The central claim of the CRA is that computations alone cannot in
principle give rise to understanding, and that therefore computational
theories of mind cannot fully explain human cognition. More formally,
Searle stated that the CRA was an attempt to prove that syntax (rules
for the correct formation of sentences:programs) is not sufficient for se-
mantics (understanding). Combining this claim with those that programs
are formal (syntactical), whereas minds have semantics, led Searle to con-
clude that ‘programs are not minds’.

And yet it is clear that Searle believes that there is no barrier in prin-
ciple to the notion that a machine can think and understand; indeed
in MBP Searle explicitly states, in answer to the question ‘Can a ma-
chine think?’, that ‘the answer is, obviously, yes. We are precisely such
machines’. Clearly Searle did not intend the CRA to target machine in-
telligence per se, but rather any form of artificial intelligence according
to which a machine could have genuine mental states (e.g. understanding
Chinese) purely in virtue of executing an appropriate series of computa-
tions: what Searle termed ‘Strong AI’.

Searle argues that understanding, of say a Chinese story, can never
arise purely as a result of following the procedures prescribed by any
computer program, for Searle offers a first-person tale outlining how he
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could instantiate such a program, and act as the Central Processing Unit
of a computer, produce correct internal and external state transitions,
pass a Turing test for understanding Chinese, and yet still not understand
a word of Chinese.

Searle describes a situation whereby he is locked in a room and pre-
sented with a large batch of papers covered with Chinese writing that he
does not understand. Indeed, the monoglot Searle does not even recognise
the symbols as being Chinese, as distinct from say Japanese or simply
meaningless patterns. Later Searle is given a second batch of Chinese
symbols, together with a set of rules (in English) that describe an effec-
tive method (algorithm) for correlating the second batch with the first,
purely by their form or shape. Finally he is given a third batch of Chinese
symbols together with another set of rules (in English) to enable him to
correlate the third batch with the first two, and these rules instruct him
how to return certain sets of shapes (Chinese symbols) in response to
certain symbols given in the third batch.

Unknown to Searle, the people outside the room call the first batch of
Chinese symbols ‘the script’, the second set ‘the story’, the third ‘ques-
tions about the story’ and the symbols he returns they call ‘answers to
the questions about the story’. The set of rules he is obeying they call
‘the program’. To complicate matters further, the people outside the
room also give Searle stories in English and ask him questions about
these stories in English, to which he can reply in English.

After a while Searle gets so good at following the instructions, and the
‘outsiders’ get so good at supplying the rules he has to follow, that the
answers he gives to the questions in Chinese symbols become indistin-
guishable from those a true Chinese person might give.

From an external point of view, the answers to the two sets of ques-
tions, one in English the other in Chinese, are equally good; Searle, in
the Chinese room, has passed the Turing test. Yet in the Chinese lan-
guage case, Searle behaves ‘like a computer’ and does not understand
either the questions he is given or the answers he returns, whereas in the
English case, ex hypothesi, he does. [To highlight the difference consider
Searle is passed a joke first in Chinese and then in English. In the for-
mer case Searle-in-the-room might correctly output appropriate Chinese
ideograms signifying “HA HA” whilst remaining phenomenologically un-
moved whilst in the latter, if the joke is funny, he may laugh out loud and
‘feel the joke’ within]. Searle contrasts the claim posed by some members
of the AI community - that any machine capable of following such in-
structions can genuinely understand the story, the questions and answers
- with his own continuing inability to understand a word of Chinese; for
Searle the Chinese symbols forever remain ‘ungrounded’.

NB. The ‘symbol-grounding’ problem’ [50] is closely related to the problem of how
words (symbols) get their meanings. On its own the meaning of a word on a page is
‘ungrounded’ and merely looking it up in a dictionary doesn’t help ground it. If one
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attempts to look up the meaning of an unknown word in a [unilingual] dictionary of a
language one does not already understand, one simply wanders endlessly from one mean-
ingless definition to another (a problem not unfamiliar to young children); like Searle in
his Chinese room, the search for meaning remains forever ‘ungrounded’.

