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Abstract
The profile of global health today presents a striking reciprocal distribution between parasitic diseases in many of the world’s lower-income

countries, and ever-increasing levels of inflammatory disorders such as allergy, autoimmunity and inflammatory bowel diseases in the more

affluent societies. Attention is particularly focused on helminth worm parasites, which are associated with protection from allergy and

inflammation in both epidemiologic and laboratory settings. One mechanistic explanation of this is that helminths drive the regulatory

arm of the immune system, abrogating the ability of the host to expel the parasites, while also dampening reactivity to many bystander

specificities. Interest has therefore heightened into whether helminth parasites, or their products, hold therapeutic potential for

immunologic disorders of the developed world. In this narrative review, progress across a range of trials is discussed, together with

prospects for isolating individual molecular mediators from helminths that may offer defined new therapies for inflammatory conditions.

© 2016 The Author. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Allergy, autoimmunity, helminth therapy, hygiene hypothesis, inflammatory bowel disease

Article published online: 10 May 2016
Corresponding author: R. M. Maizels, Wellcome Trust Centre for
Molecular Parasitology, Institute of Infection, Immunology and
Inflammation, University of Glasgow, Sir Graeme Davies Building, 120
University Place, Glasgow G12 8TA, Scotland, UK
E-mail: rick.maizels@glasgow.ac.uk
Introduction
The health profile of countries across the world reveal many stark
contrasts, including a remarkable reciprocity between helminth

parasite infections in most low-income tropical countries, and
diseases of modernity such as allergy and autoimmunity in the

more affluent, developed populations [1]. In the latter, these
syndromes are becoming increasingly prevalent, with asthma

exceeding 10% of children in many European countries [2], while
the incidenceof autoimmune diseases such as type 1 diabetes [3] as
well as of inflammatory bowel disease (IBD) [4] continues to surge.

Allergic and autoimmune disorders represent exaggerated
immunologic responses to harmless antigens such as those from

innocuous environmental organisms or from our own body. The
© 2016 The Author. Published by El
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question has arisen of whether parasites dampen the immune
system of their host to promote their own survival and while

doing so also prevent untoward overreactions that generate
immunopathology. Thus, in parasite-free environments the
modulating effect of parasitic infections may be lost and the im-

mune system more prone to causing disease—a scenario that
Velasquez-Manoff has called ‘an epidemic of absence’ [5].

A vast array of socioeconomic, dietary, environmental and
genetic factors must underpin the disparity in disease profiles

between different parts of the globe [6]. Hence the question is not
whether helminth parasites alone can account for these differ-

ences but rather whether their effect on the host immune system
makes a significant contribution to muting immunologic diseases;
if so, we then will ask if we can identify the pathways driven by

helminths and learn from them to develop new therapies to treat
the disorders that are becoming increasingly common [7,8].
Helminths and the Immune System
Helminths comprise a diverse set of parasitic and free-living
worms with a long evolutionary history; multiple lines have
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adopted the parasitic lifestyle and in each case become exqui-

sitely well adapted over evolutionary time to the immune sys-
tem of their chosen host. Their strategies have been highly

successful: for example, even today, over 2 billion people
worldwide carry helminth infections [9], and until the 19th

century, it is likely that all humans would have been infected for
much of their life with one or more helminth species. Some of
these parasites, such as the schistosomes that cause bilharzia

(schistosomiasis), are highly pathogenic causing visceral
inflammation and liver fibrosis even in children, and they also

have many more subtle detrimental effects [10]. However, in
many other helminth infections, carriers are often asymptom-

atic, reflecting a form of immunologic tolerance by the host
towards the parasite [11]. Indeed, it appears that an early, more

vigorous immune response to infection (as seen, for example, in
travellers) becomes subdued as chronic infection becomes
established in residents who experience continual exposure and

as maturing parasites produce eggs or microfilarial larvae for
onward transmission.

