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Abstract 32 

1. Low Atmospheric Pressure Stunning (LAPS) is a novel approach to poultry stunning 33 

involving the application of gradual decompression lasting 280s according to a 34 

prescribed pressure curve.   35 

2. The aim of this study was to determine how behavioural, electroencephalogram 36 

(EEG) and electrocardiogram (ECG) responses to LAPS are influenced by 37 

illumination of the decompression chamber.  A secondary aim was to examine 38 

responses to the decompression chamber without LAPS being applied, as such a 39 

‘sham’ control has been absent in previous studies.   40 

3. A two by two factorial design was employed, with LAPS/light, LAPS/dark, sham/light 41 

and sham/dark treatments (N=20 per treatment). Broilers were exposed to each 42 

treatment in pairs, in each of which one bird was instrumented for recording EEG and 43 

ECG.  Illumination was applied at 500 lux and in sham treatments birds were 44 

identically handled but remained undisturbed in the LAPS chamber without 45 

decompression for 280s.   46 

4. Birds which underwent the sham treatment exhibited behaviours which were also 47 

observed in LAPS (e.g. sitting) while those exposed to LAPS exhibited hypoxia 48 

related behaviours (e.g. ataxia, loss of posture). Behavioural latencies and durations 49 

were increased in the sham treatments, since the whole cycle time was available (in 50 

LAPS; birds were motionless by 186s).   51 

5. Within the sham treatments, illumination increased active behaviour and darkness 52 

induced sleep, but slow-wave EEG was seen in both. The pattern of EEG response 53 

to LAPS (steep reduction in median frequency in the first 60s and increased total 54 

power) was similar, irrespective of illumination, though birds in darkness had shorter 55 

latencies to loss of consciousness and isoelectric EEG.  Cardiac responses to LAPS 56 

(pronounced bradycardia) closely matched those reported previously and were not 57 

affected by illumination.  58 



6. The effects of LAPS/sham treatment primarily reflected the presence/absence of 59 

hypoxia, while illumination affected activity/sleep levels in sham treated birds and 60 

slowed time to unconsciousness in birds undergoing LAPS. Therefore it is 61 

recommended that LAPS be conducted in darkness for poultry. 62 

 63 
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 67 

Introduction 68 

Low atmospheric pressure stunning (LAPS) is a novel approach to pre-slaughter stunning of 69 

chickens in which birds are rendered unconscious by exposure to progressive hypobaric 70 

hypoxia.  Similarly to controlled atmosphere stunning (CAS) sytems (which utilise exposure 71 

to hypoxic and/or hypercapnic gas mixtures (Coenen et al., 2009; McKeegan et al., 2007a, 72 

2007b; Raj et al., 1991; Vizzier-Thaxton et al., 2010)), LAPS irreversibly stuns poultry in their 73 

transport crates, thus avoiding poor welfare associated with live shackling (Sparrey and 74 

Kettlewell, 1994; Gentle and Tilston, 2000) and ensuring all birds are stunned before neck 75 

cutting.  The LAPS system has been given ‘no objection’ status by both the United States 76 

Department for Agriculture in 2010 and the Canadian Food Inspection Agency in 2013 and is 77 

in routine commercial use at a poultry processing plant in Arkansas.  78 

 79 

The welfare consequences of LAPS have been recently reported in a series of studies. 80 

McKeegan et al (2013) recorded the electroencephalogram (EEG) and electrocardiogram 81 

(ECG) responses of broilers undergoing LAPS with results indicating a gradual loss of 82 

consciousness (highly significant increases in total power, decreases in mean frequency and 83 

progressive increases in slow wave (delta) activity).  Mackie and McKeegan (2016) carried 84 

out a detailed study of the behavioural responses to LAPS and observed a consistent 85 

sequence: ataxia, loss of posture, clonic and tonic convulsions and leg paddling, as well as 86 



mandibulation, headshaking and open bill breathing in a proportion of birds.  These 87 

responses are similar to those seen with hypoxic (normobaric) gas exposure (e.g. 88 

Abeysinghe et al., 2007; Gerritzen et al., 2000; McKeegan et al., 2011) suggesting they 89 

relate to changing oxygen availability rather than atmospheric pressure.  In the first study to 90 

collect behavioural, EEG and ECG data in the same individuals, Martin et al., (submitted b) 91 

found corroboration between behavioural, EEG and cardiac indicators of loss of 92 

consciousness and provided a time to unconsciousness estimate of around 60 s.  However, 93 

it was noted that individual bird variability, ambient temperature and humidity conditions, as 94 

well as the particular decompression curve applied all affect the timings of responses during 95 

the LAPS process (Martin et al., submitted b).   96 

 97 

In both previous studies examining EEG responses to LAPS, it was noted that slow wave 98 

EEG patterns are seen early in the LAPS process, before behavioural evidence of loss of 99 

consciousness such as ataxia and loss of posture (McKeegan et al., 2013; Martin et al., 100 

submitted b). This is almost certainly due to the fact that it is completely dark in the sealed 101 

LAPS chamber, and similar changes in EEG characteristics induced by darkness in 102 

apparently conscious birds have been reported previously (Ookawa and Gotoh, 1965; 103 

Gentle and Richardson, 1972).  Thus, conducting LAPS in darkness (as it is done 104 

commercially) introduces a confounding factor affecting the interpretation of EEG responses. 105 

Thus, the primary aim of this study was to determine how behavioural, EEG and ECG 106 

responses to LAPS are influenced by illumination of the decompression chamber. A 107 

secondary aim was to provide data on responses to exposure to the decompression 108 

chamber without LAPS being applied, as such a control has been absent in previous 109 

studies.  EFSA (2013) recommend the measurement of behavioural and physiological 110 

responses to control or ‘sham’ operations of stunning, to aid the determination of whether a 111 

stunning intervention is considered to induce pain, distress and suffering before the onset of 112 

unconsciousness and insensibility. To examine these issues, a two by two factorial design 113 

was employed, with LAPS/dark, LAPS/light, SHAM/dark, and SHAM/light treatments. Broiler 114 



chickens were exposed to each treatment in pairs, in each of which one bird was 115 

instrumented for recording of EEG and ECG. As before (Martin et al., submitted b), we 116 

applied a range of methods to interpret EEG responses in relation to loss of consciousness 117 

including spectral analysis (Delmore and Mckeig, 2004; Gibson et al., 2009; Johnson et al., 118 

2005; Tonner, 2006; Verhoeven et al., 2014) and determination of latencies to validated 119 

thresholds for different clinical states of consciousness (Sandercock et al., 2014; Martin, 120 

2015; Martin et al., 2016).  121 

 122 

Methods 123 

Subjects and husbandry 124 

Eighty Cobb 500 male broiler chickens (Gallus gallus domesticus) from the female breeder 125 

line were sourced from a commercial hatchery and housed at the University of Arkansas 126 

poultry facilities within a larger single flock split into three groups, reared in three identical 127 

environmental chambers (measuring 3.05 X 3.05 m, approximately 100 birds per pen 128 

resulted in a stocking density of ~30 kg/m2).  The birds were wing tagged at four weeks of 129 

age. Single-pass ventilation was maintained at a constant rate of 6 m3/min in all chambers 130 

and the photoperiod was 23L:1D for d 1 to 4, and 16L:8D thereafter. Chambers were 131 

equipped with clean pine shavings litter, 2 rows of nipple waterers, and 2 hanging feeders 132 

and birds had ad libitum access to feed (standard commercial starter and grower diet) and 133 

water.  Birds and environmental controls were checked twice daily by trained staff.  The 134 

experiments were performed following the EU Directive on the Protection of Animals used 135 

for Scientific Purposes (EU 2010/63) and ARRIVE protocol and were specifically authorized 136 

by the University of Arkansas Institutional Animal Care and Use Committee (Protocol 137 