The thirty three years since its inception [107] have seen many reactions to the Chi-
nese Room Argument from the computational, cognitive science, philosophical and psy-
chological communities, with perhaps the most widely held being based on what has
become known as the ‘Systems Reply’. This concedes that, although the person in the
room doesn’t understand Chinese, the entire system (of the room, the person and its
contents) does.

Searle finds this response entirely unsatisfactory and responds by allowing the person
in the room to internalise everything (the rules, the batches of paper etc) so that there is
nothing in the system not internalised within Searle. Now in response to the questions
in Chinese and English there are two subsystems, the native English speaking Searle
and the internalised Chinese room but all the same, he [Searle] continues to understand
nothing of Chinese, and a fortiori neither does the system, because there isn’t anything
in the system that is not just a part of him.

11.9.1. Brain Simulation and the Chinese room. In [107] Searle presciently anticipated
the construction of a large, hi-fidelity simulation of the brain as envisaged in Henry
Markram’s Human Brain Project; in considering connectionist systems Searle writes
that instead of a monolingual man in a room shuffling symbols we should imagine that:

.. the man operates an elaborate set of water pipes with valves connecting
them. When the man receives the Chinese symbols, he looks up in the
program, written in English, which valves he has to turn on and off. Each
water connection corresponds to a synapse in the Chinese brain, and the
whole system is rigged up so that after doing all the right firings, that is
after turning on all the right faucets, the Chinese answers pop out at the
output end of the series of pipes.

Now where is the understanding in this system? It takes Chinese as
input, it simulates the formal structure of the synapses of the Chinese
brain, and it gives Chinese as output. But the man certainly doesn’t un-
derstand Chinese, and neither do the water pipes, and if we are tempted
to adopt what I think is the absurd view that somehow the conjunction of
man and water pipes understands, remember that in principle the man
can internalise the formal structure of the water pipes and do all the
“neuron firings” in his imagination. The problem with the brain simula-
tor is that it is simulating the wrong things about the brain. As long as
it simulates only the formal structure of the sequence of neuron firings
at the synapses, it won’t have simulated what matters about the brain,
namely its causal properties, its ability to produce intentional states.

Some years later, in his invention of a ‘Chinese gym’ Searle [108] turned his fire to
Artificial Recurrent Neural Networks and dynamic systems:
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What is more, the connectionist system is subject even on its own terms
to a variant of the objection presented by the original Chinese room
argument. Imagine that instead of a Chinese room, I have a Chinese
gym: a hall containing many monolingual, English speaking men. These
men would carry out the same operations as the nodes and synapses
in a connectionist architecture, as described by the Churchlands, and
the outcome would be the same as having one man manipulate symbols
according to a rulebook. No one in the gym speaks a word of Chinese
and there is no way for the system as a whole to learn the meaning of
any Chinese words. Yet with appropriate adjustments, the system could
give the correct answers to Chinese questions.

And in [131] Michael Wheeler offers a simple reconceptualisation of Searle’s Chinese
gym such that it fully targets even the ‘Super-Turing’ ARNN’s described by Siegelmann:

The counter-move that we might expect from Searle would be a simple
re-staging of the Chinese gym as the dynamical Chinese gym, a hall in
which many interacting monolingual English speakers perform the kinds
of varied state-transition functions and time-dependent message-sending
operations standardly performed by the units in a dynamical neural net-
work. One can almost hear Searle’s scorn: no one in the dynamical gym
speaks a word of Chinese, and there is no way for the system as a whole
to learn the meanings of Chinese words.