Helminth-infected patients show both quantitative and quali-
tative shifts in immune responsiveness that reflect either the

parasite manipulating the host immune system or the host
reaching an accommodation with the parasite to minimize

collateral damage. Parasite antigen-specific T-cell reactivity has
been found to be depressed in chronically infected filariasis and

schistosomiasis patients, but reactivity could be restored after
chemotherapeutic cure of infection [12,13], indicating that the
presence of helminths actively suppresses host immunity. The

profile of immune reactivity is also markedly shifted by infection,
with a skewing of cytokine responses away from inflammatory

mediators such as interferon gamma [13] and a more prominent
role for the regulatory cytokine interleukin (IL)-10 [14]. As a

result, the pro-inflammatory Th1 and Th17 T-cell subsets are
muted; significantly, where the Th1/17 population breaks

through and dominates the antiparasite response, patients
develop more severe immune pathology, such as lymphadenitis
and elephantiasis in lymphatic filariasis [15] or granulomatous

bladder pathology in Schistosomiasis haematobium [16].
In parallel with the anti-inflammatory dampening of Th1/17

responses, the Th2 arm of the host immune response is also
modulated, but in a more selective manner. Part of the Th2

response remains intact (with high IL-4 levels, for example), but
the profile becomes similar to the modified Th2 observed in

allergic patients after allergen desensitization [17]. Most notable
is the induction of high levels of the immunoglobulin (Ig) G4

antibody isotype and relatively low levels of IgE [18], mecha-
nistically linked to the ability of IL-10 to promote IgG4 pro-
duction by B cells [19].

Perhaps most significant change in patients’ immune profiles
is the greater activity of suppressive lymphocyte subsets, in
© 2016 The Author. Published by Elsevier Ltd on behalf of European Society of Clinical Microb
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particular regulatory T cells (Tregs) in helminth infections

[20–22]. This subset maintains steady-state homeostasis in the
immune system, preventing autoimmunity and other potentially

deleterious responses to innocuous antigens from commensal
microbes [23]. However, helminth parasites appear to have

evolved strategies to exploit this pathway to prevent immune
expulsion by the host [24]. Effector T-cell responses are sub-
dued by the regulatory compartment but in vitro can be

recovered by removal of the Treg subset [21]. In addition,
other suppressive populations such as regulatory B cells may

also be activated [25,26].
Bystander Effects of Helminth Infections
The consequences of dampened inflammatory immunity and

expanded regulatory activity may be seen in several settings;
helminth-infected children can be less responsive to microbial

vaccines [27]; the presence of helminths can actually favour
survival of foreign tissue transplanted into patients [28]; and

helminth infections also negatively affect the host’s ability to
combat a range of other pathogens, such as tuberculosis [29].
At least part of this effect is due to Tregs: patients’ in vitro T-cell

responses to bacillus Calmette-Guérin and malaria antigens that
are subdued compared to those of non-helminth-infected

subjects are rescued by the depletion of Tregs [30]. Each of
these observations speaks to a profound systemic impact of

helminth parasites on the functions of the whole host immune
system [31].

The most striking off-target epidemiologic effects of helminth
infections, however, has been their apparent protection against

immunologic disorders familiar to residents of countries with
developed economies. As long ago as 1968, Greenwood [32]
remarked on the very low incidence of rheumatoid arthritis

and other autoimmune disorders in African countries with a
high prevalence of parasites. More recently, schistosome-

infected school children in Gabon were shown to exhibit
lower levels of atopic skin allergic reactivity than uninfected

classmates [33]. Notably, the helminth-infected children
expressed higher levels of the cytokine IL-10, which is emerging

as a major player in regulation of both allergy and parasite
immunity. A causal relationship between schistosomes and
attenuated allergy was shown when praziquantel chemotherapy

to clear parasites resulted in higher levels of atopy, which did
not rise in control children provided with a placebo [34]. Many

further studies have been accomplished in Asia, Africa and Latin
America showing that many (but not all [35]) helminth parasites

negatively affect allergic reactivity [36–38], although, impor-
tantly, the size of the protective effect is likely to depend on the

intensity and duration of infection [39,40]. In addition, the
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attenuation observed is primarily at the level of allergic sensi-

tization rather than overt clinical allergy in these settings [41].
Autoimmune diseases are less frequent than allergies,