15031).   138 

 139 

LAPS process 140 

The LAPS system was developed by Technocatch LLC in Mississippi, USA and the pressure 141 

curves applied by the process are patented (Cheek & Cattarazzi, 2010).   The LAPS 142 



chamber, it’s monitoring and control systems used in the current study is a scaled down 143 

research unit, but is otherwise identical to those used commercially except for manual door 144 

operation.  The chamber is cylindrical (2.2 m in length and 1.8 m in diameter) and is 145 

designed to accommodate a reduced scale transport module (153 cm x 121 cm x 102 cm, 146 

three tiers each 23 cm height). The required decompression curve is automatically applied 147 

and controlled by a computer and once started, can only be stopped in the case of an 148 

emergency.  An infra-red camera (130o camera with 18 infra-red illuminators, Model #RVS-149 

507, RVS Systems) was fitted into the chamber to observe the birds. The LAPS cycle takes 150 

exactly 280 s and consists of two phases, in the first of which the vacuum chamber pressure 151 

is reduced from atmospheric pressure to an absolute vacuum pressure of ∼250Torr (∼33 152 

kPa)  in ∼67 s.  In the second phase, a sliding gate valve is partially closed gradually 153 

reducing the effective pumping speed by ‘choke flow’, to a minimum chamber pressure of 154 

∼150Torr (∼20 kPa). The rate of reduction of chamber pressure in the second phase is 155 

varied in relation to starting ambient temperature and barometric pressure. The reduction in 156 

total pressure results in a reduced oxygen partial pressure.  At the end of the second phase 157 

at 280 s the chamber is returned to atmospheric pressure using a baffled air inlet, prior to 158 

the door opening and the exit of the transport module.  Because cold air is denser and 159 

therefore contains more oxygen than warm air and birds have been shown to respond 160 

differently to LAPS at different temperatures (Mackie and McKeegan, 2016; Martin et al., 161 

submitted b), slightly different pressure reduction curves must be applied to achieve the 162 

same hypoxic effect under different ambient conditions. A range of pressure curves based 163 

on temperature setting are created automatically by a computer programme to control the 164 

level of oxygen available to the birds.  According to ambient temperature, one of six possible 165 

temperature settings was applied in this study (setting 4, applied between 5 and 12 ºC).  166 

Ambient temperature and humidity were recorded for each LAPS cycle and means were 167 

11.6 ± 0.3 °C and 51.8 ± 1.8%, respectively.  In the afternoon of day 1 of the trials, ambient 168 

temperature unexpectedly rose beyond the upper limit of the setting 4 range to 16.7 °C, 169 



however the system was overridden to ensure all runs received the setting 4 pressure curve.  170 

This overriding affected 5/40 LAPS runs, and the actual ambient temperature at the time of 171 

each run was included in statistical analysis (see below).  LAPS is normally carried out in 172 

darkness, but in these trials, according to treatment, lighting was provided by six 17 W LED 173 

lights (Osram Sylvania Ultra LED), arranged in three pairs, at the front and either side of the 174 

LAPS chamber.  These were positioned at the middle point of the side and end walls.  The 175 

level of illumination at bird head height (12.5 cm above module tier where birds were placed) 176 

was 500 lux, as measured with a calibrated illuminance meter (Solar Light SL-3101). 177 

 178 

EEG electrode implantation 179 

At 40-41 days of age, 40 broilers underwent surgery to implant EEG electrodes under 180 

general anaesthesia, induced and maintained with Sevoflurane (Sevoflo, Abbott Drug).  At 181 

the start of surgery, Carprofen (8mg/kg, administered SC, Rimadyl, Pfizer Animal Health, 182 

NY) analgesic was administered to provide post-operative pain relief.  The EEG implantation 183 

approach has been described previously (e.g. McKeegan et al., 2011; Martin, 2015).  Briefly, 184 

the EEG was recorded by two 0.35mm diameter Teflon insulated silver electrodes 185 

connected to a socket (DIN, RS components), placed on the dura through small holes drilled 186 

in the skull, one on each of the dorsal surfaces of the right and left telencephalon at their 187 

approximate rostro-caudal and medio-lateral midpoints. An indifferent electrode was placed 188 

between the skull and the overlying tissue under the comb. The EEG implant was secured to 189 

the skull with dental cement and the surrounding skin was closed with sutures. After 190 

recovery from the anaesthetic, birds were individually housed in recovery pens (equipped 191 

with wood shavings litter, and food and water) and were closely monitored.  Birds had visual 192 

and auditory contact with their neighbours and were allowed to recover for 4 days before 193 

undergoing LAPS.   194 

 195 

Experimental Procedure 196 



The experimental birds were randomly selected from the flock by a random number 197 

generator (Microsoft Excel 2010) based on wing tag number.  The birds underwent their 198 

treatment in pairs where one bird was implanted and instrumented to record EEG and ECG; 199 

behavioural observations were carried out on both birds.  The trials were carried out over 200 

two days (40 runs/pairs per day) at 44-45 days of age (mean bodyweight 2.96 ± 0.41 kg).  201 

Four treatments were applied in a 2 x 2 factorial design: LAPS/light, LAPS/dark, SHAM/light, 202 

SHAM/dark (20 pairs per treatment).  The pair treatment order was generated using a 203 

Graeco Latin square to balance day (Martin and Bateson, 2007), treatment and source pen 204 

for EEG implanted birds.  To mimic commercial transport and lairage conditions, non-205 

implanted ‘behaviour only’ birds were removed from the flock and held in poultry transport 206 

crates (97 x 58 x 27 cm, maximum 8 birds per crate) for between 2-8 hrs before each run, 207 

dependent on the pair order.  Birds implanted with EEG electrodes were brought to the 208 

LAPS apparatus from their recovery pens in individual cardboard pet carriers.  Immediately 209 

before each run, the EEG implanted bird was fitted with instrumentation.  Commercially 210 

available disposable self-adhesive EKG electrodes (Blue Sensor, Ambu Ltd, Henry Schein 211 

Medical, London, UK), with press-stud electrical connections, were adhered to cleaned skin 212 

overlying the pectoralis muscle either side of the sternum (McKeegan et al., 2011) with 213 

cyanoacrylate tissue adhesive (Vetbond, 3M). Birds were then fitted with a reusable Lycra 214 

harness which was secured using velcro fastenings behind the bird's head and incorporated 215 

a pocket positioned on the bird's back which contained a telemetry/logging device, capable 216 

of logging simultaneous EEG and ECG signals and described elsewhere (Lowe et al., 2007; 217 

McKeegan et al., 2011, Sandercock et al., 2014). Briefly, the logging units were battery 218 

powered, and each was small enough to be worn by a bird in a Lycra backpack, thus 219 

requiring no trailing leads.  Two ‘physiological waveform’ input channels were provided and 220 

were used to record ECG and EEG (sampling frequency 1000 Hz).  Logging was triggered 221 

and stopped with an external switch and logged data were recorded onto industry-standard 222 

‘micro-SD’ memory cards (SanDisk 32GB, Maplin Electronics Ltd. Rotherham, UK).  Two 223 

identical loggers were alternated.  The logger harness was additionally secured to the birds 224 



with elastic bandage (Vetrap, 3M).  ‘Behaviour only’ birds were removed from their transport 225 

crates and weighed.  Both birds were then housed in cardboard pet carriers (28 x 35 x 46 226 

cm) until transferred into the LAPS chamber by hand. Signal logging was triggered in the 227 

instrumented bird and a 2 min period of baseline EEG and ECG recording commenced 228 

during which the bird was replaced in its pet carrier.   229 

 230 

Each pair of birds was placed in the top right tier (1.53 x 1.21 x 0.23 m) of the container 231 

within the LAPS chamber.  The chamber lights were on or off at bird placement depending 232 

on allocated treatment. Soft polystyrene dividers were used to position the birds at the front 233 

of the tier (available space 0.76 x 1.21 x 0.23 m, resulting in a stocking density of 6.43 Kg/m2 234 

based on average bird weight of 2.96 Kg), in order to minimise damage to the birds when 235 

convulsing and reduce the risk of birds from disappearing from camera view during the trial. 236 

