
Using Lisp implementation internals

Unportable but fun

Christophe Rhodes
Department of Computing

Goldsmiths, University of London
New Cross, London, SE14 6NW

c.rhodes@gold.ac.uk

Abstract: We present a number of developer tools and language extensions that are
available for use with Steel Bank Common Lisp, but which are perhaps not as well-
known as they could be. Our motivation is twofold: firstly, to introduce to a developer
audience facilities that can make their development or deployment of software more
rapid or efficient. Secondly, in the context of the development of the Common Lisp
language itself, we offer some observations of patterns of use of such extensions within
the development community, and discuss the implications this has on future evolution
of the language.

Key Words: Development tools – Language extensions – Language evolution – Lisp

Category: D.2.3, D.2.12, D.3.3

1 Introduction

Common Lisp the Language [Ste84] was published a quarter of a century ago;
work done to improve and extend the language, in the context of the ANSI
standardization process, finished fifteen years ago with the publication of ANSI
document 226–1994 [PC94]. Since that time, the Common Lisp language as
standardized through any formal process has not changed.

In that quarter of a century, the culture of programmers new to a given lan-
guage appears to have changed somewhat: a number of single-implementation
languages, where the current state of the implementation acts as the sole defini-
tion of the language’s semantics (with the exception of discrepancies between
the implementation and its documentation), have appeared and gained cur-
rency. Dynamic ‘scripting’ languages such as Perl, Python, Lua, and the like
are by many metrics more popular than Common Lisp, and users of even single-
implementation statically-typed languages such as GHC or Scala typically expect
to find “batteries included” with their language, sometimes exhibiting difficulty
with making the adjustment from a worldview where language and implemen-
tation are conflated to one where they are separate.

For example, a common complaint heard against the Common Lisp language
is that it does not specify how to use OS facilities such as networking and
threads. Yet it is unusual for programming languages with a formal standard to
specify behaviour related to Operating System interfaces, networking facilities or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Goldsmiths Research Online

https://core.ac.uk/display/42383387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


other hardware devices1; the principal reason is that these interfaces are widely
varied even at a single point in time, and essentially out of the control of the
implementors of the language, and a common (hopefully static) subset of the
interfaces is usually too poor for its standardization to be useful to users.

There is a tendency among Open Source Common Lisp developers to aspire
towards portability as an end in itself. We will discuss some possible reasons
for this tendency (which, we should make clear, is not an absolute) in section
4; for now, we wish to highlight some of the problems that this causes. One
problem is that the desire for portability can act as a brake on development,
because the ramifications of each development line on all platforms, including
some which the developer may not even have access to, must be considered –
not only slowing development down, but also tending to the use of only lowest-
common-denominator functionality. In addition, time spent on portability is time
not being spent on deployment, which is ultimately the driver of subsequent
development. The counterbalance to this is that, particularly in the Open Source
context, portability increases the reach of a given piece of software, and hence
the potential number of contributors.

This feature of ‘portability layers’ allowing only lowest-common-denominator
functionality can have unintended consequences. For example, the Universal For-
eign Function Interface (UFFI) for Common Lisp, layered on top of implemen-
tations’ high-level Foreign Function support, explicitly aimed to offer only the
lowest-common-denominator featureset for interacting with ‘Foreign’ (non-Lisp)
code. Though this software offered only limited functionality, it attracted the
attention of developers because of its promise of portability across Lisp imple-
mentations, so while library bindings and applications using it were developed,
the impression was given that Common Lisp in general could not give access to
advanced foreign functionality. It took a significant effort, and the development
of CFFI2 to dislodge UFFI from developer consciousness.

It is not only users of the language who occasionally fall into this trap. For
one reason or another, some portions of the Common Lisp standard are less
polished and consistent than others. The chapter on pathnames [PC94, Chapter
19] attempted to specify a portability layer over the various different Operat-
ing System interfaces and functionalities; thus, there is support for a pathname
type distinct from its name; multiple versions of a given pathname; and means
to specify that a pathname can be found on a particular host or device. These
concepts, modelled on the filesystem interface of the Lisp Machine, unfortu-
1 But not unheard of: the 2005 revisions of Ada95 include access to many Operating

System facilities, and even earlier versions of the Ada standard require implementa-
tions to provide access to hardware interrupts in a standard way.

2 The Common Foreign Function Interface is based on simple, lowest-common-
denominator primitives (such as access to a particular address in memory), and
provides a UFFI-compatibility mode as well as greater functionality. http://
common-lisp.net/project/cffi/.



nately do not map terribly well to the filesystems in use today; partly because of
the attempt at portability across unknown systems, the test suite developed by
Paul F. Dietz [Die05] to test specified behaviour covers relatively little, as almost
no pathname operation is specified sufficiently unambiguously or consistently.

This paper discusses some little-documented (or completely undocumented)
features of Steel Bank Common Lisp (SBCL), as a nudge away from the de-
sire for portability as an end in itself and towards using the full range of an
implementation’s features. This of course does not remove the need for care-
ful consideration of any deployment issues3, nor is it intended as an argument
for fragmenting an already small development community, but it is motivated
by a desire to see innovation in tools and language extension be taken up and
used, so that experience with them can be used to guide their further devel-
opment. As a secondary objective, this paper can address some of the paucity
of documentation. In the Open Source development world, the tension between
documenting a facility to inform potential users and documenting a facility as
an expression of support for that interface tends to lead to a general lack of
documentation; the examples presented herein might pique the reader’s interest
enough to investigate further despite that lack.

We work with SBCL in this paper because that is the Common Lisp imple-
mentation with which we are most familiar. We hope, however, that the technical
ideas presented here can transfer to other implementations; there are certainly
similar tools and language extensions in other Lisp implementations, some over-
lapping in functionality to those presented here and some different in approach
or effect. The social observations presented here are applicable to developers
who use different Lisp implementations, though (obviously) not to all such de-
velopers; they have been made in an unsystematic way over a period of years,
interacting with commercial and open source developers in person and online.

The rest of this paper is organized as follows: sections 2 and 3 are adapted
from a tutorial presented at the 2009 European Lisp Symposium, held in Milan,
and collectively provide an overview of some SBCL-specific functionality. Sec-
tion 2 discusses some of the lesser-known tools within SBCL that can be used
to assist in portions of the development cycle – tools whose use is primarily in
the management of large systems, profiling and testing. Section 3 includes some
miniature case studies of the use within application code of unportable language
extensions, attempting to motivate their use by suggesting how they can save
time and effort in the long run. Section 4 mentions other similar functional-
ity in SBCL, and attempts to draw conclusions regarding the use of language
extensions and the evolution of the language itself.
3 As in the early history of the reddit.com startup, with initial implementation in

Common Lisp, developed with one implementation on one Operating System and
deployed with another implementation on a different Operating System.