particularly in younger persons, and many environmental, ge-
netic and microbiologic factors are likely to influence the inci-

dence of these disorders. Thus, although autoimmunity is less
common in tropical environments, evidence for a causal link
between helminth infections and any degree of protection

against autoimmunity is relatively scanty. However, a surrogate
marker (and potentially a precursor of disease) is the level of

circulating anti–nuclear antibodies (ANA) in study subjects. In a
Zimbabwean setting, it was found that schistosome-infected

people had significantly lower ANA titres than age-matched
uninfected cohabitants. Overall, anti-ANA antibody levels

were inversely proportional to circulating IL-10 levels, lending
more support to a central role for this regulatory cytokine.
Moreover, these levels increased after schistosome clearance

with praziquantel, strongly implicating that the parasite itself
generates the conditions in which autoimmune reactivity is

suppressed [42].
Acquired Helminth Infection in Immune
Dysfunction
Clinical autoimmune disease may also be attenuated by hel-
minths. A striking study from Argentina followed 12 patients
with multiple sclerosis (MS) who had adventitiously acquired

various gastrointestinal helminth infections. All remained in
remission for over 4 years, in contrast to uninfected MS pa-

tients with similar severity scores at the outset of the study
and who developed various degrees of relapse and exacer-

bation [43]. The infected, protected patients showed reduced
inflammatory cytokine responses, and enhanced production

of IL-10 as well as transforming growth factor (TGF)-β, as
well as a greater regulatory B-cell compartment [25]. In a

follow-up of the same cases, remission continued into the
sixth year, when four patients were provided with anthel-
mintic treatment to alleviate gastrointestinal symptoms;

notably, their MS disease activity resumed while IL-10 and
TGF-β levels receded [44].

One case has also been reported of ulcerative colitis, a major
form of IBD; a patient self-infected with one of the least

pathogenic human helminths, Trichuris trichiura, and experienced
remission of symptoms. Analysis of biopsy specimens revealed

that the inflammatory Th17 subset had subsided, whereas Th2
cells expressing IL-4 and a specialized Th22 subset secreting IL-
22 were more frequent [45]. In addition, goblet cell–derived

mucus production was much enhanced after infection. Taken
© 2016 The Author. Published by Elsevier Ltd on behalf
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together, this study indicated that helminths quelled gut

inflammation both by modulating T cell subsets and by pro-
moting barrier function and tissue repair though IL-22 and the

mucus response to type 2 cytokines such as IL-4 and IL-13.
Helminth Therapy of Immunologic Disorders
Such remarkable reports have fuelled interest in helminth

therapy, entailing deliberate infection of humans with live hel-
minth parasites [46]. The basic premise is that with a judicious

choice of species (selecting those of low pathogenicity) and
dose (below the presumed threshold of pathogenesis), the
immune system can be effectively subdued or recalibrated, and

allergic or autoimmune conditions can thus be reversed in
patients. After the first small studies over 10 years ago, no

fewer than 28 clinical trials of helminth therapy are now at
various stages of progress, although relatively few have been

completed and subjected to analysis [47].
The most widely used approach has been with the pig

whipworm Trichuris suis. Closely related to the human-infective
T. trichiura, this parasite will develop transiently in the human
gut but will naturally be expelled with 6 weeks. Infection of

humans is achieved by administration of T. suis ova (TSO)
collected from pigs under Good Manufacturing Practice in a

specialized facility. Initial pilot studies reported a beneficial ef-
fect on both forms of IBD, Crohn disease and ulcerative colitis

[48–50], with improvement rates of over 70% in groups of 30
to 50 patients. These studies also showed minimal adverse ef-

fects, although the study was considered to be too small to
evaluate safety concerns about the use of live helminths for

human therapy [51].
Subsequently, two larger cohorts of over 200 patients have

been recruited for clinical trials of TSO in IBD patients. Un-

fortunately, both trials were discontinued for lack of efficacy;
details have yet to be published, but a recent review cited an

unusually high remission rate in the placebo group as causing
trial failure [47]. It is to be hoped that the full results will shortly

become available so that maximum insight can be gained from
these major studies.