Thus the Chinese room and its connectionist extensions - first to a network of water
pipes and secondly to the Chinese gym - suggest that no computational simulation of the
brain will ever ‘genuinely understand [Chinese]’ and hence that computational connec-
tionism must fail to provide an adequate model for cognition. As Wheeler summarises
(ibid), “The reason why the shift to dynamical neural networks runs headlong into the
dynamical Chinese gym is, of course, that that shift, as radical as it may be, still leaves
us firmly within the formalist conceptual framework identified earlier”.

11.10. Computations and understanding: Gödelian arguments against com-
putationalism. Gödel’s first incompleteness theorem states that, “any effectively gen-
erated theory capable of expressing elementary arithmetic cannot be both consistent and
complete. In particular, for any consistent, effectively generated formal theory F that
proves certain basic arithmetic truths, there is an arithmetical statement that is true, but
not provable in the theory.” The resulting true but unprovable statement G(g) is often
referred to as ‘the Gödel sentence’ for the theory, (albeit there are infinitely many other
statements in the theory that share with the Gödel sentence the property of being true
but not provable from the theory).

Arguments based on Gödel’s first incompleteness theorem (initially from John Lucas
[69] were first criticised by Paul Benacerraf [14] and subsequently extended, developed
and widely popularised by Roger Penrose [91] [92] [93]) typically endeavour to show
that for any such formal system F , humans can find the Gödel sentence G(g) whilst
the computation/machine (being itself bound by F ) cannot. In [92] Penrose develops a
subtler reformulation of this vanilla argument that purports to show that ‘the human
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mathematician can “see” that the Gödel Sentence is true for consistent F even though
the consistent F cannot prove G(g)’.

A detailed discussion of Penrose’s own take on the Gödelian argument is outside the
scope of this chapter (for a critical introduction see [30] and for Penrose’s response see
[93]). Nonetheless, it is important to note that Gödelian style arguments, purporting to
show computations are not necessary for cognition, have been extensively (e.g. Lucas
maintains a web page<http://users.ox.ac.uk/˜jrlucas/Godel/referenc.html> listing over
fifty such criticisms) and vociferously critiqued in the literature (see [96] for a review);
nevertheless interest in them - both positive and negative - continues to surface, (e.g.
[121] [24]).

11.11. Dancing with pixies. Many people hold the view that, ‘there is a crucial barrier
between computer models of minds and real minds: the barrier of consciousness’ and
thus that computational connectionist simulations of mind (e.g. the huge, hi-fidelity
simulation of the brain currently being instantiated in Henry Markram’s ‘Human Brain
Project’ - see Section 10.4.2) and ‘phenomenal (conscious) experiences’ are conceptually
distinct [123].

But is consciousness a prerequisite for genuine cognition and the realisation of mental
states? Certainly Searle believes so, “the study of the mind is the study of consciousness,
in much the same sense that biology is the study of life” [109] and this observation
leads him to postulate a ‘connection principle’ whereby, “... any mental state must
be, at least in principle, capable of being brought to conscious awareness”. Hence, if
computational machines are not capable of enjoying consciousness, they are incapable of
carrying genuine mental states and computational connectionist projects must ultimately
fail as an adequate model for cognition.

In this final section of the chapter I briefly review a simple reductio ad absurdum
argument that suggests there may be problems in granting phenomenal (conscious) ex-
perience to any computational system purely in virtue of its execution of a particular
program; if correct the argument suggests either that strong computational accounts
of consciousness (and a fortiori all computational connectionist accounts) must fail OR
that panpsychism is true.

The argument - the ‘Dancing with Pixies’ (DwP) reductio - derives from ideas orig-
inally outlined by Hilary Putnam [97], Tim Maudlin [74], John Searle [108] and subse-
quently criticised by David Chalmers [31], Colin Klein [64] and Ron Chrisley [32] [33]
amongst others, (for early discussion of these themes see Minds and Machines 4(4),
‘What is Computation?’, November 1994). In what follows, instead of seeking to justify
Putnam’s claim that “every open system implements every Finite State Automaton”
(FSA) and hence that “psychological states of the brain cannot be functional states of
a computer”, I will simply establish the weaker result that, over a finite time window,
every open physical system implements the trace of a Finite State Automata Q on fixed,
specified input (I). That this result leads to panpsychism - the belief that the physi-
cal universe is composed of elements each of which is conscious - is clear as, equating
FSA Q(I) to a specific computational system that is claimed to instantiate phenomenal
states as it executes, and following Putnam’s procedure, identical computational (and
ex hypothesi phenomenal) states can be found in every open physical system.
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Formally DwP is a reductio ad absurdum argument that endeavours to demonstrate
that:

