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Abstract

We consider a framework featuring a central bank, private and financial agents
as well as a financial market. The central bank’s objective is to maximize a func-
tional, which measures the classical trade-off between output and inflation plus
income from the sales of inflation linked calls minus payments for the liabilities
that the inflation linked calls produce at maturity. Private agents have rational
expectations and financial agents are averse against inflation risk. Following this
route, we explain demand for inflation linked calls on the financial market from
a no-arbitrage assumption and derive pricing formulas for inflation linked calls,
which lead to a supply-demand equilibrium. We then study the consequences that
the sales of inflation linked calls have on the observed inflation rate and price
level. Similar as in Walsh (1995) we find that the inflationary bias is significantly
reduced, and hence that markets for inflation linked calls provide a mechanism
to implement inflation contracts as discussed in the classical literature.
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1 Introduction

Inflation contracts have been widely discussed in the macro-economic and monetary

policy literature. In principal agent manner, the central banker is offered a compen-

sation, which depends on the realized inflation level. This approach was developed

by Persson and Tabellini (1993) as well as Walsh (1995) and shown to be a useful

device in order to remove inflationary bias, and in this way raise general welfare. The

contracts approach was further discussed in Svensson (1997) and Muscatelli (1999),

and put into relation with the concept of inflation targeting. Muscatelli highlighted

some advantages of the contracts approach as compared to the inflation targeting

approach, in the context of uncertainties in preferences and output targets.

The contracts proposed by Persson and Tabellini (1993) and Walsh (1995) are

between the government acting as a principal and the central banker as an agent.

In this note we show that this principal agent relationship is not required, and that

financial markets for inflation indexed securities can reduce inflationary bias in the

same way as the inflationary contracts discussed in the classical literature. Rather

than forcing the central banker to enter an inflation contract with the government, we

allow the central banker to sell inflation contracts in form of inflation linked calls to

financial agents. The central banker can choose the quantity of contracts placed on the

market and in this way determines the supply. Demand is mainly determined by the

financial agents’ level of risk aversion toward inflationary risk and their expectations

about the central banks inflation policy. The type of contract proposed in this article is

realistic, in fact, according to Deacon et al. (2004) no less than 27% of UK government

debt is inflation indexed and treasury inflation protected securities (TIPS) issued by

the US Treasury contain as their final payment an inflation linked call.

The model that we present is a full general equilibrium model, in which quantity

and price of the inflation linked calls is determined by equating supply and demand,

and private as well as financial agents reflect rational expectations in their inflation
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forecast. In this latter aspect, the current article differs structurally form Ewald and

Geissler (2013), who assumed adaptive expectations (as well as a different contract

structure). The supply side is modeled in analogy with Walsh (1995) and most of

the other inflation contract literature, with the difference that the inflation contract

is replaced by a quantity of inflation linked calls, which the central bank can choose.

The demand side is modeled in analogy to Black-Scholes, assuming that the price level

follows a geometric Brownian motion, whose drift rate is the inflation level chosen by

the central bank.

While the identification of markets for inflation linked securities as a Walsh (1995)

like mechanism contributes to the economic literature, our results also contribute to

the financial literature. Almost all of the classical financial literature on pricing of

inflation indexed securities takes inflation as exogenously given, and applies standard

Black-Scholes type theory or the Heath-Jarrow-Morton approach to term structure

modeling in order to develop pricing formulas, see for example Deacon et al. (2004)

and Jarrow and Yilderim (2003). These models ignore the central bank’s role in

issuing inflation indexed securities and the feedback effects on monetary policy this

has. To the best of our knowledge, this article presents the first pricing formulas

for inflation linked calls in which monetary policy is integrated within a full general

equilibrium framework.

2 Central Bank’s Supply of Inflation Linked Calls

An inflation linked call issued at time s with strike K̃ and maturity T is a financial

derivative that pays off nominal

(
PT
Ps
− K̃

)+

=
(
eπ(T−s) − eK(T−s)

)+
:= max

(
eπ(T−s) − eK(T−s), 0

)
(1)
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at maturity time T . Here we have set K = 1
T−s log(K̃). Deacon, Derry and Mirfed-

ereski (2004) present an excellent overview about all types of traded inflation indexed

securities. Here Pt denotes the price level at time t and π denotes the average in-

stantaneous inflation rate over time T − s. We consider a simplistic setup, in which

the central bank can issue inflation linked calls at time s = 0 which mature at time

T = 1. Denoting log-output with y, natural log-output with yn and a target value

with k, the classic quadratic loss function of the central bank has to be modified in

the following way

ZCB :=
1

2

[
λ (y − yn − k)2 + π2

]
+N · d

[(
eπ − eK

)+ − p] , (2)

in order to take account of the central bank’s profits from the sales of inflation linked

calls. Here p denotes the price of one inflation linked call andN the number of inflation

linked calls issued by the central bank. The factor d is a weight and measures the

contribution of the financial position of the central bank in relations to its output

and inflation objectives. Expression (2) is of similar type as expressions (6) and (7)

in Muscatelli (1999), which include a penalty function and an exogenously defined

inflation contract instead of the profits from inflation linked call sales. However, in

contrast to Muscatelli and all other literature, in our case the price p and the quantity

N , and as such the inflation contract itself will be determined endogenously within

the model, via the financial market modeled in the next section.

