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Abstract

We derive the hydrodynamic equations for nematic liquid crystals lying on curved substrates.

We invoke the Lagrange-Rayleigh variational principle to adapt the Ericksen-Leslie theory to two-

dimensional nematics in which a degenerate anchoring of the molecules on the substrate is enforced.

The only constitutive assumptions in this scheme concern the free-energy density, given by the two-

dimensional Frank potential, and the density of dissipation which is required to satisfy appropriate

invariance requirements. The resulting equations of motion couple the velocity field, the director

alignment and the curvature of the shell. To illustrate our findings, we consider the effect of a

simple shear flow on the alignment of a nematic lying on a cylindrical shell.

PACS numbers: 61.30.-v, 47.57.Lj, 47.85.Dh
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A nematic liquid crystal is a fluid consisting of elongated molecules that exhibit the

tendency to align their major axes along a common direction. Such a preferred direction

is usually described by a unit vector field n, called the nematic director, which represents

the local average orientation. In the last two decades there has been an increasing interest

in soft matter physics on nematic shells [1, 2]. These shells, consisting in thin films of

nematic liquid crystal deposited on curved substrates, are of fundamental interest because

of their suitability to study a rich variety of topological problems. Furthermore, nematic

shells provide a promising route for generating colloids with controllable valence [3–6]. The

potential applications of nematic shells and their elegant formalism have produced a vivid

research activity [7–14]. Most of the studies on nematic shells are addressed to understand

the role of the shell geometry on the alignment of nematics at equilibrium. However, while

the static theory of nematic shells is gradually consolidating in the literature, a dynamic

theory for two-dimensional curved nematics is still missing.

From the dynamical point of view, liquid crystals are complex non-Newtonian fluids whose

continuum dynamical theory is the result of the independent contributions by Ericksen and

Leslie. We refer the reader to [15, 16] for an exhaustive and compendious treatise on the

Ericksen-Leslie theory. The hydrostatic theory of nematics has been first obtained by Erick-

sen [17] who reformulated the Frank theory in the general continuum mechanics framework.

Ericksen [17] showed that the stress tensor is the sum of the usual hydrostatic isotropic

term and a non-symmetric contribution due to the anisotropy induced by the presence of

a preferred direction. Subsequently, broadening the constitutive assumptions on viscous

dissipative actions, Leslie [18, 19] derived a general dynamical theory that accounts for the

fluid anisotropy and elastic stresses resulting from the spatial distortion of the director. In

this model the dissipative dynamics is characterized by six viscosity coefficients. Few years

later, Parodi [20] proved that Leslie theory can be derived from a dissipation potential, and,

exploiting the Onsager reciprocal relations, he was able to find a linear relation among the

Leslie viscosity coefficients which reduces the number of independent coefficients to five.

Very recently, basing on a novel hydrodynamic theory of nematic liquid crystals [21], Biscari

et al. [22] obtained a (nonlinear) equation relating the Leslie viscosity coefficients.

A different perspective is offered by Sonnet and Virga [23] who derived the Ericksen-Leslie

equations for dissipative fluids with a general microstructure by extending the variational

principle introduced by Rayleigh [24] to describe dissipative discrete systems to continua.
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This derivation is valid for quite general constitutive models for the free-energy and dissi-

pation densities provided that the latter satisfies appropriate invariance requirements. In

this paper we shall employ the Lagrange-Rayleigh variational principle to obtain the hydro-

dynamic equations for a 2D nematics coating a fixed surface. Compared to the usual 3D

nematics, the number of degrees of freedom of a nematic shell is reduced as the center of

mass of each molecule can move only on the substrate’s surface (which involves two degrees

of freedom) and the molecular axis can only rotate rigidly around the normal to the sub-

strate surface (so that its orientation can be described by a single scalar parameter). Thus,

including the continuity equation in the system of governing equations, we expect to derive

four scalar equations of motion instead of the six ones needed for a usual 3D nematics.