Once the birds had been placed in the tier, further 2 minute period of baseline data was 237 

collected, after which the chamber door was closed and sealed. The LAPS cycle then 238 

started, or in the sham treatment birds remained undisturbed in the chamber for an identical 239 

period (280 s).  A compressor required to operate the LAPS chamber was running during 240 

both LAPS and sham trials.  However, during LAPS, additional noise associated with the 241 

vacuum pump and pressure valve would have been experienced by LAPS treated birds.  242 

During the trials, the birds were watched in real time on a monitor to check for unexpected 243 

behaviour.  Video footage was recorded on a digital video recorder (Datavideo M# DN300) 244 

to allow detailed behavioural observations to be conducted later. Continuous recordings 245 

from 5 s prior to the start of the run to 5 s after the end of the cycle period were obtained for 246 

each pair. On completion of the run, birds were removed from the chamber if exposed to 247 

LAPS, reflexes were immediately assessed (e.g. presence of rhythmic breathing, nictitating 248 

membrane) to confirm death.  249 

 250 

Behavioural observations 251 



An ethogram developed in previous behavioural work on LAPS (Mackie & McKeegan, 2016; 252 

Martin et al., submitted a, b) was used (Table 1).  The behaviour of each bird was recorded 253 

using The Noldus Observer XT 11.0 programme by a single observer.  Blinding to treatment 254 

was not possible as it could be seen on the video recording whether the lights were on or 255 

not; it was not clear if LAPS was on until about 40 s into the cycle when birds began to show 256 

signs of ataxia. Behavioural variables measured included latencies, counts, total durations, 257 

bout durations and bout counts; see Table 1 for specific measures for each behaviour.  Birds 258 

which went out of sight for more than 10% of the total observation time (280 s) were 259 

excluded from the data set. Data was exported from Observer to Microsoft Excel 2010. 260 

 261 

EEG and ECG analysis 262 

The logged data files were uploaded into a data acquisition and analysis program (Spike 2 263 

Version 4.2, Cambridge Electronic Design).  Analysis consisted of examining consecutive 264 

artefact-free 2 s excerpts from the EEG signals during baseline and throughout the LAPS 265 

process (280 s).  Visual inspection was used to eliminate severe movement artefacts which 266 

rendered the signal meaningless, while epochs that were apparently affected by electrical 267 

noise interference were subject to post hoc ‘filtering’ using the data interpolation technique 268 

described by Martin, 2015; Martin et al., 2016.  The EEG was analysed by producing power 269 

spectra of each 2 s epoch using a fast Fourier transform algorithm (1024, Hanning window, 270 

resolution 0.976 Hz bins).  We also determined the latency for the signal to have a total 271 

power equal to 10% of baseline (Raj et al., 1991; Raj, 2006).  The onset of isoelectric EEG 272 

signal was determined in two ways, by visual interpretation and by identification of validated 273 

spectral characteristics (PTOT less than 170 mv and F50 greater than 22 Hz) (Sandercock 274 

et al., 2014; Martin et al., 2016; and Martin, 2015). Two spectral variables were calculated 275 

with coded Genstat programs: total power (PTOT), defined as the total area under the power 276 

spectrum curve (Murrell and Johnson, 2006) and median frequency (F50), the frequency 277 

below which 50% of the EEG power resides (Tonner, 2006).  Latency variables to 278 

unconsciousness were defined as time for F50 < 12.7 Hz (non-responsive state) and < 279 



6.8Hz (general anaesthetic (GA) plane) (Martin, 2015, Sandercock et al., 2014).  In Spike 2, 280 

clean ECG signal was used to determine heart rate (bpm derived from the number of QRS 281 

complexes in a 5 s epoch) at 6 baseline time points before LAPS (3 outside chamber, 3 282 

inside chamber with door open) and every 5 s during the LAPS cycle.  Latency to 283 

bradycardia was generated for each bird, defined as a 30% reduction in heart rate compared 284 

to the 6th baseline value on an individual bird basis.  285 

 286 

Statistical Analysis 287 

All data were summarised in Microsoft Excel (2010) spread sheets and analysed using 288 

Genstat (14th Edition). Statistical significance was based on F statistics and P<0.05 289 

significance level. Summary graphs and statistics were produced at bird and treatment level.  290 

Statistical comparisons were conducted via Generalised Linear Mixed Models (GLMM) 291 

(Poisson distribution) or Linear Mixed Models (LLM) (normal distribution) dependent on the 292 

data distributions for each variable. Data transformations were attempted when necessary 293 

via Logarithm function. All models included bird ID and pair number as random effects. All 294 

fixed effects were treated as factors and all interactions between factors were included in 295 

maximal models. All models included LAPS/sham treatment, light/dark treatment and 296 

whether the bird was implanted as fixed effects and bird weight, ambient temperature, 297 

ambient humidity, and feed withdrawal time as covariates.  It was necessary to group 298 

behavioural data for analysis dependent on treatment (LAPS/sham) due to the majority of 299 

behaviours not being exhibited when birds did not undergo LAPS.  The complete data set 300 

was analysed for some behaviours shown in all treatments (notice, standing, sitting, 301 

headshake, mandibulation, vigilance, vocalisations).  Spearman correlations were used to 302 

determine directional associations between temperature and humidity (ambient and within 303 

chamber) and behavioural measures. 304 

 305 



EEG summary statistics and graphs were produced at bird level, while statistical 306 

comparisons focussed on estimated means and differences between means. GLMMs 307 

(Poisson distribution) or LLMs (normal distribution) were carried dependent on the data 308 

distributions for latency variables to unconsciousness (F50 <12.7 Hz (non-responsive state); 309 

and <6.8 Hz (general anaesthetic plane); latencies to visual inspection characteristics 310 

(presence of slow-wave and 3 consecutive isoelectric 2s epochs); latencies for the signal to 311 

have a total power equal to 10% of baseline; and finally latencies to isoelectric (PTOT less 312 

than 170mv and F50 greater than 22 Hz).  These spectral variable thresholds were never 313 

reached in sham treatment groups, therefore as with behavioural observations data were 314 

split into subsets for modelling of other effects.  The ECG data was analysed by carrying out 315 

GLMMs (Poisson distribution) or LLMs (normal distribution), dependent on the data 316 

distributions for each heart rate interval, including the six baseline intervals and latencies to 317 

bradycardia. Latencies to bradycardia and bpm <100 were never reached in sham treatment 318 

groups, therefore as before subsets of data were analysed.   Paired t-tests were used to do 319 

comparisons within treatment groups at individual bird level to compare heart rate at specific 320 

time points.   321 

 322 

Results 323 

None of the birds exposed to LAPS showed any signs of life at the end of the cycle (absence 324 

of rhythmic breathing, absence of corneal or palpebral reflex (EFSA 2013)).  A total of 5/80 325 

birds went out of sight at some point during behavioural observations, but only 2 birds went 326 

out of sight for an extensive period of time (1 bird each in dark/sham and light/sham). Based 327 

on exclusion criteria (>50% observation time out of sight), these birds were removed from 328 

analysis to avoid bias.  The mean time out of sight was 117.1 ± 66.0 s.   329 

 330 

Behavioural responses 331 



A consistent sequence of behaviours was observed during LAPS: ataxia, loss of posture, 332 

clonic/tonic convulsions and motionless.   Seven behaviours were seen in all birds which 333 

underwent LAPS (clonic convulsions, sitting, lying, ataxia, loss of posture, vigilance and 334 

motionless). Other behaviours (standing, leg paddling, tonic convulsions, loss of jaw tone, 335 

slow wing flapping, mandibulation, headshaking, open bill breathing, deep inhalation, 336 

jumping and vocalisation) were observed in a proportion of birds as shown in Table 2.  Birds 337 

which underwent the sham treatment exhibited standing, slow wing flapping, vigilance, 338 

mandibulation, headshakes, vocalisations, sitting, pecking and panting behaviours (Table 2). 339 