As in the classical literature we assume that output is given by a Lucas-type

aggregate supply function of the form

y = yn + a(π − πe) + ε, (3)

with a being the slope of the Phillips curve, πe expected inflation and ε a stochastic

shock to the economy with zero mean under the central bank’s measure. We assume
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in the following that ε ∼ N (0, σ).1

We assume that the central bank is able to observe the economy shock ε, but

private agents are not.2 This means that the central bank’s inflation policy can

depend on ε, i.e. π = π(ε), while private agents’ expectations must not. Substitution

of (3) into (2) and taking expectations gives

V := E
{

1

2
λ [a (π − πe) + ε− k]2 +

1

2
π2 +N · d

[(
eπ − eK

)+ − p]} . (4)

The quantity N and price p of inflation linked calls will be determined in full

equilibrium in section 4. For given N and p we will now compute the central bank’s

optimal inflation policy. To stress that this policy in general depends on N we write

π(N) in the following. We will later look for a rational expectation equilibrium, where

πe = E(π), and as π depends on N , so will πe. Hence we will include N in the notation

for the expected inflation rate as well, and assume for the moment that πe = πe(N)

is given.

Proposition 1. The central bank’s optimal choice for the inflation rate π(N) as a

function of the shock ε is given by

π∗(N, ε) =

{ ξ(N, ε) if ε ≥ η(N)

K if θ(N) ≤ ε ≤ η(N)

ψ(N, ε) if ε ≤ θ(N),

1For a more general discussion on noise, please compare Sun et al. (2010a,b) as well as Li and Jin
(2012)

2In a more dynamic version of the model private agents would observe the economy shock with a
time delay. How to deal with time delay conceptually is discussed in Sun et al. (2014) and Sun et
al. (2015)
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where

ξ(N, ε) :=
a2λπe(N) + aλk

1 + a2λ
− aλε

1 + a2λ

ψ(N, ε) := ξ(N, ε)− 1

T − s
W

(
dN(T − s)2eξ(N,ε)(T−s)

1 + a2λ

)

and

η(N) := aπe(N) + k − (1 + a2λ)K

aλ

θ(N) := η(N)− dN(T − s)eK(T−s)

aλ
.

Here W denotes the Lambert W-function, compare Abramowitz and Stegun (1965).

Proof. To find the optimal π∗(N, ε), we can carry out the minimization of (4) point-

wise for each ε inside the expectation. Also note that p in (4) can be treated as

an additive constant and as such can be ignored in the minimization. We omit the

arguments N and ε from π, πe, ξ and ψ and denote

V1 =
1

2
λ(a(π − πe) + ε− k)2 +

1

2
π2 + dN

(
eπ(T−s) − eK(T−s)

)+
,

V2 =
1

2
λ(a(π − πe) + ε− k)2 +

1

2
π2,

V3 =
1

2
λ(a(π − πe) + ε− k)2 +

1

2
π2 + dN

(
eπ(T−s) − eK(T−s)

)
.

Note that V1 corresponds to V , while V2 respectively V3 correspond to the two cases

where the inflation linked call is not exercised respectively exercised. Verifying the

first order conditions for V2 and V3 it can easily be seen that ξ minimizes V2, while ψ

minimizes V3. Therefore, by Lemma 1 following below, the optimal choice π∗ for V1

is ξ if ξ ≤ K and ψ if ψ ≥ K. If the shock is such that ψ ≤ K ≤ ξ (or alternatively

θ(N) ≤ ε ≤ η(N)) the first statement in Lemma 1 lets us conclude that π∗ ≥ K

while the second statement lets us conclude that π∗ ≤ K, which together implies
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π∗ = K.

Lemma 1. Let V1, V2 and V3 be the functions defined in the proof of Proposition 1.

1. V1 attains its minimum for some π < K if and only if V2 attains its minimum

for that particular π.

2. V1 attains its minimum for some π > K if and only if V3 attains its minimum

for that particular π.

Proof. First note that all three functions V1, V2 and V3 are convex in π for λ > − 1
a2

.

This can be easily verified from the second order derivatives of the corresponding

functions. We assume λ > − 1
a2

in the following. Therefore each function has exactly

one global minimum and no local maximum. As it is easy to check ξ minimizes V2,

while ψ minimizes V3. In particular we see that V2 is always minimized for larger

values of π than V3 and therefore there is no inconsistency in the conditions above.