2 Developer Tools

In this section, we discuss tools aimed squarely to assist the developer in the
process of development. The first case relates to allowing users of subsystems
with their own packages to have confidence that they are not opening them-
selves to an interaction problem in the presence of another third-party library.
The second briefly covers profiling in its various different forms, and the third
concludes this section with a discussion of a code coverage tool, which can be
used not only to assess the coverage of a test suite, but also to assist in working
out which pieces of a codebase are live code and which are never called.

2.1 Package Discipline

Programming in the large, as described for example in [Sei05, Chapter 21], in-
volves dealing with the facts that it is perfectly reasonable for different software
systems to want to give the same name to different concepts, and that these
systems might need to interoperate. The way to address this in Common Lisp
is through the use of packages, which control the lookup of symbols from their
(string) names at read-time.

The Common Lisp standard specifies a number of actions on packages and
symbols that the programmer must avoid, or else invoke undefined behaviour
[PC94, Section 11.1.2.1.2]. These restrictions boil down to: not altering the struc-
ture of the common-lisp package (by removal of standard symbols or altering
the home package of those symbols) and not pervasively altering the bindings or
other meanings of standard symbols. The expressed rationale in the writeup of
the LISP-SYMBOL-REDEFINITION X3J13 issue4 was to clarify that an implemen-
tation is allowed to prohibit behaviour that would be tantamount to redefinition
of system functionality.

The case of programming in the large, however, remains even with these re-
strictions on altering the common-lisp package. A simple scenario where this
matters is as follows: a programmer wishes to build an application and depends
on a third-party library; and the programmer’s application package :uses that
library package (in the defpackage form). Then, without reviewing the entirety
of the library package’s exports, any definition in the application package runs
the risk of colliding with a definition in the library package. In some cases, this
would be spotted quickly; structure-class redefinitions typically give imme-
diate feedback, as do function definitions. However, redefinition of a standard-

class is explicitly permitted by the standard, and there are other forms of
rebinding or redefinition that need not give immediate feedback to the program-
mer, which might lead to confusing bugs later.
4 A document not formally part of the standard, but reflecting the decision-making

process of the standardization committee.



(defpackage "FOO"

(:use "CL" "SB-EXT")

(:export "FROB" "FROB-POP"

"WITH-FROB-POP")

(:lock t))

(in-package "FOO")

(defun frob () ...)

(defpackage "FOO"

(:export "FROB" "FROB-POP"

"WITH-FROB-POP")

(:lock t)

(:implement))

(defpackage "FOO-INT"

(:use "CL" "SB-EXT" "FOO")

(:implement "FOO" "FOO-INT"))

(in-package "FOO-INT")

(defun frob () ...)

(a) (b)

Figure 1: Two styles of package definitions with SBCL-style package locks. In
(a), a single package is used both as the working package for the definitions them-
selves and for the external interface (here, the symbols foo:frob, foo:frob-pop
and foo:with-frob-pop. In (b), the foo package is the external interface only;
the definitions are implemented within the foo-int package.

An additional wrinkle is that even if the application writer’s definitions col-
lides with no existing definitions in the library, there is still a potential problem:
if the application introduces a new definition to an external symbol of the li-
brary, then this has the potential to collide with another, similar new definition
in another body of code which uses the same library – and here there is the po-
tential for truly hard-to-diagnose bugs. The way to prevent these is to strongly
discourage modification – in any way – of symbols or packages that are not one’s
own.

One method of achieving this is the style of Common Lisp programming
that does not :use or :import-from any packages beyond the common-lisp

package, but always explicitly qualifies symbols. This style has its advantages,
not least the fact that the identity of every symbol used is explicit, but can get
unwieldy; a variant style uses :import-from only, allowing the programmer to
audit definitions for a fixed set of names (rather than a large and potentially
volatile set of names, the entire list of exported symbols from any used package).

In order to better support more usual styles of programming with packages
(ones not requiring explicit listing or qualification of all symbols), SBCL provides



(defmacro with-frob-pop ((&key) &body body)

‘(macrolet ((frob-pop () ...))

,@body))

(defmacro with-frob-pop ((&key) &body body)

‘(locally (declare (disable-package-locks frob-pop))

(macrolet ((frob-pop () ...))

(locally (declare (enable-package-locks frob-pop))

,@body))))

Figure 2: In the presence of locked packages, macros which themselves provide
local macros or functions overriding global definitions (such as the with-frob-

pop macro, top) must locally disable the package locks around the rebinding,
and then enable them around the user code (bottom).

a package lock extension, which allows the programmer to request that actions
modifying a package or bindings of a package’s symbols trigger an error, so that
any potentially harmful name collision is caught early. The SBCL package lock
facility is designed to be unobtrusive: where there would be no way for users of
a locked package to write code without knowing about the presence of a package
lock, errors in package discipline are not caught; for example, there is no way to
specify that part of the interface to a package is binding particular restarts or
using a particular symbol as a catch tag, and so at present these bindings are
not treated as violations of the lock. Other than that caveat, the facility offers
protections modelled after the restrictions in the Common Lisp standard on the
modifications of standard packages [PC94, Section 11.1.2.1.2], but for arbitrary
packages.

Figure 1 illustrates the setup necessary for declaratively locking a package (it
is also possible to programmatically lock and unlock it after creation). The sim-
pler case is where a single package is used, merely requiring the :lock argument
to be used with defpackage. In the more complex case, an interface package
foo is defined, but its functionality is constructed working within the foo-int

package (which uses foo). In this case, foo-int is declared to implement the foo
package (as well as itself). One detail is worth mentioning; sometimes a macro’s
functionality is provided by rebinding function or macro definitions locally, as
schematically shown in figure 2. In this case, the implementor of the macro (not
the user) must insert some declarations to inform the compiler about a lexical
region of code where the rebinding of a symbol should not be prevented by a
package lock.



2.2 Profiling in all its forms

It is often the case that the first draft of a program is not as fast as necessary
or desired, and consequently needs optimizing for execution speed. It is now
generally well-understood that a programmer’s intuitions about the areas of the
code which need optimizing are unreliable; a programmer’s attention is gener-
ally drawn to the most pessimal routines (a static property of the code), whereas
time spent executing the program is mostly spent in slow routines that are called
many times (a dynamic property of the use of the software). Thus, the recom-
mendation is always to profile a representative execution of the program before
spending valuable programmer time in optimizing it, as time spent optimizing
infrequently-called functions has negligible effect on the total running time.