Pecking (2 birds) and panting (1 bird) were seen only in the light/sham treatment, and 340 

vocalisations were exhibited by six birds (three in each of the LAPS/light and sham/light 341 

treatments).  EEG implantation had no effect on behaviour. 342 

 343 

Comparisons of the LAPS and sham treatment were limited to behaviours which were 344 

performed in both treatments.  Analysis of latencies to slow wing flapping and pecking was 345 

not possible due to their rarity.  All latencies were affected by LAPS/sham treatment, longer 346 

latencies in sham treated birds compared those exposed to LAPS (Table 3).  In the sham 347 

treatment, behavioural latencies were spread across the entire 280 s cycle time, while LAPS 348 

birds were motionless in a mean time of 145s (Table 4).  Light/dark treatment had no effect 349 

on latencies of any behaviour shown in both LAPS and sham treatments, except for standing 350 

(Table 3), where birds in the light had shorter latencies compared to birds in the dark in the 351 

sham treatment, but there was no difference when exposed to LAPS.  There was a 352 

significant interaction between LAPS/sham and light treatments on the latencies to 353 

mandibulation (longest latency in sham/light) and standing behaviours (shortest latency in 354 

LAPS/dark). Shortest latencies to stand were seen in LAPS/dark and longest in sham/dark.  355 

Birds which underwent LAPS showed shorter bout durations of sitting and longer bouts of 356 

vigilance while birds in dark treatments had longer bout durations of sitting, and shorter 357 

bouts of vigilance and standing.  The same relationships were seen for mean total durations 358 

for these behaviours (Table 3).  Mean bout duration and total duration of standing was 359 



affected by an interaction between treatments, with durations shorter in LAPS birds, and 360 

within these groups, shorter durations in the dark (Table 3).  LAPS treatment affected the 361 

frequency (counts) of sitting, vigilance, headshakes, standing, and slow wing flapping, with 362 

all behaviours being performed more times in sham conditions (Table 3), apart from 363 

headshaking and slow wing flapping, where the opposite was seen (although note that only 364 

two sham birds showed slow wing flapping).  Illumination had an effect on the frequency of 365 

sitting, vigilance and standing, with all behaviours performed more frequently in the light.  366 

Numbers of vigilance bouts were affected by an interaction between laps treatment and 367 

lighting, with the highest frequency seen in sham/light and lowest in laps/light. 368 

 369 

Bird weight and feed withdrawal time had no effect on latencies, bout duration or total 370 

durations of behaviours shared across LAPS and sham treatments. Temperature and 371 

humidity had sporadic significant effects on behavioural latencies for mandibulation, 372 

standing and headshaking, however spearman’s correlations showed that there were no 373 

significant associations.  Both temperature (F(1,70)=78.27, P<0.001) and humidity 374 

(F(1,70)=33.89, P<0.001) affected bout duration of standing, with a negative correlation 375 

between temperature and mean bout duration (r=-0.525, P=0.006), but a positive correlation 376 

between humidity and mean bout duration (r=0.404, P=0.040).  Temperature (F(1,70)=51.27, 377 

P<0.001) and humidity (F(1,70)=12.85, P<0.001)  also affected total duration of standing, 378 

however there were no significant correlations.  Weight, feed withdrawal time, temperature, 379 

and humidity had no effects on behavioural frequencies.  380 

 381 

Comparing the wider range of behaviours exhibited during LAPS, illumination had no effect 382 

on the majority of behavioural latencies, with effects only on standing and deep inhalation. 383 

Latencies to stand in light and dark treatments were numerically very similar (17.0 s and 384 

17.7 s, Table 4), but the range was much wider for birds in the light.  Birds undergoing LAPS 385 

in the dark had longer latencies to deep inhalation (Table 4).  Vigilance was shown almost 386 

immediately to the onset of LAPS, irrespective of light treatment.  There was no effect of 387 



illumination on latencies of key indicator behaviours associated with loss of consciousness 388 

(ataxia, loss of posture, loss of jaw tone and onset of convulsions).  In darkness, birds had 389 

increased bout duration, total duration and frequency of bouts of sitting (Table 5).  The 390 

opposite effect was seen for durations of standing, performed more by birds in the light 391 

treatment, as was vigilance.  Illumination also increased total durations of leg paddling and 392 

clonic convulsions.  Light or dark conditions had no effect on the counts of jumping, 393 

mandibulation, vocalisation, headshaking, deep inhalation and pecking (Table 6). 394 

 395 

Bird weight had an effect on the latency to deep inhalation (F(1,35)=14.75, P<0.001), 396 

headshaking  (F(1,35)=7.05, P=0.012) and jumping (F(1,35)=12.45, P<0.001). Latency to 397 

jumping and deep inhalation were negatively correlated with weight (r = -0.395, P = 0.050 398 

and r=-0.618, P=0.024 respectively). No significant correlation was found for latency to 399 

headshaking.  Latencies to sit (F(1,35)=7.73, P=0.009), slow wing flap (F(1,35)=4.85, P=0.035) 400 

stand (F(1,35)=51.03, P<0.001) and tonic convulsions (F(1,35)=5.04, P=0.031) were affected by 401 

feed withdrawal time, but correlation analysis, showed no significant correlations except for 402 

sitting, which was positively correlated (r=0.451, P=0.004).  Bird weight affected bout and 403 

total durations for leg paddling (bout F(1,35)=3.32, P=0.008; total F(1,35)=11.97, P=0.001), tonic 404 

convulsions (bout F(1,35)=10.53, P=0.003; total F(1,35)=30.60, P=0.001) and open-bill breathing 405 

(bout F(1,35)=25.56, P<0.001; total F(1,35)=21.59, P=0.001), which were all negatively 406 

correlated with bird weight (r=-0.186—0.512, P=0.004-0.045). Numbers of tonic convulsions 407 

were also related to bird weight (F(1,35)=12.07, P=0.001), with a significant negative 408 

correlation (r=-0.522, P=0.001). 409 

 410 

EEG responses 411 

High quality EEG signals were recorded for 33 birds, 28 of these traces provided data for the 412 

first 150 s of LAPS (equivalent to time to motionless in LAPS birds).  EEG characteristics in 413 

terms of temporal changes in median frequency and total power in response to each 414 



treatment are shown in Figure 1 (A: sham/dark and B: sham/light) and Figure 2 (A: 415 

LAPS/dark and B: LAPS/light).  Figure 3 shows a representative series of EEG trace 416 

excerpts from birds undergoing LAPS/light and LAPS/dark treatments.  In all treatments, 417 

during baseline the EEG signal was characterised by high median frequency (20-25 Hz) and 418 

low total power, as expected for conscious birds.  Birds exposed to the sham treatments 419 

exhibited regularly fluctuating median frequencies relating to transitions between waking and 420 

apparent drowsy/sleep states.  In the sham/dark treatment, birds showed general downward 421 

trend in F50, a higher proportion of slow waves and higher total power than sham/light 422 

(Figure 1). Of the first 82 two-second epochs (equivalent to time to motionless in LAPS 423 

birds), the mean F50 of birds exposed to sham/dark reflected a non-responsive state (F50 < 424 

