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Executive Summary 
 

Project outline 

This feasibility study explored the potential for a deep geothermal heat project at Hill of 

Banchory, Aberdeenshire.  The geology of the Hill of Fare, to the north of Banchory, gives 

cause to believe it has good geothermal potential, while the Hill of Banchory heat network, 

situated on the northern side of the town, offers a ready-made heat customer. 

The partners in the consortium consisted of academics and developers with relevant 

expertise in deep geothermal energy, heat networks, and financial analysis, together with 

representatives of local Government.  They conducted geological fieldwork around the Hill of 

Fare, engaged with local residents to establish their attitudes to geothermal energy, and built 

business models to predict the conditions under which the heat network at Hill of Banchory 

would be commercial if it utilised heat from the proposed geothermal well.   They also 

estimated the potential carbon emission reductions that could be achieved by using deep 

geothermal energy, both at Hill of Banchory and more widely. 

   

A vision of how the geothermal heat system would work 

The core element of a geothermal heat generation system at Banchory would comprise at 

least one pair of deep boreholes drilled into the Hill of Fare Granite.  The medium for heat 

transport from the granite would be water: hot water from depth would be pumped to the 

surface via one of the boreholes, the heat transferred into Banchory via a heat exchanger 

and water pipes, and the now cooler water would then returned to depth by injection into the 

second borehole.   The following schematic diagram indicates the system layout. 

                               

Figure ES.1 – An indicative diagram of the proposed geothermal doublet at Hill of Fare 

The equipment required at the wellhead would be minimal, and overall the environmental 

footprint of the system would be very small.  A commercially viable system would be 

expected to have a capacity of a few megawatts, enough to provide heat for a few thousand 

houses, compatible with the scale of heat demand from the expanding heat networks at Hill 

of Banchory. 
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The feasibility of the scheme would depend on the geothermal resource that exists below the 

Hill of Fare.  Sufficiently high temperatures would need to be found, alongside adequate 

permeability.  In other words, the well must be able to sustain the production of a reasonable 

volume of hot water over the commercial lifetime of the project. 

 

The Geology of Banchory and the Hill of Fare 

The geological element of the feasibility study sought to identify how much heat might be 

available at the Hill of Fare site, how easily it could be extracted, and whether any aspects of 

the geology would create problems for a geothermal system. 

The country rock throughout the Banchory district belongs to the ‘Dalriadian Supergroup’, a 

thick sequence of metamorphosed mudstones and sandstones (very little of which is 

exposed at the surface). Within this are found intrusions of cooled magma, which have 

formed crystalline granite bodies known as the ‘Caledonian Supersuite’.  These granites 

have long been known to host high concentrations of radioactive elements, which give out 

large amounts of heat as they decay over geological time spans.  This heat production gives 

them, in theory, good geothermal potential. In this region, a sub-group of the wider 

‘Caledonian Supersuite’ occurs, known as the ‘Cairngorm Suite’. 

 

Figure ES.2 - Location of granite plutons assigned to the Cairngorm Suite (for full citation see page 36).  

One of the constituent members of the Cairngorm Suite is the Hill of Fare ‘Pluton’, 

essentially a large mass of granite, which sits about 5 km to the north of Banchory.   It is c. 8 

km across on its longest (east-West) axis and has an area of around 37 km2.  While it can be 

expected to extend up to 15 km below ground, all studies of it to date have been confined to 
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the surface.  Observations suggest that the sides of the pluton descend vertically to depth, or 

may even slope inwards.  There is little indication of faulting near the Hill of Fare Pluton, with 

the exception of one small area to its southeast.  No zones of strongly fractured rock were 

identified, at least at the level of the present outcrop.  

Other granites in the ‘Cairngorm Suite’ were the subject of geothermal research in the 1970s 

and 80s and were found to have high rates of heat production.  Shallow boreholes were 

drilled to 300 metres in some of the plutons to measure thermal gradients, though these 

were surprisingly disappointing.  However, this can be explained by a failure to correct for 

the long-term effects of the last ice age (which are still significant to the depths drilled), and 

the extent to which radiogenic elements are found at depth in the Cairngorm Suite remains 

poorly understood.  

At Hill of Fare, the best exposures of granite are found in disused quarries on the south side 

of the pluton and that is where our tests were conducted.  All of this rock can be classified as 

types of granite – and it is inferred that a deep borehole drilled anywhere into the Pluton 

would find only granite. 