• IF ‘an appropriately programmed computer really does instantiate genuine phe-
nomenal states’
• THEN ‘panpsychism holds’

– However, against the backdrop of our immense scientific knowledge of the
closed physical world, and the corresponding widespread desire to explain
everything ultimately in physical terms, panpsychism has come to seem an
implausible view...

• HENCE we are led to reject the assumed claim.

In Science and Science Fiction the hope is periodically reignited that a computer
system will one day be conscious in virtue of its execution of an appropriate program;
indeed in the UK the EPSRC awarded an Adventure Fund grant of £493,000 to a team
of Robot-eers and Psychologists at Essex and Bristol, led by Owen Holland, with a
goal of instantiating machine consciousness through appropriate computational internal
modelling.

In contrast, below I outline a brief reductio style argument based on [20] [22] that
either suggests such optimism is misplaced or that panpsychism is true.

In his 1950 paper, ‘Computing Machinery and Intelligence’, Turing defined Discrete
State Machines (DSMs) as “machines that move in sudden jumps or clicks from one
quite definite state to another”, and explained that modern digital computers fall within
the class of them. An example DSM from Turing is one that cycles through three
computational states (Q1, Q2, Q3) at discrete clock clicks. Such a device, which cycles
through a linear series of state transitions ‘like clockwork’, may be implemented by a
simple wheel-machine that revolves through 1200 intervals.

By labelling the three discrete positions of the wheel (A, B, C) we can map com-
putational states of the DSM (Q1, Q2, Q3) to the physical positions of the wheel (A,
B, C) such that, for example, (A =⇒ Q1;B =⇒ Q2;C =⇒ Q3). Clearly this
mapping is observer relative: position A could map to Q2 or Q3 and, with other states
appropriately assigned, the machine’s function would be unchanged. In general, we can
generate the behaviour of any K-state (input-less) DSM, f(Q) =⇒ Q′, by a K-state
wheel-machine (e.g. a digital counter), and a function that maps each ‘counter’ state
Cn to each computational state Qn as required.

In addition, Turing’s machine may be stopped by the application of a brake and
whenever it enters a specific computational state a lamp will come on. Input to the
machine is thus the state of the brake, (I = ON |OFF ), and its output, (Z), the state of
the lamp. Hence the operation of a DSM with input is described by a series of contingent
branching state transitions’, which map from current state to next state f(Q, I) =⇒ Q′

and define output (in the Moore form) f(Q′) =⇒ Z.
However, (over a finite time interval), defining the input to the device entails that

such contingent behaviour reverts to clockwork, f(Q) =⇒ Q′. E.g. If Turing’s DSM
starts in Q1 and the brake is OFF for two clicks, its behaviour, (execution trace), is fully
described by the sequence of state transitions, (Q1;Q2;Q3). Hence, over a finite time
window, if the input to a DSM is defined, we can map from each counter state Cn to
each computational state Qn, as required. And, following Putnam, in [20] I similarly
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demonstrate how to map any computational state sequence with defined input onto the
[non-repeating] internal states generated by any Open Physical System (OPS) (e.g. a
rock).

Now, returning to a putative conscious robot: at the heart of such a beast there is
a computational system - typically a microprocessor; memory and peripherals. Such a
system is a DSM. Thus, with input to the robot fixed over a finite time interval, we can
map its execution trace onto the state evolution of any digital counter or, ibid, any OPS.
Hence, if the state evolution of a DSM instantiates phenomenal experience, then so must
the state evolution of any OPS and we are inexorably led to a panpsychist worldview
whereby disembodied phenomenal consciousnesses (aka ‘pixies’) are found everywhere.