12.7 Hz) for 3 time points (3.75%), were in the sedation range (F50 <14 Hz) for 16 time 425 

points on average. The average F50 of sham/light birds never entered this range, but some 426 

individuals showed both F50 <12.7 Hz and F50 <6.8 Hz at certain time points (see below).  427 

In birds undergoing LAPS, a steep reduction in F50 and consequential increase in total 428 

power was observed between 0-50 s (most pronounced in the dark treatment), followed by a 429 

continuing, shallower trend from 50-70 s.  Comparisons across groups revealed no effects of 430 

LAPS, illumination or their interactions on visually assessed latency to presence of slow-431 

wave EEG signal (Table 7).  Time to reach F50 <6.8 Hz was reduced in birds exposed to 432 

LAPS and darkness, with a significant interaction where sham/dark birds had the shortest 433 

latency.  Sham/light birds rarely reached this state (9/20 birds, and then only for single 434 

epochs).  Within LAPS treatments, illumination delayed the onset of unconsciousness (GA 435 

plane) by approximately 15 s, a significant difference.  Time to reach a non-responsive state 436 

(F50 <12.7 Hz) was not affected by LAPS or LAPS/illumination interaction, but had shorter 437 

latencies in the dark.  Within LAPS, birds in the dark had shorter latencies to reach a non-438 

responsive state (F50 <12.7 Hz) than birds in light (F(1,16)=8.90, P=0.010).  Comparisons of 439 

latencies indicating brain inactivity were only carried out within the LAPS treatment, as no 440 

birds in the sham treatments exhibited these states. There were too few birds to do 441 

statistical comparisons for PTOT <10% of baseline, however numerically latencies were 442 



shorter in the dark compared to birds in the light.  Illumination increased latencies to 443 

spectrally determined isoelectric EEG by 10 s, on average (Table 7).  Bird weight affected 444 

latency to F50 <12.7 Hz (F(1,25)=4.21, P=0.046), with heavier birds showing longer latencies 445 

(r = 0.342, P = 0.048). Feed withdrawal, temperature and humidity had no effects on EEG 446 

variables.   447 

 448 

Cardiac responses 449 

Clear ECG waveforms were obtained from all birds during baseline, but ECG traces for 8 450 

birds were lost after transfer to the module and the onset of LAPS.   Throughout recording, 451 

ECG waveforms were sometimes obscured due to electromyogram activity arising from the 452 

pectoral muscles or movement artefacts.  Figure 4 shows mean heart rate before and during 453 

LAPS or sham treatment based on available data at each time point. In all cases, birds 454 

exhibited elevated heart rates following handling for instrumentation (mean 385bpm) and 455 

there was no evidence of initial heart rate decrease during undisturbed baseline (P=0.061-456 

0.783, N=29; first to last baseline point comparison). The initial heart rate of birds was 457 

affected by illumination; in LAPS treatments light birds had a lower heart rate than those in 458 

the dark, however in sham treatments this trend was reversed (Figure 4).  Birds undergoing 459 

LAPS showed pronounced bradycardia and arrhythmia from around 30 s continuing until 60 460 

s when heart rate levelled off. The mean latency to bradycardia in LAPS birds was 45.7±2.5 461 

s.  Latency to bradycardia not affected by light treatment (dark: 42,5 ± 1.9 s; light: 49.3 ± 4.8 462 

s) feed withdrawal time, bird weight or humidity.  However the internal temperature of the 463 

chamber did have a marginal significant effect on time to bradycardia (F(1,18)=4.75, P=0.048), 464 

but there was no significant correlation.  At the end of the LAPS process, mean heart rate 465 

was low (dark: 126±18 bpm; light: 160±15 bpm) at which time there was also evidence of 466 

heart failure, recognisable as strong arrhythmia, very low and fluctuating amplitudes and 467 

fibrillation.  Bradycardia and arrhythmia were absent in the sham treatments.  There was a 468 

significant decrease in heart rate between the average baseline (374.6±5.2 bpm) of 469 



individual birds and the end of the cycle (332.1±4.9 bpm) (Paired T-Test: T = 7.08, P <0.001) 470 

irrespective of light treatment (Balanced ANOVA F(1,14)=0.10, P=0.760).    471 

 472 

Discussion 473 

The results of this experiment provide important data controlling for the effects of illumination 474 

and exposure to the decompression chamber without LAPS.  In particular, they inform our 475 

interpretation of EEG indicators of loss of consciousness in the absence of the confounding 476 

effects of total darkness.  Only some behaviour categories were shared between LAPS and 477 

sham treatments, since many behavioural patterns associated with LAPS relate to loss of 478 

consciousness and death by anoxia.   Analysis of these in relation to treatment revealed that 479 

in general, behavioural latencies and durations were increased in the sham treatments, 480 

primarily because the whole 280 s cycle time was available, whereas in LAPS, birds were 481 

losing posture at about 55 s and becoming motionless at 145 s.  Vigilance, headshaking and 482 

mandibulation were observed during LAPS and sham treatments; unsurprisingly vigilance 483 

was increased in light treatments.  It has been suggested that headshaking indicates that 484 

that the bird is in a less preferred environment (Nicol, 2011) and it has also been associated 485 

with disorientation, discomfort, respiratory distress (Webster and Fletcher, 2001) or contexts 486 

demanding increased attention (such as the presentation of novel or disturbing stimuli 487 

(Hughes, 1983).  The fact that this behaviour was seen in sham treatments suggests that 488 

some of the headshaking seen during LAPS is due to the placement of the birds in a novel 489 

environment.  However, headshaking was increased by LAPS (both in terms of frequency 490 

and number of birds exhibiting the behaviour), which probably relates to increased noise 491 

levels in the chamber (caused by the vacuum pump and valve) as well as the likelihood that 492 

birds are aware of atmospheric pressure reduction and/or reducing oxygen concentration 493 

while conscious. The maximum number of headshakes seen during LAPS was 5, which is 494 

equivalent to exposure to controlled atmosphere stunning with inert gases (e.g. McKeegan 495 

et al., 2007a, 2007b).  Open bill breathing and deep inhalation were only seen during LAPS 496 



and relate to hypoxia (Mackie and McKeegan, 2016), as confirmed by studies on controlled 497 

atmosphere stunning (McKeegan et al., 2011; McKeegan et al., 2007b; Gerritzen et al., 498 

2004; Abeysinghe et al., 2007).  499 

 500 

Within the sham treatments, illumination induced active behaviour (shorter latency to stand, 501 

more time standing, less time sitting, more vigilance) and exploratory pecking was seen only 502 

in the sham/light treatment.  In the sham/dark treatment, birds spent a 277 s sitting on 503 

average, and EEG data revealed fluctuating and regularly reduced median frequencies 504 

suggesting that the birds were drowsy or sleeping for a significant proportion of the time with 505 

F50 showing a general downward trend.  Such slow wave EEG activity was also seen in the 506 

sham/light treatment, but this was less pronounced, less frequent and had shorter duration 507 

than in sham/dark.  While low light intensity is well known to induce slow wave EEG activity 508 

and sleep in birds (Gentle and Richards, 1972; Ookawa and Gotch, 1965; Gentle, 1975, 509 

1976), the presence of intermittent sleep-like EEG patterns in the illuminated sham 510 

treatment mays reflect fatigue following handling (Sparrey and Kettlewell, 1993; Knowles 511 

and Broom, 1990).  A significant heart rate decrease during the cycle was apparent in sham 512 

treated birds, suggesting continuing recovery from the stress of handling, irrespective of light 513 

treatment.   514 

 515 

Within LAPS treatments, illumination had no effect on latencies to behavioural indicators of 516 

loss of consciousness (ataxia, loss of posture, loss of jaw tone and onset of convulsions), 517 

confirming that these are primarily related to oxygen availability.  Light/dark treatment did 518 

increase latencies to standing and deep inhalation and total durations of leg paddling and 519 

clonic convulsions; the reasons for these effects are unclear.   In general, the consistent 520 

pattering and timing of behaviours in response to LAPS are in close agreement with 521 

previous reports (Mackie and McKeegan, 2016; Martin et al., submitted a, b).  522 