  

New results of fieldwork at the Hill of Fare – estimating the thermal gradient 

Members of the project consortium made measurements on the exposed rocks (mainly in 

the quarries mentioned above) to establish the rate of heat production from the Hill of Fare 

granite.  This is measured in micro-Watts per cubic metre (μW/m3).  The University of 

Glasgow used a hand held gamma-ray spectrometer to measure the concentrations of 

Potassium, Uranium and Thorium in the granite, from which heat production rates can be 

reliably calculated.  Data were collected at 29 sites across the Hill of Fare, with great care 

being taken to ensure that measurements were as robust as possible. 

In general terms, granites with heat production rates of 4 μW/m3 or more are generally 

considered promising geothermal prospects. The Hill of Fare Granite was found to have a 

heat production rate of rate of 4.04 μW/m3.  This is lower than some other plutons in the 

Grampians (e.g. Cairngorm 7.3 μW/m3, Ballater 6.8 μW/m3, Mount Battock 4.8 μW/m3, 

Bennachie 7 μW/m3) but higher than others (Crathes Pluton 2.1 μW/m3, Aberdeen Granite 

2.2 μW/m3).  

Heat flow at depth can only be established reliably by drilling a borehole and measuring it 

directly; though this was not possible at the Hill of Fare, the heat flow measurements done at 

the other East Grampian granites in the 1970s can be used as a proxy.  When the original 

data were corrected for ‘paleo-climate’ we find heat flows in those four plutons are in the 

range 87 to 95 mW/m2, consistent with the conditions required for direct geothermal heat 

generation.   

Thermal conductivity is a measure of a material’s capacity to conduct heat; granites are 

usually good heat conductors on account of their high content of quartz – one of the most 

conductive minerals.  Using a ‘portable electronic divided bar’ at the University of St 

Andrews, Town Rock Energy Ltd measured 19 plug samples from the Hill of Fare which 

were found to have conductivity values ranging from 2.176 to 3.682 W/mK, which is 

consistent with previous observations for other high heat producing granites.       
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Using these figures for heat production, heat flow, and thermal conductivity, well established 

analytical methods were used to predict how the temperature is likely to vary with depth in 

the Pluton.  For each quantity figures were selected to represent three different scenarios – 

‘most favourable’, ‘intermediate’ and ‘pessimistic’.  These were used to make three 

estimates of the thermal gradient as shown in the figure below. 

 

Figure ES.3 – Geothermal Gradient Prediction Scenarios for Hill of Fare Granite 

These three scenarios produced thermal gradients of 29.0°C/km, 25.9°C/km and 21.1°C /km 

respectively.   If we use these to calculate the depth of borehole required to reach 75 and 

90°C, we obtain the following table.   

Target Temperature    

(°C) 
Depth to target temperature (km) 

 Favourable Modest Unfavourable 

75 2.2 2.4 2.9 

90 2.8 3.2 3.8 

 

Table ES.1 – Depth to Typical Target Temperatures 
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This suggests that a borehole 2,000-2,500 metres deep would encounter temperatures 

between 65°C and 82°C.  This depth of borehole is entirely practical, and the temperatures 

are consistent with supplying heat to a heat network.    

 

Permeability 

In granite the flow of water is concentrated in fractures and fracture networks, as the 

permeability of the rock itself is very low.  It is hard to predict the extent of fractures at depth 

in granites.   

The range of flow rates observed in similar deep granite settings elsewhere (e.g. Soultz-

sous-Forêt, France, and Rosemanowes and Weardale in the UK), indicate that the likely flow 

rates for a successful borehole-double in fractured granite are in the tens of litres per 

second. Continuing with the three scenario methodology used above, three flow rate 

scenarios have been assumed ranging from a most favourable case of 50 litres/second 

(most favourable) through 15 litres/second (intermediate) to 5 litres/second (least 

favourable). These figures were used for the analysis of the commercial potential of the Hill 

of Banchory geothermal scheme. 

The range of flow rates observed in similar deep granite settings elsewhere (e.g. Soultz-

sous-Forêt, France, and Rosemanowes and Weardale in the UK), indicate that the likely flow 

rates for a borehole-double in fractured granite are in the tens of litres per second.  