12. Conclusions and perspectives

In Bishop [22] I review the three ‘ontological ’ arguments (discussed herein) that pur-
port to show that computations are neither necessary nor sufficient for cognition; specif-
ically that the execution of a computational connectionist simulation of the brain cannot
instantiate genuine understanding or phenomenal consciousness (qua computations) and
hence that there are limits to the use of the computational connectionist simulations in
cognitive science. But perhaps this conclusion is too strong? E.g. How do the a priori
arguments discussed herein accommodate the important results being obtained through
computational neuroscience to cognition?

There are two responses to this question. The first suggests that there may be prin-
cipled reasons why it may not be possible to adequately simulate all aspects of neuronal
processing via a computational system; there are bounds to a [Turing machine based]
computational neuroscience. Amongst others this position has been espoused by: (i)
Penrose (see Section 11.10); (ii) Copeland who claims the belief that “the action of any
continuous system can be approximated by a Turing Machine to any required degree
of fineness ... is false” (Copeland’s argument is detailed, but at heart he follows an
extremely simple line of reasoning: consider an idealised analogue computer that can
add two reals (a, b) and output one if they are the same, zero otherwise. Clearly ei-
ther (a) or (b) could be non-computable numbers (in the specific formal sense of non
Turing-computable numbers). Hence, clearly there exists no Turing machine that, for
any finite precision (k), can decide the general function F (a = b); see [35] for detailed
discussion of the implications of this result); and (iii) those who suggest that (Turing)
computational connectionist systems can only simulate ‘well behaved’ chaotic systems
(e.g. Peter Smith outlines results from chaos theory which describe how ‘Shadowing
Theorems’ limit the set of chaotic functions that a Turing machine can accurately model
to those that are ‘well-behaved’ - albeit this will encompass most dynamical systems
which contract phase space volumes [115]).

However in Section (11.10) I emphasised that Gödelian style arguments, purporting
to show computations are not necessary for cognition, have been extensively criticised
in the literature; and are endorsed by only a few, albeit in some cases very eminent,
scholars. Nonetheless, Siegelmann [112] is confident that even if Gödelian argument is
valid, ARNNs offer a simple, formal, reconciliation between computational connectionism
and the mind:
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Our model may also be thought of as a possible answer to Penrose’s
recent claim [91] that the standard model of computing is not appropriate
for modelling true biological intelligence. Penrose argues that physical
processes, evolving at a quantum level, may result in computations which
cannot be incorporated in Church’s Thesis. The analog neural network
does allow for non-Turing power while keeping track of computational
constraints, and thus embeds a possible answer to Penrose’s challenge
within the framework of classical computer science.

A second response emerges from the Chinese room and the Dancing with Pixies reduc-
tio. It acknowledges the huge value that the computational metaphor plays in current
psychology and neuroscience and concedes that a future computational neuroscience
may be able to simulate any aspect of neuronal processing and offers insights into all
the workings of the brain. However, although such a computational neuroscience will re-
sult in deep understanding of cognitive processes it insists on a fundamental ontological
division between the simulation of a thing and the thing itself.