 523 



The regular appearance of slow wave EEG in the sham/dark treatment explains the results 524 

of previous studies of LAPS carried out in darkness where low median frequencies 525 

accompany apparently conscious states (McKeegan et al., 2013; Martin et al., submitted b).  526 

Effects of illumination were apparent in the EEG responses of birds undergoing LAPS.  527 

While the overall EEG response to LAPS (steep reduction in F50 in the first 60 s and 528 

increased total power) was similar with and without illumination, birds exposed to LAPS in 529 

the dark had shorter latencies to reach a non-responsive state (F50 <12.7 Hz) and GA plane 530 

(F50 <6.8 Hz) and their total power was higher throughout induction to unconsciousness.  A 531 

shorter time to isoelectric EEG (reduced by 10 s, as defined by spectral parameters) was 532 

also observed in darkness.  Thus, in light conditions, slow wave EEG is induced by hypoxia, 533 

while in the dark, it is induced by both hypoxia and the absence of light stimulation, 534 

decreasing time to unconsciousness by approximately 15 s.  Previously, we suggested that 535 

the presence of slow wave EEG patterns in conscious birds in the early part of LAPS 536 

suggests an absence of negative stimulation which would evoke a desynchronization of the 537 

EEG (e.g. Gentle, 1975).  This notion is supported by the current study where the same 538 

patterns were seen and where slightly increased desynchronisation was related to the 539 

presence of light stimulation.   540 

 541 

The initial heart rate of birds was affected by illumination treatment, however the direction of 542 

this difference was not consistent between LAPS and sham treatments, making its basis 543 

difficult to determine.  As reported previously for LAPS (McKeegan et al., 2013; Martin et al., 544 

submitted b) and anoxic CAS (Butler, 1967; McKeegan et al., 2007a, 2007b; McKeegan et 545 

al., 2011; Raj, 2006), pronounced bradycardia and arrhythmia was apparent from 30 – 60 s 546 

when heart rate levelled off. Latency to bradycardia was not affected by light treatment, 547 

suggesting that these responses are primarily due to hypoxia in the early part of the LAPS 548 

cycle.  549 

 550 



Collectively, these results add to a growing body of evidence that behavioural and EEG 551 

responses to LAPS are consistent and indicative of a process that is largely equivalent to 552 

controlled atmosphere stunning with anoxic gases.  As would be expected, the effects of 553 

LAPS/sham treatment primarily related to the presence or absence of hypoxia.  Illumination 554 

affected activity/sleep levels in sham treated birds and slightly slowed time to loss of 555 

consciousness in birds undergoing LAPS.  The data lead to the recommendation that LAPS 556 

is carried out in darkness, as is currently the case commercially.   557 
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Table 1 Ethogram showing behavioural latencies, counts and durations recorded  
Behaviour Description Measures 
Vigilance Alert movements of the head, including ‘Vigilance’ as defined by 

Mackie and McKeegan (submitted). 
Latency 
duration 

Mandibulation Repetitive and rapid opening and closing of the bill, not associated 
with inspiration or exhalation. 

Counts 
Latency 

Headshake Rapid lateral head movement.   Counts 
Latency 

Open bill breathing Gentle rhythmic breathing with bill open, with or without neck 
extension.  

Latency 
durations 

Panting Rapid rhythmic breathing with bill open with tongue extended Latency 
durations 

Deep inhalation  Deep non-rhythmic inspiration from the mouth may be 
accompanied by extension of the neck 

Counts 
Latency 

Ataxia Apparent dizziness, staggering, swaying of body and/or head, 
attempts to stand/sit or flaps wings to try and regain balance.  

Duration 
Latency 

Loss of posture  Unable to regain/maintain a controlled posture. Latency 
Clonic convulsion  Rapid/vigorous movement of the wings, a new bout was defined as 

following a pause of at least one second. 
Duration 
Latency 

Tonic convulsion Uncontrolled twitching (visible muscular spasms within the body). 
A new bout was defined as following a pause of at least one 
second. 

Duration 
Latency 

Slow wing flapping  One short burst or prolonged slow/moderate movement of the 
wings, occurring without any twitching of the body. A new bout was 
defined by a pause of one second. 

Duration 
Latency 

Leg paddling  Involuntary, usually alternating, leg movements in the air or 
towards the ground depending on the body position of the bird. Leg 
paddling can also be determined by an alternating upwards and 
downwards movement of the body if bird is lying sternal. A new 
bout was defined by a pause of one second.  

Duration 
Latency 

Loss of jaw tone Bill open for more than 2s without deep breathing and/or neck 
extension. 

Latency 

Jump  Explosive upwards movement from a sitting/lying position during 
ataxia. 

Counts 

Escape  Rapid locomotor behaviours in an apparently conscious attempt to 
exit the situation 

Counts 

Peck Moving head backwards and forwards in a pecking motion.  Counts 
 

Vocalising Any audible vocal produced by the focal bird (e.g. alarm call or 
peeping). 

Counts 
Latency 

Motionless No discernible body or breathing movements. Latency 
Sitting Legs underneath the body cavity and wings relaxed against body 

wall.  
Duration 
 

Standing  Standing with the body fully or partly lifted off of the ground. Duration 
 

Lying  
 

Lying once posture is lost and not perceived to be purposefully 
controlling posture.  

Duration 
 

Out of sight Bird was completely out of view. Duration 
 



 
 
 
Table 2 Frequency table showing the numbers of birds exhibiting each behaviour (yes, N=20), and missing data due to birds being 
out of sight in each treatment.   
 
 

  LAPS SHAM  

 Dark Light Dark Light 

Behaviour Yes Missing 
data Yes Missing 

data Yes Missing 
data Yes Missing 

data 

Standing 2 0 12 0 2 1 10 1 
Leg paddling 16 0 12 0 0 1 0 1 
Clonic convulsions 20 0 20 0 0 1 0 1 
Tonic convulsions 17 3 13 0 0 1 0 1 
Slow-wing flapping 12 0 9 0 0 1 2 1 
Vigilance 20 0 20 0 19 1 19 1 
Mandibulation 12 0 12 0 6 1 9 1 
Head shaking 5 0 11 0 3 1 4 1 
Open-bill breathing 18 0 13 0 0 1 0 1 
Deep inhalation 8 0 5 0 0 1 0 1 
Jump 11 0 14 0 0 1 0 1 
Vocalisation 0 0 3 0 0 1 3 1 
Sitting 20 0 20 0 19 1 19 1 
Lying 19 1 20 0 0 1 0 1 
Motionless 20 0 20 0 0 1 0 1 
Loss of jaw tone 17 3 17 3 0 1 0 1 
Ataxia 19 0 20 0 0 1 0 1 
LOP 20 0 20 0 0 1 0 1 
Escape 0 0 0 0 0 1 0 1 
Peck 0 0 0 0 0 1 2 1 
Panting 0 0 0 0 0 1 1 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3 Summary statistics (mean ±SE) of latencies, bout duration, total duration and frequency of behaviours 
exhibited in both LAPS and sham conditions, and statistical differences (F statistic and P value) dependent on 
LAPS and light treatment and their interaction. Significant P values (< 0.05) are in bold type. 
 