Our variational approach is based on two constitutive ingredients: the free-energy den-

sity and the dissipation function. The free-energy is given by the two-dimensional Frank-like

potential that we derived in [10, 25] and accounts for the interplay between the shell curva-

ture and the nematic alignment at equilibrium. On the other hand, we here introduce an

appropriate model for the dissipation function which depends on objective quantities. The

equations of motion we obtain clearly couple the nematic alignment, the in-plane (covariant)

strain rate tensor and the curvature of the shell.

According to the variational approach proposed in [16], the equations of motion can be

derived from the Lagrange-Rayleigh variational principle

δW = δR, (1)

W being the total rate of work and R the Rayleigh dissipation functional. We refer the

reader to the book by Sonnet and Virga [16] for a detailed discussion on the theoretical

foundations and the pertinence of this principle. Hereinafter, we shall instead focus on the

most appropriate models for W and R.

We start by writing the total rate of work as the sum of three different contributions:

W = W (a) − ˙K − Ḟ , where W (a) is the power of the external actions, K is the kinetic

energy, F is the free energy and the superimposed dot denotes differentiation with respect

to time.

Next, we consider a nematic shell occupying the surface S with unit normal ν, and denote

∂S the boundary of S and k the unit outward normal to ∂S in the tangent plane. The power

of the external actions results in the sum of the power of the external forces acting on the
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material element of fluid and the power expended to make the molecules rotate:

W
(a) =

∫

S

(b · v+ β · ṅ) da +

∫

∂S

(t · v+ γ · ṅ) dl, (2)

where b represents the surface density forces and t the traction on the boundary, while β

and γ are generalized body and contact force densities acting on n.

As the kinetic energy is concerned, beside the usual translational contribution, there is

also a term due to the rotation of the molecules. Nevertheless, because of the small moment

of inertia of the molecules, the rotational kinetic energy can be ignored and thus the total

kinetic energy reduces to

K =
1

2

∫

S

̺v2da, (3)

where ̺ is the mass density per unit of area.

Following [10], we assume that the free energy density w depends on the director field n

and its surface gradient ∇sn so that

F =

∫

S

w(n,∇sn)da. (4)

The surface gradient is the differential operator ∇s· = (∇·)P, where P = I − ν ⊗ ν

denotes the projection operator onto the plane tangent to S. The trace of surface gradient

of a smooth vector field w gives the surface divergence, i.e., divsw = tr∇sw, while twice the

axial vector corresponding to the skew-symmetric part of ∇sw gives the surface curl of w:

curlsw = −ε∇sw, ε being the Ricci alternator. The surface gradient of w is related to the

covariant derivative Dsw through the identity [26]

Dsw = P∇sw = ∇sw − ν ⊗ Lw, (5)

where L = −∇sν is the extrinsic curvature tensor of S. Finally, the surface divergence of a

second-order tensor field T is the vector divsT with components Tij,kPjk.

A 3D nematic liquid crystal dissipates energy through the fluid velocity v and the local

average angular velocity of the molecules. In the Ericksen-Leslie theory the dissipation

functional is a frame-indifferent quadratic form in the strain rate tensor (i.e., the symmetric

part of the velocity gradient) and the corotational time derivative of n.

Unlike 3D nematics, in nematic shells the symmetric part of the velocity gradient and

the corotational time derivative of the director are not frame indifferent[29]. Instead, the
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FIG. 1: Darboux frame {n, τ ,ν} on the nematic shell S. The vector v is the velocity of the

centre of mass of the molecule and θ is the angle contained by the director and the dashed line of

curvature.

appropriate frame indifferent tensorial quantity, linear in the velocity gradient, is the in-plane

(covariant) strain tensor Ds = [Dsv+(Dsv)
T ]/2, and the appropriate frame-indifferent time

derivative of n is the in-plane corotational time derivative

◦

n =
∂n

∂t
+ (Dsn)v−Wsn, (6)

where Ws = [Dsv − (Dsv)
T ]/2 is the in-plane (covariant) vorticity tensor. The in-plane

corotational time derivative
◦

n gives a measure of the average angular velocity of the molecules

contained in the material element relative to the regional angular velocity in which the

material element is embedded. In fact, introduced the vorticity vector ̟ = curlsv/2 and

denoting ̟ν its normal component,
◦

n =
(

θ̇ − ω · v−̟ν

)