In addition, many programmers do not have a reliable intuition for the perfor-
mance characteristics of even relatively simple Common Lisp operators; because
of different implementation strategies and different priorities in the facilities
they provide, implementations themselves vary – sometimes quite significantly
– in their performance. The benchmarks in [Gab85], along with community-
maintained extensions, provide a broad view of an implementation’s performance
across a suite of tasks: this may give an indication of performance on a larger-
scale programme, but rarely more than an indication.

A secondary use of measuring performance characteristics is in the investiga-
tion of unknown systems: both benchmarks [Rho04] and profiling data, particu-
larly call graphs [GKM82] can provide a useful overview of the implementation
of a system, a feature that profilers share with code coverage tools, discussed in
the next section.

SBCL provides not one but two profilers: an instrumenting profiler [SE94],
where function entry and exit are wrapped with code to keep track of time
and other resources consumed by the wrapped function; and a sampling profiler
[GKM82], which arranges for normal execution to be interrupted at a regular
interval, recording at each interrupt the current program state.

The sampling profiler can be used to measure either CPU time or wall-clock
time, or indeed to measure the allocation of pages; see figure 3 for an example
function to profile and expected results. The instrumenting profiler adds over-
head to each profiled function, introducing a systematic error in timing measure-
ments, but can be more selective (profiling only certain selected functions or sets
of functions) and repeatable (less vulnerable to sampling error). Both flat table
and call graph reports are available, the latter only from the sampling profiler,
which also integrates with the disassembler to show precise sample counts at
each machine instruction.

We can contrast this with a portable profiler. While it is a testament to
the stability and flexibility of the language that a portable profiler can be and
has been built, and that a body of code unmaintained since 1994 runs with



(defun sb-sprof-example-fun (x y)

(declare (type (unsigned-byte 16) y))

(dotimes (i y)

(setf x (mod (+ x x) most-positive-fixnum)))

(sleep 0.01)

(values x (mod x y)))

(defun sb-sprof-example (&optional (mode :cpu))

(declare (type (member :time :cpu :alloc) mode))

(sb-sprof:with-profiling

(:mode mode :report :flat :loop t :max-samples 1000)

(dotimes (i 200)

(sb-sprof-example-fun 3 #xffff))))

Figure 3: Example code to demonstrate use of the statistical profiler in SBCL.
sb-sprof-example can be called with an argument of :cpu, :time or :alloc,
which should respectively identify truncate, sleep and sb-vm::generic-+ (the
low-level routine implementing two-argument addition of numbers) as the major
users of the respective resources.

minimal modifications on Lisp systems released in 2009, it is also the case that
the metering5 portable profiler, by its portable nature, cannot provide all the
functionality described above: a sampling profiler requires integrating with the
system, and while an instrumenting profiler can be written portably it may
interact badly with other system functionality, such as function tracing. This
issue, and others, is discussed in more detail in [Lev09].

2.3 Code coverage

The language as standardized has endured (at the time of writing) for 15 years,
and in that time whole paradigms in software engineering such as the Unified
Process, Extreme Programming and Test-Driven Development have sprung up,
gained currency, and in some cases largely disappeared again. Of course, since the
Common Lisp standardization process to a large extent codified existing practice
in the Common Lisp community since the 1984 language document [Ste84], and
since that document itself was an attempt to produce a dialect of Lisp that
was culturally compatible with many of the Lisp dialects active at the time, it
should come as no surprise that there are substantial bodies of code portions
of which are well over twenty years old that can run in contemporary Common
5 One of the utilities by Mark Kantrowitz, available from the CMU AI repository.



(require :sb-cover)

(declaim (optimize sb-cover:store-coverage-data))

(asdf:oos ’asdf:load-op :cl-ppcre-test)

(cl-ppcre-test:run-all-tests)

(sb-cover:report "/tmp/cl-ppcre/")

Figure 4: A sequence of forms which if entered at the SBCL REPL will compile
and load the cl-ppcre system [Wei09] with coverage annotations, execute the test
suite, and generate reports of the code coverage, viewable with a web browser
at file:///tmp/cl-ppcre/cover-index.html (see figure 5).

Lisp implementations; indeed, SBCL itself is one such, as the implementation
can trace its history through its genesis in a fork from CMUCL [Mac92] in 1999
to CMUCL’s origins in Spice Lisp from the early 1980s.

The long history of some bodies of code give the opportunity of the accu-
mulation of quite some layers of cruft, which can cause significant difficulties in
working out exactly what codepaths are relevant to a particular situation; main-
tainers (which includes the original developers of the software, given a suitable
amount of time elapsed to allow for the fallibility of human memory to do its
work) are often confronted with a large body of code, not much being relevant
to a particular bug report or development avenue.

Code coverage tools can assist in this circumstance. The essence of a code
coverage tool is to record and report which code has been executed during the
course of some (possibly extended) interaction with the software. In SBCL’s
case, this is implemented by instrumenting each form within the code with in-
structions to set a flag within a cons, and a data structure mapping those conses
to the source location of the associated code. It is then possible to report the
forms which have or have not been executed during the interaction; the sb-cover
module distributed with SBCL generates an html file for each file with instru-
mented code, displaying the coverage information using colour, with overview
files to provide quick summaries and entry points into the reports.

Perhaps the canonical use of a code coverage tool, in contrast to the software
archaeology use case presented above, is in the development or modification of
a test suite. It is in this context that a previous code coverage tool for Com-
mon Lisp was developed and presented [Wat91], which also claims portability.
However, that portability is achieved by shadowing defining symbols (defun,
defmacro) and walking the bodies6; this portability comes at the expense of

6 Rather than a full codewalk, the cover system (available from the CMU AI repository
and described in [Wat91]) substitutes for atoms in bodies using sublis.



Figure 5: Illustrative output of sb-cover’s html output after running the test
suite from cl-ppcre. The top panel shows the overview of the report, with sum-
mary data for all instrumented files; the bottom shows a section of the report
for one particular file, with background colours indicating whether code was ex-
ecuted or not (light green / light red) and whether both, one or neither branch
of a conditional was taken (strong green / yellow / strong red).



composability: it is not straightforwardly possible to compose multiple exten-
sions of defining forms, so code using another such extension of Common Lisp
using this shadowing technique (series, for example) could not use cover to as-
sess coverage. By contrast, the sb-cover module in SBCL is integrated into
the compiler, using a compiler optimization directive (see figure 4) and therefore
composes transparently with other SBCL compiler hooks (single-stepping and
other debugger facilities) and with user extensions.