In parallel, TSO has been tested across a wide range of im-
mune disorders. One early study that has been fully published
treated 49 patients with allergic rhinitis Denmark with eight

doses of parasite eggs; however, no change in allergic symptoms
was observed compared to a similar number of placebo re-

cipients [52]. Further investigation indicated that the Trichuris
infection had established and provoked a strong antiparasite

response; perhaps surprisingly, in this study it was found that
infection did not at all affect the allergen-specific response [53].
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TSO has also been used in other settings, including autism,

psoriasis and food allergy [47,54], although details of clinical
outcomes have yet to emerge. More prominently, TSO treat-

ment for MS has been subject to several studies; in two studies
with cohorts of four to five patients provided TSO for 12 to 24

weeks, modest immune and clinical parameters were changed,
with some evidence of improvement [55,56]. In a separate trial
of ten patients, no overall benefit was found [57]. Subsequent

larger trials have yet to be fully published, but one showed a
34% reduction in brain lesions after 5 months of TSO treatment

in a study that also reported few adverse effects [58].
In parallel, therapies have also been trialled with the human

hookworm parasite Necator americanus; while pathogenic at
higher intensities as a result of its migratory passage through

the lung, and while feeding on blood as an adult worm, low
doses have been shown not to provoke symptoms in safety
tests [59]. A trial of 32 asthma subjects in the United Kingdom

was conducted, half of whom received ten N. americanus
infective larvae; the infected group showed a small improve-

ment in airway function that did not attain statistical signifi-
cance, arguing for more extensive studies [60].

Investigators in Australia have also tested N. americanus
infection in patients with intestinal immunopathologies; in a

stand-alone study of nine cases of Crohn disease, with a larger
infective dose (25–100 larvae), quantitative improvements in

disease indices were found, although no placebo group was
available for comparison [61]. In a more extensive randomized
double-blinded trial of coeliac disease, in which patients are

intolerant of gluten, lower doses (5–10 larvae) were adminis-
tered, and again, quite subtle health gains were recorded that

did not attain statistical significance [62].
Conclusion and Outlook
Both active practitioners and interested observers have made

many important comments drawing on our understanding and
experience of helminth modulation of host immunity and

pathogenesis in the therapeutic setting [47,63–65]. The first
point is that much of the impetus for applying helminth therapy

to humans has been derived from compelling animal studies
(discussed in more detail elsewhere [8,66]), most of which test
short-term priming and challenge rather than reversal of long-

established reactivity [63]. Secondly, we have little insight into
the appropriate dose or duration of infection that is required to

exert a significant effect—a concern particularly with human
hookworm studies, in which safety considerations limit the

parasite dose that can be applied. Thirdly, there will be ‘horses
for courses,’ and an intestinal helminth species is likely to be

much more effective in dampening inflammation in its own
© 2016 The Author. Published by Elsevier Ltd on behalf of European Society of Clinical Microb
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
setting than in more distant locales (such as the central nervous

system). Finally, and perhaps most importantly, the human
species is highly polymorphic and reacts to helminth infection in

a spectral manner. Because parasitism is on balance detrimental,
administration of live helminths is itself a balancing act,

attempting to maximize any beneficial effects against a delete-
rious backdrop. Where the fulcrum of that balance sits will very
much vary according to the genetic makeup of the individual.

These considerations have led many in the field to place
greater emphasis on identifying molecular mediators derived

from helminths that may replicate the benefits of the parasite
without entailing any of the detriments [67–71]. Indeed, a

panoply of candidate molecular therapies are now emerging
from detailed studies on helminths (reviewed in [8,72]), some

of which are showing impressive in vivo efficacy [73–76]. On a
platform of individual molecular components, each can be
evaluated for their relative efficacy on different indications and

applied accordingly; effective immunomodulators can be deliv-
ered to the inflamed tissue even when distant from the normal

niche of the parasite, at an optimal dose; and even against the
background of human genetic diversity, the defined molecules

from parasites are much more likely to confer only the benefits,
and none of the harm, of their parental organism.
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