 

 

Behaviour 

LAPS SHAM 
LAPS/sham Light/dark LAPS/sham* 

light/dark  Dark Light Dark Light 

 Mean ±SE Mean ±SE Mean ±SE Mean ±SE F P F P F P 

La
te

nc
y 

Sitting 0.4 ± 0.1 0.5 ± 0.1 2.1± 1.3 1.6 ± 0.5 14.40 <0.001 2.21 0.142 1.63 0.206 

Vigilance 1.1 ± 0.1 1.1 ± 0.2 10.7± 1.6 7.7 ± 1.7 58.72 <0.001 2.92 0.092 0.00 0.963 

Mandibulation 20.1 ± 2.3 24.2 ± 2.9 49.8 ±13.3 55.9 ± 15.4 114.92 <0.001 0.56 0.458 4.71 0.033 

Headshake 28.7 ± 7.5 33.9 ± 4.7 69.5 ± 29.0 151.6 ± 43.7 587.46 <0.001 0.46 0.498 3.93 0.051 

Standing 17.0 ± 2.2 17.7 ± 4.7 107.2 ± 83.9 88.9 ± 25.8 118.76 <0.001 255.9 <0.001 25.25 0.001 

Slow  WF* 57.6 ± 1.5 55.1 ± 1.9 - 119.0 ± 80.0 - - - - - - 

Peck* - - - 42.0 ± 3.9 - - - - - - 

B
ou

t 
du

ra
tio

n 

Sitting 56.0 ± 5.4 39.6 ± 3.5 266.5  ± 11.1 166.5 ± 19.2 227.37 <0.001 31.49 <0.001 0.55 0.462 

Vigilance 19.5 ± 2.6 29.9 ± 1.8 7.7 ± 1.3 13.9 ± 1.1 66.59 <0.001 24.82 <0.001 0.07 0.797 

Standing 3.3 ± 0.9 12.3 ± 3.3 5.1 ± 3.5 11.4 ± 2.4 0.06 0.802 52.99 <0.001 5.49 0.022 

Slow WF* 3.1 ± 0.4 3.1 ± 1.2 - 1.3 ± 1.3 - - - - - - 

T
ot

al
 

du
ra

tio
n 

Sitting 58.6 ± 5.3 43.3 ± 3.4 277.2 ± 1.3 268.5 ± 3.0 123.97 <0.001 4.86 0.031 0.55 0.462 

Vigilance 20.5 ± 2.3 30.9 ± 1.7 40.9 ± 8.0 52.6 ± 3.3 28.56 <0.001 5.60 0.018 0.07 0.797 

Standing 3.3 ± 0.9 12.3 ± 3.3 5.1 ± 3.5 19.8 ± 3.9 22.38 <0.001 120.9 <0.001 5.49 0.022 

Slow WF* 4.0 ± 0.5 3.1 ± 1.2 - 1.3 ± 0.1 - - - - - - 

B
ou

t f
re

qu
en

cy
 

Sitting 1.0 ± 0.0 1.3 ± 0.1 1.2 ± 0.2 2.4 ± 0.4 17.01 <0.001 17.10 <0.001 1.85 0.178 

Vigilance 1.2 ± 0.1 1.1 ± 0.1 2.0 ± 0.3 3.8 ± 0.4 81.37 <0.001 5.09 0.027 4.50 0.037 

Mandibulation 1.8 ± 0.4 1.5 ± 0.4 0.9 ± 0.4 1.5 ± 0.4 0.50 0.481 0.08 0.776 0.03 0.858 

Headshake 0.5 ± 0.2 1.2 ± 0.3 0.2 ± 0.1 0.3 ± 0.2 7.34 0.010 3.41 0.069 0.00 0.966 

Standing 0.1 ± 0.1 0.7 ± 0.1 0.1 ± 0.1 1.5 ± 0.4 6.13 0.016 14.64 <0.001 0.46 0.501 

Slow WF 0.8 ± 0.2   0.5 ± 0.1 0.0 ± 0.0 0.1 ± 0.1 10.39 0.002 3.84 0.054 0.03 0.856 

Pecking 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.02 0.879 0.01 0.933 0.00 0.955 

Vocalisation 0.0 ± 0.0 0.4 ± 0.2 0.0 ± 0.0 0.4 ± 0.2 0.01 0.917 0.01 0.925 0.00 0.997 
*No modelling possible due to too few observations  
 
 
 
 
 
 
 
 
 
  



 
Table 4 Summary statistics (mean, SE, min, max) of latencies to behaviours exhibited during LAPS, and 
statistical differences (F statistic and P value) dependent on light treatment and their interaction. Significant P 
values (< 0.05) are in bold type. 
 

Behaviour 
LAPS DARK LAPS LIGHT F 

statistic 
P 

value Mean SE Min Max Mean SE Min Max 

Sitting 0.4 0.1 0.1 1.2 0.5 0.1 0.1 2.2 0.16 0.692 
Vigilance 1.1 0.1 0.3 2.0 1.1 0.2 0.3 2.8 0.82 0.370 
Standing 17.0 2.2 14.9 19.2 17.7 4.7 2.6 50.5 14.47 <0.001 
Mandibulation 20.1 2.3 4.1 32.0 24.2 2.9 6.8 39.2 0.69 0.412 
Head shaking 28.7 7.5 10.9 47.0 33.9 4.7 6.3 54.6 2.14 0.153 
Ataxia 39.5 13.4 29.1 48.0 38.3 1.26 26.1 45.8 0.09 0.770 
Jump 49.0 1.8 38.2 56.9 47.3 1.7 35.4 55.0 3.71 0.063 
LOP 54.7 1.3 40.6 62.4 55.9 1.19 40.1 61.4 1.37 0.250 
Lying 56.6 1.4 42.2 67.2 55.6 1.6 41.7 68.2 0.24 0.623 
Slow-wing flapping 57.6 1.5 49.5 69.0 55.1 1.9 46.8 65.0 4.12 0.051 
Open-bill breathing 59.5 4.1 11.1 89.9 57.5 2.5 46.2 76.2 0.57 0.457 
Clonic convulsions 63.8 1.4 52.9 77.4 60.1 1.37 41.4 71.41 3.65 0.065 
Loss of jaw tone 76.3 1.8 65.5 91.4 77.9 1.7 64.6 96.2 0.11 0.747 
Deep inhalation 86.1 4.0 71.3 100.6 64.0 3.9 52.3 72.2 137.00 <0.001 
Leg paddling 92.1 3.7 58.9 129.5 91.8 4.05 61.4 118.2 1.00 0.325 
Tonic convulsions 105.0 3.8 81.2 135.3 110.9 6.61 81.4 158.6 0.79 0.381 
Motionless 145.2 3.3 116.3 171.2 142.8 4.8 103.8 186.7 0.00 0.964 
Vocalisation* - - - - 50.7 20.2 11.4 78.2 - - 
*No modelling possible due to too few observations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Table 5 Summary statistics (mean, SE, min, max) of bout durations, total duration and bout frequency of 
behaviours exhibited during LAPS, and statistical differences (F statistic and P value) dependent on light 
treatment and their interaction. Significant P values (< 0.05) are in bold type. 
 