3 Case Studies

In this section, we include some studies of functionality implemented in SBCL

using particular unportable techniques. The first case study, implementing a
symmetric encryption and decryption algorithm, relies heavily for its effective-
ness on the compilation of a high-level description of the algorithm (in a language
where the integer type is unbounded in size) to machine instructions. The sec-
ond combines an efficient implementation of string equality with the ability to
subclass the specializer metaobject class, to produce a generic function which
dispatches efficiently between methods based on the pathname-type of its argu-
ment. The third case study implements a space-efficient representation of DNA
base sequences as a subclass of sequence, allowing the user to use Common Lisp
sequence functions on instances of the user-defined class.

3.1 Encryption

This case study demonstrates how to relieve the conflict between dynamic, run-
time typing of objects – which necessarily means reserving some bits in a ma-
chine word to indicate type information – and many cryptographic algorithms
designed to run efficiently on modern hardware, typically relying directly on
the arithmetic operations provided by the CPU. The type tagging of objects in
a dynamically-typed language means that the range of integers on which fast,
hardware arithmetic can be performed is normally reduced; however, that range
can locally be expanded to the full hardware width by explicitly requesting it –
which can be done in portable code for unsigned arithmetic and logical opera-
tions.

The specific case covered in this case study is a complete implementation
(source code for which is in appendix A) of RC5 encryption and decryption
[Riv94]. In addition to efficient modular arithmetic, which we present in section
3.1.1, we also demonstrate how to extend the compiler itself by providing new
low-level implementations of user-defined functions in section 3.1.2. While we
present these techniques in the context of a cryptographic algorithm, they are



also applicable to the implementation of hardware emulators (such as Never-

more7, an emulator for the Explorer E1 Lisp Machine) and virtual machines (for
example the Cloak8 implementation of the Java Virtual Machine).

3.1.1 Modular Arithmetic

Many cryptographic algorithms, including symmetric and public-key encryption
and cryptographic hash functions, are designed for relatively efficient implemen-
tation on general-purpose hardware. This means that the computational prim-
itives making up the kernels of these algorithms are typically expressed in the
systems of arithmetic provided by general-purpose arithmetic and logic units,
which generally implement arithmetic with an implicit integer width equivalent
to a masking operation after each operation – or, equivalently, arithmetic modulo
232 for 32-bit ALUs.

There is an impedance mismatch here with many Lisp systems, in that the
width of the ALU’s integer arithmetic is also typically the pointer size, and
dynamically-typed Lisps require some of those bits to act as tags to inform the
Lisp runtime how to interpret the remaining bits; for example, SBCL uses 3
tag bits on 32-bit architectures, in such a way that the integers representable as
immediates – fixnums – have the range [−229, 229−1]. Any integers outside this
range in general must be represented as a pointer to a heap-allocated structure
– a bignum – containing the bits representing that number.

However, within a single function, SBCL can temporarily represent integers
using the whole machine width: either [−231, 231 − 1] or [0, 232 − 1] depending
on the interpretation of the bits as representing a signed or unsigned integer.
This fact, in combination with some observations about the distributivity of
masking operations over many other arithmetic operations, allows for SBCL to
compile the portable way of expressing arithmetic modulo 232 – with an ex-
plicit mask or logand with #xffffffff – to the obvious machine instructions.
This functionality, described in more detail in [DR04], appears not to be very
common, perhaps because the combination of compilers emphasizing the speed
of generated code and dynamically-typed languages is relatively rare; the clos-
est analogue of which we are aware concerns the implementation of arithmetic
operations on fields smaller than a machine word in Java [RR04].

Figure 6 demonstrates the effect of the support for hardware modular arith-
metic in SBCL. The function foo computes a mathematical function of its three
32-bit integer arguments, and the result of the function is reduced modulo 232

by the call to logand. Because all the functions used are arithmetic and logical
primitives (and never shift bits downwards), the SBCL compiler can infer that

7 http://www.unlambda.com/nevermore/
8 http://lichteblau.blogspot.com/2007/08/cloak.html



(defun foo (x y z)
(declare (type (unsigned-byte 32)

x y z))
(logand (logxor (ash x 14)

(1+ (logandc2 y z)))
#xffffffff))

C0: C1E70E SHL EDI, 14 ; (ash . 14)
C3: 8BCE MOV ECX, ESI
C5: F7D1 NOT ECX ; (lognot .)
C7: 8BD3 MOV EDX, EBX
C9: 21CA AND EDX, ECX ; (logand .)
CB: 42 INC EDX ; (1+ .)
CC: 31D7 XOR EDI, EDX ; (logxor .)

Figure 6: A somewhat contrived example function foo (top) and the x86 disas-
sembly produced (bottom), with the type checks in the prologue and the tagging
of the return value in the epilogue elided for clarity.

intermediate results also need only to be kept to 32 bits, and consequently all
the computations can be done using hardware instructions. Note that there is no
need to request high speed or low safety from the compiler for the arithmetic
to be optimized: given the type declarations for the arguments x, y and z, the
resulting machine code is both fast and safe.

3.1.2 Bitwise Rotation

The design of cryptographic algorithms also often attempts to ‘mix’ bits together.
An operation commonly used to implement part of this mixing is bitwise rota-
tion, which is not naturally expressible in terms of normal arithmetic primitives;
whereas Common Lisp defines its mathematical operations over the integers,
bitwise rotation only makes sense given a fixed-size bitfield.

Specifically, we can define 32-bit rotation operators for 32-bit integer i and
5-bit count k as

rotl32(i, k) = i× 2k +
⌊

i

232−k

⌋
mod 232

rotr32(i, k) = i× 232−k +
⌊

i

2k

⌋
mod 232

which are sufficient for 32-bit applications. Although SBCL provides a general
facility for bitwise rotation in its sb-rotate-byte module, we use this opportu-



(in-package "SB-VM")

(macrolet
((def (fun internal opcode)

‘(progn
(defknown ,internal ((unsigned-byte 32) (unsigned-byte 5))

(unsigned-byte 32)
(foldable flushable movable))

(define-vop (,internal fast-ash-left/unsigned=>unsigned)
(:translate ,internal)
(:note "inline 32-bit rotation")
(:generator 5
(move result number)
(move ecx amount)
(inst ,opcode result :cl))) ; opcode: ROL or ROR

(declaim (inline ,fun))
(defun ,fun (x y)
(declare (type (unsigned-byte 32) x y))
(,internal x (logand y #x1f))))))

(def rotl32 rotate-left/unsigned=>unsigned rol)
(def rotr32 rotate-right/unsigned=>unsigned ror))

Figure 7: An implementation of 32-bit bitwise rotation operators for SBCL’s
x86 architecture backend.

nity to demonstrate in figure 7 how to implement specialized rotation operators
for the x86 architecture corresponding to the definitions above. In that figure, for
each of the left- and right-rotation cases, the macroexpansion makes the low-level
implementation function known to the compiler, defines a virtual operation (a
VOP, an object responsible for emitting machine code) implementing the rota-
tion – the machine code to be emitted follows the :generator; VOPs in general
also have type restrictions, documentation and other information, here mostly
inherited from a VOP implementing left-shift – and provides a higher-level entry
function which checks types and reduces the count modulo 32 before calling the
low-level function.