ν × n, where θ is the angle that

the director forms with one of the principal directions (see Figure 1) and ω is the vector

which parametrizes the spin connection on S [25]. The local average angular velocity of the

molecular axes relative to the fluid is then (θ̇−ω · v−̟ν)ν. Consequently, the dissipation

function can be taken of the form

R =

∫

S

ψ(n;Ds,
◦

n)da, (7)

ψ representing the density of dissipation. We may conclude that, since both Ds and
◦

n

depend on the covariant derivative of the velocity gradient (and not on the surface gradient

of v), the extrinsic curvature of the shell does not affect directly the dissipative process.
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The peculiarity of an in-plane liquid crystal flow with a degenerate anchoring stands in

the kinematics. Since S is fixed, the admissible velocity field v is tangential. In the sequel,

we shall restrict our attention to inextensible flows, i.e., motions during which local area is

preserved. Within this assumption the velocity is divergence-free, namely

divsv = 0, (8)

and, as a cosequence of this constraint and the equation of continuity, the mass density is

constant. Next, since v is a tangential vector field satisfying the inextensibility constraint

(8), the virtual velocity δv is tangential and divergence-free. On the other hand, since the

director is a unit vector lying in the tangent plane the infinitesimal variations δṅ allowed

by the constraints point along the conormal vector τ = ν ×n, that is only virtual rotations

about the normal to S are kinematically admissible.

In line with the Lagrangian spirit, the aforementioned kinematic restrictions lead to a

model with a reduced number of (scalar) equations compared to the 3D Leslie-Ericken theory.

The variational principle (1) yields two equations of motion: the fluid equation

̺as = −∇sς +Pdivsσ + bs, (9)

where a is the acceleration, σ is the surface stress tensor, ς is the Lagrange multiplier

related to the inextensibility constraint (8) (having the same physical dimensions as a surface

tension) and the subscript s appended to vector fields denotes their projections onto the

tangent plane; and the director equation

τ · divsG− gτ + βτ = 0, (10)

where

G =

(

∂w

∂∇sn

)

P, g(c) =
∂w

∂n
, g(d) =

∂ψ

∂
◦

n
, (11)

and gτ and βτ are the components along the conormal vector τ of the generalized body

forces g = g(c)+ g(d) and β acting on the molecules. The fluid equation (9) gives rise to two

scalar equations for the in-plane components of the velocity, while the director equation (10)

is the scalar equation for the angle θ. The inextensibility constraint (8) closes the system of

governing equations as it allows the determination of the Lagrange multiplier ς.
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The stress tensor σ is the sum of a constitutive elastic part

σ(c) = −(∇sn)
TG, (12a)

and a viscous contribution

σ(d) =
1

2

(

n⊗ g(d)s − g(d)s ⊗ n
)

+P
∂ψ

∂Ds

P. (12b)

Notice that σ(c) is the two-dimensional analogue of the Ericksen stress tensor for usual 3D

nematics [17]. As in the 3D case, depending on the model for the free energy density w, the

conservative elastic part of the stress tensor σ(c) may fail to be symmetric.

The equations of motion are supplemented by the boundary conditions ts = σk and

γτ = τ · Gk on ∂S, where ts is the tangential traction and γτ is the component of the

generalized boundary force along τ .

Hereinafter, we consider specific models for the free energy and dissipation densities.

Frank [27] was the first to derive the most general quadratic model for the free energy

density of nematic liquid crystals. Its adaptation to non-chiral nematics confined on curved

surfaces is

w =
k1
2
(divsn)

2 +
k2
2
(n · curlsn)

2 +
k3
2
|n× curlsn|

2 (13)

where k1, k2 and k3 are positive constants [10]. Introducing the geodesic curvatures of the

flux lines of n and τ , denoted κn and κτ , respectively, the normal curvature cn and the

geodesic torsion τn [28], equation (13) can be recast in the form

w =
k1
2
κ2
τ
+
k2
2
τ 2n +

k3
2

(

κ2n + c2n
)

, (14)

that is suited to an elegant and intuitive geometrical interpretation. Formula (14) highlights

the influence of both the extrinsic and intrinsic curvatures of the substrate on the molecular

alignment. Specifically, the splay term tends to put the flux lines of τ along geodesics on S,

while the term proportional to κ2n tries to align n along geodesics. The twist energy favors

instead the alignment of the flux lines of the director along lines of curvature on S. Finally,

the term proportional to c2n tends to align the flux lines of the director along the principal

directions with minimum curvature (in modulus).