For the first statement note that V2(π) ≤ V1(π) with equality for all π ≤ K.

Hence if V2 is minimal for some π∗ ≤ K then V1 is also minimal for π∗. For the

inverse implication suppose there is some π∗ < K minimizing V1. Then there exists

an ε > 0 such that V2(π) = V1(π) for all π ≤ π∗ + ε. Hence π∗ minimizes V2 over the

interval (−∞, π∗ + ε] and by the above convexity argument we know that it is the

unique global minimum of V2.

The second statement can be shown analogously using V3(π) ≤ V1(π) with equality

for all π ≥ K, whilst for the inverse implication we use the convexity of V3(π).

So far we have established how the central bank would optimally choose the infla-

tion rate given a specific number of inflation linked calls it has issued, the announced

private agent’s expected inflation rate πe and the economy shock ε. Let us now

consider how private agents build their expectations in this modified setup. While

private agents do not know the outcome of the economy shock, we do assume that

6



they know its distribution. This assumption differs from Walsh (1995), where the

linear nature of the contract permits, that private agents only have to know that the

shock is neutral, i.e. does have expectation zero. As indicated earlier, we assume that

private agents have rational expectations, i.e. πe(N) = E(π(N)). Using Proposition

1 we obtain

πe(N) = P(ε ≥ η(N))E(ξ(N)|ε ≥ η(N)) + P(θ(N) ≤ ε ≤ η(N))K

+ P(ε ≤ θ(N))E(ψ(N)|ε ≤ θ(N)). (5)

Note that the right hand side of (5) depends on πe(N) through ξ(N), ψ(N), θ(N)

and η(N) and in fact represents a fixed point equation. The fact that ε is normally

distributed allows in principle to write down and compute the expectations on the

right hand side, however it remains impossible to solve for πe. For the general case

this has to be done by an iterative procedure, which we carried out in order to obtain

our numerical results.

If N = 0, i.e. no inflation linked calls are issued by the central bank, the objective

function (4) is identical with the classical quadratic loss function, and we should

obtain the classical results π = π(0, ε) = aλk −
(

aλ
1+a2λ

)
ε and πe = πe(0) = aλk.

This is confirmed in the following remark

Remark 1. For the case N = 0, in which no inflation linked calls are issued, we find

that ξ(0) and ψ(0) coincide and so do θ(0) and η(0). Hence the middle summand in
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(5) vanishes and therefore, omitting all arguments N = 0, we find that

πe =P(ε ≥ η)E(ξ|ε ≥ η) + P(ε ≤ η)E(ξ|ε ≤ η)

=

∫ ∞
η

ξ(ε)dP(ε) +

∫ η

−∞
ξ(ε)dP(ε)

=
a2λπe + aλk

1 + a2λ
− aλEε

1 + a2λ
.

=
a2λπe + aλk

1 + a2λ
.

The last equality results from the fact that the shock has zero mean. Hence as in

the classical case without inflation linked calls we obtain that πe = aλk. Substitution

into the expressions for ξ and ψ in Proposition 1 then gives π(ε) = ξ(ε) = ψ(ε) =

aλk −
(

aλ
1+a2λ

)
ε, which is the classical result.

We will see though in section 5, that N = 0 is in general far from optimal, and

that there will be positive demand N > 0 for inflation linked calls on the financial

market.

3 Demand for Inflation Linked Calls on Financial Mar-

kets

The financial market in our model features a safe asset paying a nominal interest

rate ri as well as inflation linked calls as defined in the previous section. Demand for

inflation linked calls arises from our assumption that financial agents are risk averse

towards inflation. This aversion is expressed in an inflation risk premium, which

manifests itself in the use of an appropriate risk neutral measure. Financial agents

buy inflation linked calls in order to reduce/eliminate their exposure to inflationary

risk. As indicated earlier, we assume that ε ∼ N (0, σ) under the central bank’s

measure P. For the market to be arbitrage free, the price p = p(N) of one inflation
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linked call has to satisfy

p(N) =e−riẼ
(
eπ(N) − eK

)+
, (6)

where Ẽ denotes the expectation under a risk-neutral pricing measure P̃. In differ-

ence to say a call option on a stock, the price level as such is not tradeable, as the

consumption good is assumed to be perishable. This has the consequence that a risk

neutral measure is not unique. We assume that financial agents are averse toward

inflation risk and attach a specific risk premium to the economy shock in the following

way. We write ε = σ · w with w ∼ N (0, 1) under P. The measure transformation

leading to the risk neutral measure is then as follows: w̃ = w + χ with w̃ ∼ N (0, 1)

under P̃ and

ε = σ (w̃ − χ) , (7)

where χ represents the market price of economy risk. We then have that ε ∼

N
(
−σ · χ, σ2

)
under P̃. Identifying w with the realization of a Brownian motion at

time t = 1, this transformation can be identified as Girsanov transformation, which

is used in classical Black-Scholes theory to determine the risk-neutral measure.