3.2 Dynamically-compiled pattern matching

Pattern-matching is touted as a productivity gain, particularly by advocates
of languages in the OCaml / ML / Haskell vein; there is significant literature
on optimizing the pattern-matching dispatch [LFM01] and in providing lan-
guage extensions to express pattern matching on more than declared datatypes
[Xi03]. What with Common Lisp being a programmable programming language,
it should come as no surprise that there exist pattern-matching libraries for use
directly in Common Lisp. What might be slightly more of a surprise is that these
libraries are generally of suboptimal quality, in the sense that the runtime of the



(defmacro string-case (string-form &body clauses)

(let ((string (gensym "STRING")))

‘(let ((,string ,string-form))

(cond

,@(loop for clause in clauses

if (typep (car clause) ’string)

collect ‘((string= ,string ,(car clause))

,@(cdr clause)))))))

Figure 8: A näıve implementation of string-case, expanding into a cond, with
each string-case clause resulting in a call to string=. For an efficient imple-
mentation of string-case, including minimization of branch instructions, see
[Khu07].

code generated to perform the pattern matching is greater than necessary: re-
ducing to a linear search, attempting to match the input to each pattern in turn
(e.g. match-case in cl-unification; match in bpm9). This is particularly surpris-
ing given that implementations of CLOS naturally perform what is effectively
optimized pattern discrimination when computing the applicable method of a
generic function given a set of arguments.

This case study constructs a simple dynamically-compiled implementation of
dispatch updatable at runtime over strings, compiling the dispatch on demand
using a combination of an efficient string-case macro [Khu07] and extensible
method specializers [NR08]. The motivating example is in the implementation of
a generic viewer (modelled by a view generic function) which accepts a pathname
and dispatches to an appropriate viewer based on the pathname-type of that
pathname.

3.2.1 string-case

While dispatch to the appropriate effective method of a generic function given
arguments is one application of pattern matching, it is not the only one; pattern-
matching in other languages is also often used to dispatch on different tuple or
list structure or on the contents of such structured data. One example that is
occasionally desired in Common Lisp is a case form with a non-eql predicate;
for example, a string-case macro where the keys are tested against the datum
with string= (see for example an elegant solution by Erik Naggum for this case
[Nag01]).

9 http://github.com/nallen05/bpm



Figure 8 shows a simple implementation of the string-case macro as an
illustration of the intended semantics (though in this simple implementation we
do not support multiple keys per clause for reasons of space). This implementa-
tion, while typical of the code in Common Lisp pattern-matching libraries, has
poor performance characteristics in that the time for performing the dispatch to
the appropriate code is O(N) in the number of keys. Since the keys in this case
are assumed known at compile-time, a pattern-matching compiler can optimize
this dispatch into something more like a tree search, as in [Khu07].

3.2.2 Extensible specializers

The Common Lisp Object System (CLOS) provides programmers with the abil-
ity to construct functionality from individual pieces by defining appropriate
methods of generic functions, which are later combined into an effective method
for a particular set of arguments; in addition, this allows for the simple defini-
tion of protocols, whereby the user of a piece of software may trace, extend or
customize its behaviour by calling introspective generic functions and defining
extending or overriding methods on generic functions that are documented as
providing the functionality of the software; indeed, CLOS itself can be imple-
mented to support such protocols [KdRB91].

The standard set of specializers in Common Lisp is limited to two classes:
the class specializer itself, which indicates applicability if the argument in that
position is a generalized instance of that class (i.e. an instance of that class or
its subclasses); and an eql specializer, indicating applicability if the argument
is the same as the given object.

A recent extension to the set of metaobject protocols in SBCL’s implemen-
tation of CLOS allows the programmer to define their own specializer classes for
their own generic function metaobject classes [NR08]. This facility, which inter-
operates with the other CLOS machinery, can be used as in appendix B (where
we implement a pathname-type specializer, applicable when the argument is a
pathname whose type field is equal to the specializer’s argument, to enable code
of the form of figure 9 to be written. As with ordinary generic functions and
methods, addition and removal of methods can happen at any time, and cause
the discriminating function to be reset to its initial state, which compiles and
installs an optimized dispatch function for itself when it is next called.

This facility allows users to define protocols interacting with objects other
than through their classes or their identities, which in principle allows more
flexibility in the organization of code, allowing the structure of the project
rather than the restrictions of the object system to dictate how to express
and implement the desired functionality. However, it is not yet convenient to
write functionality using subclasses of specializers with SBCL; with class-based
specializers, the MOP function compute-applicable-methods-using-classes



(defgeneric view (pathname)
(:generic-function-class pathname-type-generic-function))

(defmethod view ((pathname (pathname-type "jpg")))
(view-image pathname))

(defmethod view ((pathname (pathname-type "jpeg")))
(view-image pathname))

(defmethod view ((pathname (pathname-type "png")))
(view-image pathname))

(defmethod view ((pathname (pathname-type "htm")))
(browse-url pathname))

(defmethod view ((pathname (pathname-type "html")))
(browse-url pathname))

A19: 634101 MOVSXD EAX, [RCX+1] ; (char . 0)
A1C: 4883F868 CMP RAX, 104 ; (char= . #\h)
A20: 0F8582000000 JNE L7
A26: 634105 MOVSXD EAX, [RCX+5] ; (char . 1)
A29: 4883F074 XOR RAX, 116 ; (logxor . (char-code #\t))
A2D: 488BD0 MOV RDX, RAX
A30: 634109 MOVSXD EAX, [RCX+9] ; (char . 2)
A33: 4883F06D XOR RAX, 109 ; (logxor . (char-code #\m))
A37: 4809C2 OR RDX, RAX ; logior
A3A: 63410D MOVSXD EAX, [RCX+13] ; (char . 3)
A3D: 4883F06C XOR RAX, 108 ; (logxor . (char-code #\l))
A41: 4809C2 OR RDX, RAX ; logior
A44: 4885D2 TEST RDX, RDX ; (= . 0)
A47: 7408 JEQ L4

Figure 9: Method definitions and a fragment of the x86-64 disassembly of the
dispatch portion of the generic function (specifically, the test for "html", jumping
to L4 on success; the jump to L7 proceeds to test for "jpeg", a length-based
test having already been applied). The discriminating function is invalidated on
addition or removal of a method, and recompiled as needed.

is sufficient to enable cacheing of most dispatch functionality, but this proto-
col must be bypassed when using extended specializers. An analogous proto-
col function compute-applicable-methods-using-specializers, along with
some supporting functions, might well provide this convenience, but has yet to
be properly integrated in SBCL’s implementation of CLOS.