Continuing with the three scenario methodology used above, the flow rates for a Hill of Fare 

borehole were estimated to range from a most favourable case of 50 litres/second (most 

favourable) through 15 litres/second (intermediate) to 5 litres/second (least favourable).  

These figures were used for the analysis of the commercial potential of the Hill of Banchory 

geothermal scheme. 

 

Borehole design 

The geothermal system will require a minimum of two boreholes of very similar design.  

Essentially deep water wells, the boreholes must be able to stand open without allowing fine 

particles to cause clogging, yet allowing the groundwater to enter the borehole at the target 

depth.  This is achieved using the appropriate lining, or ‘casing’.  (When drilling through a 

very strong rock like granite, it may be possible to dispense with casing though this will 

depend on local conditions.)   

This report sets out a typical geothermal borehole design.  The diameter at the bottom of the 

borehole is proposed as 9 5/8”, with a series of casings widening back to 20“ casing at the 

surface. 

 

Output and input temperatures 

An issue which the study identified as being of crucial importance was the need for the 

output temperature of the geothermal well to be compatible with the input temperature of the 
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network.   The existing Hill of Banchory network designed operating temperatures are 85°C 

flow/60°C return.  The network’s heat customers in Banchory have heating systems that are 

compatible with this temperature range.  Delivering heat at lower temperatures would require 

the operator to make some adaptations to the existing system.  Supplying lower temperature 

heat to future new build properties would have the advantage that suitable changes can be 

made cheaply at the design stage.    

There may be an opportunity here to create heat customers that can use the lower 

temperatures from the geothermal well.  The future refurbishment of council properties could 

be carried out to make their heating systems compatible with lower input temperatures. 

 

The financial viability of a geothermal system 

A key objective of the feasibility study was to determine the commercial feasibility of the 

overall project –what were the business fundamentals of a geothermal well at Hill of Fare 

feeding heat into the Hill of Banchory heat network?   A financial model was created by Cluff 

Geothermal and Ramboll Energy to test the relationship between total heat sold, return on 

capital required, and heat price achieved.   

An important income element for the geothermal well - and for the existing biomass heat 

plant - is the Renewable Heat Incentive (RHI).  This is the UK Government’s subsidy regime 

for renewable heat generators.  Eligibility to receive the RHI is dependent on repaying any 

public sector grants that have been received, and receiving RHI income will normally be 

preferable to keeping the grants.  The financial modelling conducted for this project therefore 

assumed that any grant would be repaid and RHI eligibility restored. 

     

Financial analysis: methodology  

There were two elements to the financial analysis.  Firstly, a financial model for the 

geothermal well itself was constructed and used to predict the heat sale price required to 

achieve various rates of investment return.  (A key factor here is the level of annual heat 

sales; the unit cost of heat supplied is dominated by the up-front capital expenditure, so 

supplying higher levels of heat increases income while having only a minimal impact on 

production costs.)   

‘Central case’ assumptions were used for the parameters of the geothermal system (cost of 

drilling, well heat capacity etc.).  There is inevitably some uncertainty in this analysis (as a 

robust prediction of well output is difficult) but the analysis suggests that a geothermal 

system at the Hill of Fare would be commercially viable if it could sell around 10,000 MWh of 

heat a year at 2p/kWh – lower than the market cost of heat from gas and heating oil. 

Secondly, a study of the existing heat network established the price at which it made 

economic sense to purchase heat from an external supplier instead of using the current 

(biomass) fuel source. 

Finally, the outputs of the two analyses were brought together to explore the conditions 

under which both the geothermal well and the heat network could operate commercially.   
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The (indicative) graph at figure ES.4 below illustrates this analysis.  A geothermal project at 

Banchory is commercially viable in the part of the annual heat demand range where the 

green line (the heat price required by the heat network price) rises above the blue line (the 

heat sale price required by the geothermal well). 

 

 

Figure ES.4 - Indicative graph illustrating the ‘Cost of Heat’ model outputs 

 

Results of the financial analysis 

The Hill of Banchory network currently generates heat from biomass sourced from local 

forests.  This leads to a low heat production cost, competition with which would be 

challenging for almost all heat technologies.  The study concluded that under its current 

configuration, competing against this low cost biomass, it would not be commercially rational 

for the Hill of Banchory network to purchase heat from a geothermal system, given its likely 

characteristics.   