From (11) and (13) we obtain

G = k1κττ ⊗ τ − k2τnν ⊗ τ

+ k3(κnτ ⊗ n+ cnν ⊗ n) (15)
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and

g(c)τ = (k3 − k1)κnκτ + (k2 − k3)cnτn. (16)

Within the one constant approximation (k1 = k2 = k3 ≡ k), the free energy density (13)

reduces to w = k|∇sn|
2/2, G = k∇sn and g

(c)
τ vanishes.

The dissipation density, derived here by analogy with the Ericken-Leslie 3D theory, must

obey the mirror symmetry ψ(n;Ds,
◦

n) = ψ(−n;Ds,−
◦

n). Since neither Ds nor
◦

n posses

out-of-plane components, the most general model for ψ, quadratic in Ds and
◦

n, is

ψ =
1

2
γ1

◦

n
2
+γ2

◦

n ·Dsn+
γ3
2
trD2

s +
γ4
2
(n ·Dsn)

2, (17)

where γi (i = 1, 2, 3, 4) are viscosity coefficients. A comparison with the three-dimensional

analogue ([16], page 176) shows that the dissipation function for nematic shells (17) consists

in four terms instead of five. Indeed, since Ds is tangential and traceless the Hamilton-

Cayley theorem implies that n · D2
sn = 2trDs[30]. Moreover, in virtue of the second law

of thermodynamics, ψ is positive semi-definite, and so the viscosity coefficients satisfy the

inequalities

γ1 ≥ 0, γ3 ≥ 0, γ22 ≤ 2γ1γ3, 2γ3 + γ4 ≥ 0. (18)

We are now able to compute the dissipative quantities that are involved in the equations of

motion. From (12), (11) and (17) the viscous stress tensor is given by

σ(d) = α1(n ·Dsn)n⊗ n+ α2
◦

n ⊗n+ α3n⊗
◦

n

+ α4Ds + α5skw(n⊗Dsn), (19)

where

α1 = γ4, 2α2 = γ2 − γ1, 2α3 = γ1 + γ2,

α4 = γ3 α5 = γ2

(20)

are the Leslie viscosity coefficients, and

g(d) = γ1
◦

n +γ2Dsn. (21)

From (20) we deduce the Parodi-like identity α5 = α2 + α3, while from (18) and (20) we

deduce that the Leslie viscosity coefficients satisfy the inequalities

α2 ≤ α3, α4 ≥ 0, α1 + 2α4 ≥ 0,

(α2 + α3)
2 ≤ 2α4(α3 − α2).

(22)
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To provide a basic understanding of the effect of the surface curvature on the director

alignment, we consider a sample of nematic liquid crystal flowing on a cylindrical shell of

radius r, height h and parametrized through the local coordinates {ϕ, z}. We assume that

the flow is laminar and the velocity of the form v̄(z) = (v̄z/h)eϕ (v̄ > 0). It can be shown

that v̄ is a solution to the fluid equation whenever the classical viscosity α4 is much greater

then the remaining Leslie viscosity coefficients.

In the simplest possible scenario, the director depends only on time and so it can be

parametrized as n = cos θeϕ + sin θez, with θ = θ(t).

For the sake of illustration, we consider the free energy density within the one constant

approximation. In this case the director equation (10) reads

γ1θt + (α3 cos
2 θ − α2 sin

2 θ)
v̄

h
−

k

2r2
sin(2θ) = 0. (23)

This equation shows that the director alignment is clearly affected by the extrinsic curvature

of the substrate.