 Behaviour 
LAPS DARK LAPS LIGHT 

F  P 

 Mean SE Min Max Mean SE Min Max 

In
di

vi
du

al
 b

ou
t d

ur
at

io
n 

Sitting 56.0 5.4 37.0 151.9 39.6 3.5 9.9 60.2 7.29 0.011 
Vigilance 19.5 2.6 4.9 40.1 29.9 1.8 17.9 42.7 7.13 0.012 
Standing 3.3 0.9 2.4 4.2 12.3 3.3 1.3 41.0 70.54 <0.001 
Ataxia 19.1 1.3 8.4 32.5 18.7 2.0 5.4 38.8 0.20 0.658 
Lying 79.9 3.3 45.7 100.2 91.3 4.5 55.9 133.2 2.00 0.166 
Slow-wing flapping 3.1 0.4 1.4 5.6 3.1 1.2 0.4 11.8 0.15 0.705 
Open-bill breathing 25.6 11.6 1.8 211.8 15.0 2.7 5.3 42.4 0.07 0.796 
Clonic convulsions 6.0 0.7 2.1 12.9 8.0 0.9 1.3 15.9 2.73 0.108 
Leg paddling 6.7 1.1 1.4 16.6 11.3 4.5 1.9 59.3 3.74 0.062 
Tonic convulsions 5.5 0.8 0.7 12.4 8.2 1.8 1.2 25.8 3.84 0.058 
Motionless 144.7 3.3 116.9 177.6 138.6 4.9 93.3 179.4 2.10 0.147 

T
ot

al
 d

ur
at

io
n 

Sitting 58.6 5.3 37.0 151.5 43.3 3.4 9.9 60.1 4.87 0.027 
Vigilance 20.5 2.3 4.9 40.1 30.9 1.7 17.9 42.7 10.72 0.002 
Standing 3.3 0.9 2.4 4.2 12.3 3.3 1.3 41.0 70.54 <0.001 
Ataxia 19.1 1.3 8.4 32.5 19.0 1.9 7.4 38.8 0.09 0.767 
Lying 82.3 2.7 61.5 100.2 91.3 4.5 55.9 133.2 1.78 0.182 
Slow-wing flapping 4.0 0.5 1.4 7.2 3.1 1.2 0.4 11.8 0.44 0.511 
Open-bill breathing 35.8 15.3 2.5 212.0 16.1 2.9 5.3 42.4 0.01 0.908 
Clonic convulsions 20.3 2.1 3.8 51.7 27.1 1.7 15.6 47.1 4.89 0.034 
Leg paddling 9.62 2.0 1.4 33.2 14.2 4.4 1.8 59.2 8.98 0.005 
Tonic convulsions 9.5 2.3 0.7 36.8 11.4 2.6 1.2 31.8 0.43 0.516 
Motionless 144.7 3.3 116.9 177.5 138.6 4.9 93.3 179.3 0.57 0.449 

F
re

qu
en

cy
 o

f b
ou

ts
 

Sitting 1.0 0.0 1.0 1.0 1.3 0.1 1.0 3.0 5.08 0.031 
Vigilance 1.2 0.1 1.0 2.0 1.1 0.1 1.0 2.0 0.16 0.692 
Standing 0.1 0.1 0.0 1.0 0.7 0.1 0.0 2.0 5.65 0.023 
Ataxia 1.0 0.1 0.0 1.0 1.0 0.0 1.0 1.0 2.80 0.103 
Lying 1.0 0.1 0.0 1.0 1.0 0.0 1.0 1.0 0.03 0.862 
Slow-wing flapping 0.8 0.2 0.0 3.0 0.5 0.1 0.0 1.0 3.44 0.072 
Open-bill breathing 1.1 0.2 0.0 3.0 0.7 0.1 0.0 2.0 1.50 0.229 
Clonic convulsions 2.8 0.3 1.0 6.0 2.8 0.3 1.0 5.0 0.01 0.907 
Leg paddling 1.2 0.2 0.0 2.0 0.8 0.2 0.0 2.0 0.75 0.392 
Tonic convulsions 1.3 0.2 0.0 4.0 0.9 0.2 0.0 3.0 0.01 0.905 
Motionless 1.0 0.1 0.0 1.0 1.0 0.0 1.0 1.0 0.01 0.989 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Table 6 Summary statistics (mean, SE, min, max) of counts of behaviours exhibited in LAPS, and statistical 
differences (F statistic and P value) dependent on light treatment and their interaction. 
 

  Behaviour 
DARK LIGHT F statistic P value 

Mean SE Min. Max. Mean SE Min. Max.     

 Jump 1.0 0.3 0.0 4.0 1.6 0.3 0.0 4.0 1.95 0.172 

 Mandibulation 1.8 0.4 0.0 5.0 1.5 0.4 0.0 5.0 0.12 0.736 

 Peeping 0.0 0.0 0.0 0.0 0.4 0.2 0.0 4.0 0.00 0.974 

 Head shake 0.5 0.2 0.0 3.0 1.2 0.3 0.0 5.0 0.43 0.512 

 Deep inhalation 0.7 0.2 0.0 3.0 0.4 0.2 0.0 2.0 0.83 0.368 

 Peck* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 
*No modelling possible due to too few observations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7 Summary statistics (mean, SE, minimum and maximum) of latencies to various EEG parameters 
according to treatment and statistical differences (F statistic and P value) dependent on LAPS and light treatment 
and their interaction. Significant P values (< 0.05) are in bold type. 
 

Measure (s) N 

LAPS/DARK LAPS/LIGHT SHAM/DARK SHAM/LIGHT LAPS/SHAM LIGHT/DARK Interaction 

Mean SE Mean SE Mean SE Mean SE F P F P F P 
Slow-wave* 21 28.3 4.3 55.2 10.9 35.8 11.6 33.5 8.1 1.1 0.303 3.15 0.085 0.62 0.435 
F50<6.8Hz 21 39.1 6.3 53.6 11.8 12.7 5.3 88.0 29.5 21.8 <0.001 63.55 <0.001 56.65 <0.001 
F50<12.7Hz 31 27.1 4.9 40.3 5.8 20.4 6.7 37.0 8.4 0.36 0.554 7.04 0.012 1.55 0.222 
PTOT <10% baseline 5 97.0 25.0 122.7 5.9  -   -   -   -   -   -   -   -   -   -  
Isoelectric* 13 89.7 15.0 99.0 4.2  -   -   -   -   -   -  0.40 0.539  -   -  
Isoelectric (spectral)† 10 91.6 12.3 101.6 6.1  -   -   -   -   -   -  6.25 0.025  -   -  

*Based on visual inspection  
†Isoelectric EEG based on spectral characteristics was defined as PTOT<170mv and F50>22Hz. 
 
  



 

Figure 1 Changes in mean (± SE) F50 and PTOT for consecutive 2 s epochs during sham 
treatment in dark (a) or light (b) conditions (onset 0s) to 150s (mean time to motionless in 
LAPS).  Baseline points refer to signal collected prior to LAPS (3 outside chamber, 3 inside 
chamber).  N=19 birds.  
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Figure 2 Changes in mean (± SE) F50 and PTOT for consecutive 2 s epochs during LAPS treatment 
in dark (a) or light (b) conditions (onset 0s) to 150s (mean time to motionless in LAPS).  Baseline 
points refer to signal collected prior to LAPS (3 outside chamber, 3 inside chamber).  N= 17 birds.  To 
allow both graphs to be plotted on the same Y axis range, a single PTOT outlier was removed in 
LAPS/LIGHT treatment at 72 s (Bird 408: 53816.46 mV).  Missing values indicate that epochs were 
excluded from analysis due to noise interference rendering too few data points available (<3 birds) or 
because the EEG had become isoelectric.    
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Figure 3 A representative series of EEG trace excerpts (each 5s duration, data from Bird 347 
(LAPS/dark (a) and Bird 446 LAPS/light (b)) illustrating the typical appearance of the EEG at 12 time 
points (baseline, LAPS on, +10, +20, +30, +40, +50, +60, +100, +140, +200s and LAPS off). Y-axis 
units are microvolts, x-axis units (large tick marks) are seconds. 



 

Figure 4 Mean (± SE) heart rate (bpm) at 5 s intervals throughout LAPS/sham treatment 
cycles at in light (orange) or dark (blue) treatments. The six baseline points (prior to 0 s) 
refer to signal collected prior to LAPS (3 outside chamber (1A-C), 3 inside chamber (2A-C)).  
N=17 for LAPS 3; N= 19 for sham.  Asterisks indicate significant differences between light 
treatments.  
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