3.3 Generic sequences

The Common Lisp language as standardized reflects its long history; there are
several examples of behaviour that is specified generically, without providing
any standardized means for the programmer to interoperate with this behaviour:
thus, by the standard, make-hash-table accepts any of four standardized equal-
ity predicates, with no means to specify hashing functions and predicates; arith-
metic functions work with reals and complexes, but there is no way to extend
the number type (though it is not specified that real and complex form an
exhaustive partition of number); similarly, there are many functions acting on
sequences in general [PC94, Chapter 17], but no way for the programmer to add
sequence types beyond the standard vector and list.

In [Rho07], the author describes a protocol for allowing the user to perform
sequence operations on arbitrary user-defined CLOS objects, with the price be-
ing a minor deviation [Rho06] from the standard regarding error-signalling be-
haviour of make-sequence and related functions. This protocol provides the po-
tential for convenient provision of sequence functionality on sequence-like data
structures (such as gap buffers [SVM04] for interactive editors, or space-efficient
representations of DNA sequences: see figure 10) without having to reimplement
a large standard library. All sequence functions in SBCL have default imple-
mentations calling five basic generic functions in the sequence package; once
methods on those generic functions have been implemented, any function from
the sequences chapter of the ANSI standard works directly on instances of this
class, providing for easy instance creation (for example by using (coerce "GAT-

TACA" ’dna-sequence), querying (through count or search for example) and
serialization to file.

The implementation strategy in figure 10, representing the identity of the
base by an integer between 0 and 3 but translating that into one of the charac-
ters "ACGT", suggests the need for sequence-element-type, a protocol function
additional to the ones suggested in [Rho07], for expressing the set of elements
which can be stored in the sequence. For backwards compatibility, a default
implementation returning t on user subclasses of sequence can be provided.

The presence of this extension makes it easy and straightforward to allow
the user to call sequence functions that would otherwise typically be partially
reimplemented; indeed, even for data structures that are not strictly speaking
sequences (such as leaves of a binary tree) it can be convenient to make a portion
of this functionality available – while for those which are sequences supporting
some extra information, making the entire Common Lisp sequence functional-
ity available lowers barriers to the implementation of functionality that would
otherwise be tedious to provide.



(define-symbol-macro bases "ACGT")
(defun convert (x) (position x bases))
(defclass dna-sequence (sequence standard-object)
((data :type (simple-array (unsigned-byte 2) (*)) :initarg data)))

(defmethod print-object ((o dna-sequence) s)
(print-unreadable-object (o s :type t)
(prin1 (coerce o ’string) s)))

(defmethod sequence:length ((o dna-sequence))
(length (slot-value o ’data)))

(defmethod sequence:elt ((o dna-sequence) index)
(aref bases (elt (slot-value o ’data) index)))

(defmethod (setf sequence:elt) (new-value (o dna-sequence) index)
(setf (elt (slot-value o ’data) index) (convert new-value)))

(defmethod sequence:make-sequence-like
((o dna-sequence) length &key initial-element initial-contents)

(let* ((data (make-array length :element-type ’(mod 4)))
(result (make-instance ’dna-sequence ’data data)))

(cond
(initial-element (fill result initial-element))
(initial-contents (map-into result ’identity initial-contents)))

result))
(defmethod sequence:adjust-sequence

((o dna-sequence) length &key initial-element initial-contents)
(let ((data (slot-value o ’data)))
(setf (slot-value o ’data)

(apply #’sb-sequence:adjust-sequence data length
(cond
(initial-element
(list :initial-element (convert initial-element)))

(initial-contents
(list :initial-contents

(mapcar #’convert initial-contents)))))))
o)

Figure 10: Implementation of a space-efficient sequence type to represent DNA
sequences, taking two bits per character while preserving all standard Common
Lisp functionality. The first four definitions implement the representation itself,
while the method definitions on functions in the sequence package provide the
sequence-like behaviour for instances of the class.

4 Conclusions

In the two previous sections, we have covered a range of developer tools and some
language extensions available in SBCL; our survey here is of necessity incomplete
– for example, we have not discussed effective use of the debugger and stepper;
facilities for using atomic operations to write lockless threadsafe data structures;
hooking into the type derivation phase of the compiler; extending the sb-alien

foreign-function interface – but samples the spectrum of implementation-specific



functionality available. We should note that all of the facilities presented here
are compatible with the language standard, in the sense that they do not conflict
with any mandated behaviour, with the exception of the generalized sequences
extension described in section 3.3 which requires a minor deviation [Rho06].

Informal and highly unscientific straw polls suggest that while the developer
tools discussed in section 2 are commonly used and appreciated by members
of the SBCL community, even those primarily or exclusively writing for de-
velopment and deployment with SBCL tend not to make extensive use of the
language extensions such as those discussed in section 3, while the most com-
mon reason for not using a particular development tool is not knowing about its
existence10. In addition, there is little enthusiasm for implementation extensions
that break conformance with the ANSI CL standard; while users accept that
there will be bugs in implementations, there is usually little enthusiasm for any
proposal to alter an implementation’s semantics to be deliberately incompatible
with the standard (as opposed to merely providing functionality for behaviour
left undefined).

These observations are understandable: in using an implementation’s devel-
opment tool, programmers do not necessarily make it more difficult for them-
selves to port their software to a different implementation later, as the code
developed does not retain a dependency on the tools used to interact with it
(with the minor exception, among the tools presented here, of package locks).
Using an unportable language extension in developing, however, almost by defi-
nition makes it harder to port the software; the consideration has to be whether
the potential benefits from being able to express a particular solution more eas-
ily outweigh the potential costs – not an easy consideration to make. The same
goes, but even stronger, for using an implementation which deviates significantly
from the standard; whatever the value of using a standardized language, an im-
plementation’s deviation from the standard must diminish it.

Anecdotally, the Open Source Lisp development community places a high
value on code portability; one possible explanation for this is because the mem-
bers of the Open Source community compete for eyeballs (in the sense of the
phrase “given enough eyeballs all bugs are shallow”) and for approbation, both
of which would tend to increase with increased portability. While acknowledging
the overlap between Open Source developers and commercial entities, we would
suggest that this motivation is less strong in application-focussed development;
however, it is not clear that there are enough commercial users of SBCL who
make their development information public to draw conclusions about the use
or otherwise of language extensions11.
10 Sometimes a certain lack of polish can be an impediment; an earlier draft of this paper

contained a section on SBCL’s stepper facility, but it did not work in a sufficiently
reliable manner to be described.