It is natural to proceed by looking for steady solutions (θt = 0) to (23). In doing so, (23)

reduces to the trigonometric equation

ξ

2
sin(2θ) + α∗

2 sin
2 θ − α∗

3 cos
2 θ = 0 (24)

where ξ = h2/r2 and α∗

i = αiv̄h/k (i = 2, 3). For α2 6= 0, equation (24) admits the solutions

θ± = arctan
−ξ ±

√

ξ2 + 4α∗
2α

∗
3

2α∗
2

, (25)

provided that α∗

2α
∗

3 ≥ −ξ2/4. As expected, the curvature promotes the alignment of the

director toward the cylinder generatrices (that are the directions of minimum curvature),

while the flux tends to orient the molecules along the azimuthal direction. On the contrary,

in the planar case ξ vanishes and so (25) admits a solution if and only if α∗
2α

∗
3 is non-

negative. Consequently, the alignment angle depends only on the viscosity coefficients ratio

α3/α2, θ
(p)
± = ± arctan

√

α3/α2 [31].

A linear stability analysis reveals that in the cylindrical case θ− is stable whereas θ+ is

unstable. In the planar case instead the stability of the steady solutions θ
(p)
± depends on the

signs of the viscosity coefficients α2 and α3. If α2 and α3 are both positive, θ
(p)
+ is unstable

and θ
(p)
− is stable. On the contrary, if α2 and α3 are both negative, θ

(p)
+ is stable and θ

(p)
−

is unstable. If α3 = 0, then the only steady solution θ(p) = 0 is neutrally stable. It is
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worth noting that the stability results in the planar and cylindrical cases match each other

because, as ξ → 0, θ+ → θ
(p)
+ if α2 and α3 are both positive, θ+ → θ

(p)
− if α2 and α3 are both

negative, and θ± → 0 if α3 = 0.

In the special case in which α2 vanishes, in the cylindrical case the steady solutions to

(23) are

θ1 =
π

2
, θ2 = arctan

α3v̄r
2

kh
, (26)

θ1 being linearly stable and θ2 linearly unstable. For the sake of completeness, in the planar

case the only steady solution to (23), θ1 = θ2 = π/2, is neutrally stable. We finally observe

that, as α2 → 0, θ− → θ1 and θ+ → θ2 (see Figure 2).

In summary, we have obtained a Leslie-Ericksen-like theory for nematic shells. The geo-

metrical constraint allows not only the reduction of the degrees of freedom with respect to

the 3D theory, but reduces also the number of viscosity coefficients. The complete descrip-

tion of the dynamical problem needs only four scalar equations: two related to the in-plane

fluid motion, one for the determination of the Lagrange multiplier associated with the in-

extensibility constraint, and one for the evolution of the director. However, the main result

is the coupling among the nematic alignment, the fluid flow and the intrinsic and extrinsic

curvatures of the shell. We have shown that, unlike the free-energy (Frank-like potential)

where both the intrinsic and the extrinsic curvatures are concerned, the density of dissipa-

tion (Leslie-Ericksen-like functional) involves only covariant quantities as a consequence of

the invariance requirements. The interplay among flow, nematic texture and curvature is

well highlighted in the example provided.

The potential applications of this model are several. For example, the motion of topologi-

cal defects (interaction with the backflow), their enucleation or annihilation, as well as their

stability, may be carried out by means of numerical simulations employing the equations

derived here. In addition, our model is the first attempt towards more complex dynamics.

On one hand, our variational scheme can be easily extended to the case of active nematics

by simply modifying the dissipation functional R to include the presence of motors. On

the other hand, the model can be easily generalized to take into account other kinematic
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FIG. 2: Alignment angles as functions of the Leslie viscosity parameters α2 and α3 for cylindrical

and planar geometries. Figure (a) refers to the case α3 > 0, figure (b) to the case α3 < 0 and figure

(c) to α3 = 0. The solid lines represent linearly stable steady solutions, the dashed lines unstable

alignments.

descriptors such as, for instance, the Landau-de Gennes order-tensor.
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