I.e. We may simulate the properties of gold using a computer program but such a
program does not automatically confer upon us riches (unless of course the simulation
becomes duplication; an identity). Hence Searle’s famous observation that “.. the idea
that computer simulations could be the real thing ought to have seemed suspicious in
the first place because the computer isn’t confined to simulating mental operations, by
any means. No one supposes that computer simulations of a five-alarm fire will burn
the neighbourhood down or that a computer simulation of a rainstorm will leave us all
drenched. Why on earth would anyone suppose that a computer simulation of under-
standing actually understood anything?” [107]

Both of the above responses accommodate results from computational neuroscience,
but the second specifically highlights continued shortcomings of any purely formal -
vis a vis computational connectionist - account of cognition. If this is correct, perhaps
it is finally time for Cognitive Science to take the body [and its physical and social
embodiment] (c.f. Gibson [48], Varela et al [128], Bickhard & Terveen [16], Thompson
[122] and Deacon [37]) a little more seriously ..
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Glossary

McCulloch-Pitts neuron: a first - grossly simplified - mathematical model of neuron
firing.
Neural Network: a network of adaptable nodes which, through a process of learning
from task examples, store experiential knowledge and make it available for use.



64 J. MARK BISHOP

Learning: is the process whereby the neural network attempts to iteratively optimise
all its weights and thresholds (its structure) so as to minimise the overall prediction error
across all the pairs of input-output vectors in its training set.
Recurrent Neural Networks: a class of neural network where connections between
units form a directed cycle.
Supervised Learning Algorithm: the process of (typically iteratively) inferring net-
work function from labeled training data.
Spiking Neural Networks: are networks which incorporate the concept of time into
their behaviour.
Unsupervised learning algorithm: the task of finding ‘hidden structure’ (network
function) in unlabelled [training] data
Reservoir computing: defines network function via a trained ‘readout mechanism’
over a fixed, richly connected, pool of processing nodes (the reservoir).

Nomenclature

ART: Adaptive Resonance Theory
ANN: Artificial Neural Network
BDN: Binary Discriminant Neuron
BP: Back Propagation [learning algorithm]
DwP: Dancing with Pixies
GDR: Generalised Delta Rule
LVQ: Learning Vector Quantisation
MCP: McCulloch-Pitts [neuron]
MLP: Multi-Layer Perceptron
NESTOR: NEural STochastic diffusion search netwORk
RAM: Random Access Memory
RBF: Radial Basis Function
SLP: Single Layer Perceptron
SDS: Stochastic Diffusion Search
SI: Swarm Intelligence
SNN: Spiking Neuron Networks
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Selmer Bringsjord’s critique of Roger Penrose’s Gödelian argument against artificial intelligence.

[25] Bringsjord, S., & Noel, R., (2002), Real Robots and the Missing Thought-Experiment in the Chinese
Room Dialectic. in: Preston, J. & Bishop, J.M., (eds), (2002), Views into the Chinese Room: New
Essays on Searle and Artificial Intelligence, Oxford University Press, Oxford UK.
Selmer Bringsjord’s exposition of a ‘missing thought experiment’ in Searle’s Chinese room argument.

[26] Broomhead, D. S. & Lowe, D., (1988), Radial basis functions, multi-variable functional interpolation
and adaptive networks (Technical report). Royal Signals and Radar Establishment RSRE 4148, UK.
First exposition of the Radial Basis Function network.

[27] Bryson, A.E., (1963), Optimal programming problems with inequality constraints. I: Necessary
conditions for extremal solutions, J. AAAI, 1 (11), pp. 2544-2550.
Vapnik cites this paper by Bryson et al as the first publication of the ‘back propagation’ learning
algorithm.

[28] Carpenter, G. & Grossberg, S., (1987), A massively parallel architecture for a self organising neural
pattern recognition machine, Computer Vision, Graphics and Image Processing: 37, pp. 54-115.
Early publication of the ART-1 classifier.

[29] Chalmers, D., (1990), Why Fodor and Pylyshyn Were Wrong: The Simplest Refutation, In Pro-
ceedings of The Twelfth Annual Conference of the Cognitive Science Society, pp. 340-347.
David Chalmers’ rebuttal of Fodor and Pylyshyn’s critique of connectionism.

[30] Chalmers, D., (1995), Minds, Machines, And Mathematics A Review of Shadows of the Mind by
Roger Penrose, PSYCHE, 2: 9. David Chalmers’ critique of Roger Penrose’s Gödelian argument
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