4 General Equilibrium with Inflation Linked Calls

Our framework involves three players, the central bank, private agents and financial

agents. These have been discussed separately within the previous sections. Obviously

their decisions are linked with each other. Private agents can infer on the actual

number N of inflation linked calls sold by the central bank as well as financial agent’s

objectives to build their expectations πe, while the central bank depends on πe and

N in order to determine π(N) and p and financial agents depend on πe in order to

determine their demand for inflation linked calls p(N).
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Proposition 2. A general equilibrium (p∗, N∗, π∗, π∗e) of our model consisting of

price p∗ for one inflation linked call, a quantity N∗ of inflation linked calls issued,

actual inflation π∗ and expected inflation π∗e is determined by the following conditions

p∗ = p(N∗) where the right hand side is given by (6)

π∗ = π∗(N∗) with π∗(N) given by Proposition 1

π∗e = πe(N∗) with πe(N) satisfying equation (5)

N∗ = arg min
N

{
1

2
λE(a(π(N)− πe(N)) + ε− k)2 +

1

2
Eπ(N)2 + dN(M(N)− p∗)

}
with π(N) given by Proposition 1 and πe(N) satisfying equation (5).

Proof. This follows directly from the results obtained in sections 2 and 3.

In Proposition 2 arg minN denotes the minimizer of the expression in the pointy

brackets. In order to compute the equilibrium in Proposition 2, we need to solve

equation (5) numerically for a discrete grid of values of N and work from there

through the other conditions.

It can be concluded from (5) as well as the definition of ξ(N), ψ(N), η(N) and

θ(N) and the properties of the Lambert W-function that the solution πe(N) of (5) is

decreasing in N . In particular, if inflation linked calls are issued π∗e will be lower than

aλk, the expected inflation without a market for inflation linked calls. If the strike

price K of the inflation linked calls is not chosen to high, p(N) in equation (6) will be

strictly positive and hence demand for inflation linked calls from financial agents will

exist. It then becomes evident from (4) that the central bank, by issuing a positive

number of inflation linked calls can improve its objective function V as compared to

the case without inflation linked calls. Hence our analysis shows that all three players,

central bank, private agents and financial agents improve their position as compared

to the case when N = 0. Therefore the existence of a market for inflation linked calls

leads to a Pareto improvement as compared to the classical case, and inflationary bias
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is significantly reduced. Table 1 summarizes these conclusions.

N > 0

private agents inflation decreasing
central bank value V increasing
financial agents reducing inflationary risk

Table 1: Benefits from inflation linked calls.

5 Numerical Results

In this section we provide a short numerical experiment. We choose the following

set of parameters as introduced in sections 2 and 3: K = 0.02, σ = 0.09, ri = 0.05,

χ = 1
3 , a = 3, k = 0.15, λ = 1

9 and d = 10−11. The expected inflation rate in the

classical model without inflation linked calls is then given by πe = aλk = 0.05.

As seen in Figure 1, the expected inflation rate with inflation linked calls is a

decreasing function in N and turns out to be less than the strike K = 0.02 for

N ≈ 6× 1011.

Figure 1: The expected inflation rate is decreasing in the number N of inflation linked
calls that the central bank sells.

Knowing πe(N) it is possible to compute the corresponding expected payoff for

the inflation linked calls. The inverse demand function p(N) for inflation linked

calls is given by (6). This equation determines the number N the central bank can
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issue on the market, when choosing a particular price. A numerical computation,

as indicated in section 3, then shows that the number of inflation linked calls issued

in equilibrium by the central bank is N ≈ 5.25 × 1011 for an equilibrium price of

p ≈ 0.001925 per inflation linked call. Private agents’ rationale expectation for the

inflation rate in this example is then reduced from 5% without inflation linked calls

to πe ≈ 0.02067 = 2.067% with inflation linked calls, which can also be observed from

Figure 1.

6 Conclusions

We have studied the effects of markets for inflation linked calls on the central bank’s

monetary policy. We presented a model featuring a central bank, private and financial

agents as well as a financial market, in which the central bank can adjust inflation

and in addition can issue inflation linked calls, which it sells on the financial market.

Within this models we have derived equilibrium prices and quantity for the inflation

linked calls issued. Our model features rational expectations for the private agents.

We have shown, that the introduction of inflation linked calls can reduce the central

bank’s inflationary bias, and that central bank, private agents as well as financial

agents in our model are better off with inflation linked calls than without. In this

way inflation linked calls should be seen as effective and powerful monetary policy

instruments, which can implement the sort of inflation contracts discussed in the

classical literature, without the requirement of a classical principal agent relationship

between government and central bank.
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