11 Again anecdotally, users of two commercial implementations of Common Lisp, Al-



Addressing this desire for portability is not straightforward; if an extension’s
functionality could be provided in a portable way, it is not truly a language
extension. The obvious approach would be to provide a portable layer for as much
of the extension’s functionality as possible, along with a native implementation
for some subset of Lisp implementations; examples of unportable libraries for
which this has been tried include the Environments Access12 extensions from
Franz Inc.; this does not seem to have been used to any extent in code intended
to run in implementations of Common Lisp other than Allegro, nor does there
seem to have been a demand from users that this extension should be supported
elsewhere. This might be because the portable layer provided insufficient value,
and so programmers and implementors do not see the potential return on the
investment of producing and using the full capabilities of the extension – or it
might simply be that the adoption timescale in the Lisp world is naturally slow.

In contrast, one Open Source Lisp project which uses unportable implemen-
tation features and yet is widely used and actively developed is SLIME, the ‘Su-
perior Lisp Interaction Mode for Emacs’: it started as a CMUCL-only project,
with portability explicitly not being a goal; porting efforts were if not actively
discouraged, then not encouraged either; however, SLIME now not only supports
all reasonable Common Lisp implementations to a greater or lesser extent, but
also Clojure, some Scheme implementations, and languages even further from
its origins. The particular success of SLIME is at least partly attributable to
the poverty of Open Source Lisp interaction environments at the time, however;
the alternatives (ILISP, readline-based interfaces) were neither featureful nor
robust. Nevertheless, it might well be that the approach of developing a strong
set of features first and then dealing with porting made it clear that a credible
alternative was being developed, and so helped attract developer attention.

The above has implications on future evolution of the Common Lisp lan-
guage. While the prospects of a new formal standardization process in a stan-
dards body such as ANSI are dim, given the absence of deep-pocketed users and
the relative lack of pressing need, the fact that there is some community desire
for language evolution is undeniable: various efforts such as the Common Lisp
Request For Implementation founder essentially on lack of administrative man-
power. However, the best in language evolution can only come from an informed
position, which means that extensions have to be tried and tested before being
stabilized and proposed as an evolutionary step to the language. This need for
experimentation, for testing is the primary motivation for our desire for users to
use implementations’ facilities as far as is practical, rather than staying within
the standard comfort zone.

legro CL and Lispworks, seem highly attached to the respective unportable systems
delivered with those implementations, such as AllegroGraph and CAPI respectively.

12 http://www.lispwire.com/entry-proganal-envaccess-des



Acknowledgments

This paper uses and extends material presented at the 2009 European Lisp
Symposium. The author wishes to make clear that SBCL is a collaborative
development project which has received contributions of code from many tens of
people (and bug reports, development ideas and other contributions from many
more). The author thanks in particular Alastair Bridgewater, Paul Khuong,
Tobias Rittweiler and Nikodemus Siivola for helpful suggestions related to this
paper, along with the anonymous reviewers whose observations greatly improved
the structure and content of this paper.

References

[Die05] Dietz, P.: The GNU ANSI Common Lisp Test Suite; In International Lisp
Conference Proceedings, 2005.

[DR04] Dejneka, A. P. and Rhodes, C. S.: Efficient Hardware Arithmetic in
Common Lisp; http://jcsu.jesus.cam.ac.uk/~csr21/papers/modular/
modular.pdf, 2004.

[Gab85] Gabriel, R. P.: Performance and evaluation of Lisp systems MIT Press,
1985.

[GKM82] Graham, S. L., Kessler, P. B., and McKusick, M. K.: gprof: a Call Graph
Execution Profiler; ACM SIGPLAN Notices, 17(6):120–126, 1982.

[KdRB91] Kiczales, G., des Rivières, J., and Bobrow, D. G.: The Art of the Metaobject
Protocol MIT Press, 1991.

[Khu07] Khuong, P. V.: Implementing an efficient string= case in Common Lisp;
http://www.discontinuity.info/~pkhuong/string-case.pdf, 2007.

[Lev09] Levine, N.: Lisp outside the box; O’Reilly, forthcoming. Draft of chapter
20 at http://lisp-book.org/contents/ch20.html, retrieved 2010-01-17,
2009.

[LFM01] Le Fessant, F. and Maranget, L.: Optimizing Pattern Matching; In
ICFP’01 Proceedings, pages 26–37, 2001.

[Mac92] MacLachlan, R.: CMUCL User’s Manual; Technical Report CMU-CS-
92-161, Carnegie-Mellon University, 1992 (updated version available at
http://common-lisp.net/project/cmucl/doc/cmu-user/).

[Nag01] Naggum, E.: with-hashed-identity; Usenet group comp.lang.lisp,
Message-ID <3208606982556119@naggum.net>, 2001.

[NR08] Newton, J. and Rhodes, C.: Custom Specializers in Object-Oriented Lisp;
Journal of Universal Computer Science, 14(20):3370–3388, 2008 http:
//www.jucs.org/jucs_14_20/custom_specializers_in_object.

[PC94] Pitman, K. and Chapman, K., editors Information Technology – Program-
ming Language – Common Lisp Number 226–1994 in INCITS. ANSI, 1994.

[Rho04] Rhodes, C.: Grouping Common Lisp Benchmarks; In 1st European Lisp
and Scheme Workshop, Oslo, Norway, 2004.

[Rho06] Rhodes, C.: Revisiting CONCATENATE-SEQUENCE; Document 3, Common
Lisp Document Repository, 2006 http://cdr.eurolisp.org/document/3.

[Rho07] Rhodes, C.: User-extensible Sequences in Common Lisp; In International
Lisp Conference Proceedings, 2007.

[Riv94] Rivest, R. L.: The RC5 Encryption Algorithm; In Proceedings of the Sec-
ond International Workshop on Fast Software Encryption, pages 86–96.
Springer, 1994.



[RR04] Redwine, K. and Ramsey, N.: Widening integer arithmetic; In Duester-
wald, E., editor, Conference on Compiler Construction, number 2985 in
LNCS, pages 232–249. Springer-Verlag, Berlin, 2004.

[SE94] Srivastava, A. and Eustace, A.: ATOM: a system for building customized
program analysis tools; In Proceedings of the ACM SIGPLAN 1994 confer-
ence on Programming language design and implementation, pages 196–205,
1994.

[Sei05] Seibel, P.: Practical Common Lisp Apress, Inc., 2005 http://
gigamonkeys.com/book/.

[Ste84] Steele, G. L., Jr: Common Lisp: The Language Digital Press, 1984.
[SVM04] Strandh, R., Villeneuve, M., and Moore, T.: Flexichain: An editable

sequence and its gap-buffer implementation; In 1st European Lisp and
Scheme Workshop, Oslo, Norway, 2004.

[Wat91] Waters, R. C.: Determining the Coverage of a Test Suite; ACM Lisp
Pointers, 4(4):33–43, 1991.

[Wei09] Weitz, E.: Portable Perl-compatible regular expressions for Common Lisp;
http://weitz.de/cl-ppcre/, 2009.

[Xi03] Xi, H.: Dependently typed pattern matching; Journal of Universal
Computer Science, 9(8):851–872, 2003 http://www.jucs.org/jucs_9_8/
dependently_typed_pattern_matching.

A Implementation of RC5

The code below, in conjunction with the definitions of rotl32 and rotr32 from
figure 7, implements RC5 encryption and decryption of double words with en-

crypt and decrypt as defined in [Riv94], with the key being selected using
setup. Given a portable definition of the rotl32 and rotr32 functions, the code
below would continue to work, but any Common Lisp implementation which fails
to compile the arithmetic and rotation operations into the equivalent hardware
instructions would run the code orders of magnitude more slowly.

(defvar *s*)
(declaim (type (simple-array (unsigned-byte 32) (26)) *s*))

(defmacro +/32 (&rest args)
‘(logand (+ ,@args) #xffffffff))

(defmacro -/32 (&rest args)
‘(logand (- ,@args) #xffffffff))

(defun encrypt (p0 p1)
(declare (type (unsigned-byte 32) p0 p1))
(do* ((a (+/32 p0 (aref *s* 0))

(+/32 (rotl32 (logxor a b) b) (aref *s* (* 2 i))))
(b (+/32 p1 (aref *s* 1))

(+/32 (rotl32 (logxor b a) a) (aref *s* (1+ (* 2 i)))))
(i 1 (1+ i)))
((> i 12) (values a b))

(declare (type (unsigned-byte 32) a b))))

(defun decrypt (c0 c1)
(declare (type (unsigned-byte 32) c0 c1))
(do* ((b c1 (logxor (rotr32 (-/32 b (aref *s* (1+ (* 2 i)))) a) a))



(a c0 (logxor (rotr32 (-/32 a (aref *s* (* 2 i))) b) b))
(i 12 (1- i)))
((<= i 0) (values (-/32 a (aref *s* 0))

(-/32 b (aref *s* 1))))
(declare (type (unsigned-byte 32) c0 c1))))

(defun setup (k)
(declare (type (simple-array (unsigned-byte 8) (16)) k))
(let ((l (make-array 4 :element-type ’(unsigned-byte 32)))

(s (make-array 26 :element-type ’(unsigned-byte 32))))
(fill l 0)
(do ((i 15 (1- i)))

((< i 0))
(setf (aref l (truncate i (/ 32 8)))

(logior (ash (aref l (truncate i (/ 32 8))) 8) (aref k i))))
(setf (aref s 0) #xb7e15163)
(do ((i 1 (1+ i)))

((>= i 26))
(setf (aref s i) (+/32 (aref s (1- i)) #x9e3779b9)))

(do* ((a 0)
(b 0)
(k 0 (1+ k))
(i 0 (mod (1+ i) 26))
(j 0 (mod (1+ j) 4)))

((>= k (* 3 26)) (setf *s* s))
(setf (aref s i) (rotl32 (+/32 (aref s i) a b) 3))
(setf a (aref s i))
(setf (aref l j) (rotl32 (+/32 (aref l j) a b) (+/32 a b)))
(setf b (aref l j)))))

B Implementation of pathname-type specializers

The code below allows the code in figure 9 to compile and run, dispatching
to the relevant method based on the pathname-type slot of its argument. The
implementation below is not fully general, as the generic function metaclass it
defines is only capable of supporting single-argument functions where all spe-
cializers must be of the pathname-type kind; a more complete implementation,
interoperating with other kinds of specializers, requires an adapted protocol for
applicable method computation and combination, the subject of further work.
The code presented requires the SBCL Metaobject Protocol and (for efficiency)
the string-case macro from [Khu07].

(defclass pathname-type-specializer (specializer)
((string :reader pathname-type-specializer-string :initarg :string)
(direct-methods :initform nil :reader specializer-direct-methods)))

(defvar *pathname-type-specializer-table*
(make-hash-table :test ’equal))

(defun ensure-pathname-type-specializer (string)
(or (gethash string *pathname-type-specializer-table*)



(setf (gethash string *pathname-type-specializer-table*)
(make-instance ’pathname-type-specializer :string string))))

(defclass pathname-type-generic-function (standard-generic-function)
()
(:metaclass funcallable-standard-class))

(defmethod compute-discriminating-function ((gf pathname-type-generic-function))
(lambda (pathname)
(let* ((methods (generic-function-methods gf))

(function (compiled-discriminating-function methods gf)))
(set-funcallable-instance-function gf function)
(funcall function pathname))))

(defun discriminating-function-lambda (methods gf)
(let (clauses)
(dolist (m methods)
(let* ((specializer (car (method-specializers m)))

(string (pathname-type-specializer-string specializer))
(form ‘(funcall ,(method-function m) (list pathname) nil)))

(push ‘(,string ,form) clauses)))
‘(lambda (pathname)

(unless (pathnamep pathname)
(no-applicable-method ,gf pathname))

(let* ((type (pathname-type pathname))
(string (coerce type ’(simple-array character (*)))))

(string-case (string :default (no-applicable-method ,gf pathname))
,@clauses)))))

(defun compiled-discriminating-function (methods gf)
(compile nil (discriminating-function-lambda methods gf)))

(defmethod make-method-specializers-form
((gf pathname-type-generic-function) method names environment)

‘(list (ensure-pathname-type-specializer ,(cadar names))))

(defmethod add-direct-method ((specializer pathname-type-specializer) method)
(pushnew method (slot-value specializer ’direct-methods)))

(defmethod remove-direct-method ((specializer pathname-type-specializer) method)
(setf (slot-value specializer ’direct-methods)

(remove method (slot-value specializer ’direct-methods))))

(defmethod unparse-specializer-using-class
((gf pathname-type-generic-function) (specializer pathname-type-specializer))

‘(pathname-type ,(pathname-type-specializer-string specializer)))

(defmethod parse-specializer-using-class ((gf pathname-type-generic-function) name)
(typecase name
((eql t) (find-class t))
((cons (eql pathname-type)) (ensure-pathname-type-specializer (cadr name)))
(specializer name)))