However, the fuel arrangements at Hill of Banchory are not representative of space heating 

more widely in NE Scotland, where natural gas and heating oil dominate.   

The consortium therefore also considered whether a geothermal well would be competitive 

against natural gas heating, either in a future phase of the Hill of Banchory network where 

gas becomes the dominant fuel (it is currently used for back-up), or in a more typical ‘generic 

‘ gas powered heat network.  The conclusion was that it would be competitive against gas.  

Consideration was given to how the future evolution of the Hill of Banchory heat network 
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might lead to the use of gas as a fuel, permitting the geothermal heat resource to be 

exploited.   

The Hill of Banchory network does, in fact, use ‘peaking’ gas boilers to meet periods of high 

demand, and the proportion of heat supplied in this way will increase as the network 

expands.  However, the seasonal nature of peak demand makes it commercially unattractive 

for the geothermal developer, as heat from the geothermal well will be produced at a steady 

rate.)   On the other hand, the supply of cheap biomass is necessarily limited, meaning that 

network expansions are likely to utilise gas fuel to meet a high proportion of heat demand.      

Future expansion options for the Hill of Banchory network, therefore, could well be 

compatible with heat from a geothermal well.   For example, an expansion of the Banchory 

town scheme will be taken forward as a low temperature network.  This could be connected 

to the existing Hill of Banchory scheme via a sub-station on the Raemoir Road, which would 

provide peaking and back-up heat supply.   This would allow the network to be developed 

and supplied by the Hill of Banchory energy centre in the short term, but still enable the 

supply of heat from the geothermal well in the future (see Figure ES.5, below).  

 

Figure ES.5 – Simplified system schematic for direct geothermal heating in Banchory 

The conclusion that heat from the proposed geothermal well would be competitive against 

natural gas, and by extension heating oil, is important as these fuels are used to supply the 

majority of space and water heating in the NE of Scotland.  This suggests that deep 

geothermal heat systems of the type proposed for Hill of Banchory could be competitive in 

many locations across the region. 

 

Risk Registry 

A register of risks and opportunities was compiled.  The highest risks were the following, in 

order of decreasing magnitude:   

 insufficient permeability or connectivity to sustain flow; 

 RHI cutback or abolition; 

 district heating return temperature too high; and 

 lack of public support. 
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Carbon emission savings 

Deep geothermal energy is widely recognised as a very low carbon energy technology.  

However there are few reference figures available for its carbon intensity, partly because this 

will vary from site to site.  This feasibility study calculated the carbon intensity of a 

geothermal heat ‘doublet’ at Banchory, taking into account the ‘embedded’ carbon emissions 

involved in its construction as well as the carbon emitted as a result of operating the pump 

over the project’s lifetime (assumed to be thirty years in this context).  The conclusion was 

that heat from the well would have a carbon intensity in the range 3.5 to 5.4 KgCO2/MWh – a 

very low level.   

Using the midpoint of this figure it was estimated that over thirty years a geothermal heat 

system at Banchory would save around 71,000 tonnes of CO2, on the assumption that 

natural gas heating was being displaced.    

Using the Scottish heat demand map, an estimate was also made of the approximate carbon 

savings available if geothermal heating from radiothermal granites was rolled out to its 

maximum extent across NE Scotland.  The calculation - which necessarily involves 

considerable assumptions and uncertainties – suggested that radiothermal granite could 

ultimately meet 5% of Scottish heat demand, and deliver annual savings of around 900,000 

tonnes of CO2 per year. 

 

Community Engagement 

HOBESCO, the operators of the Hill of Banchory heat network, held a community event for 

local people at which a questionnaire survey was conducted.  Around two thirds of 

respondents thought they had a ‘medium’ knowledge of geothermal energy, with the rest in 

the ‘low’ category: indicating that local knowledge of deep geothermal energy is 

(unsurprisingly) relatively sparse.  However, support for developing geothermal energy in 

Scotland was very high, as was the idea that this should be supported by Government.  

There was also widespread enthusiasm from respondents for the idea that the heat they 

received should come from geothermal energy.    

 

Recommendations, Strategic Implications and Next Steps (set out in full at pages 114 

to 116)  

This feasibility study has confirmed that there is a promising prospect for a geothermal heat 

generating system at Banchory, increasing confidence that generating renewable heat from 

Scotland’s radiothermal granites is viable.  It represents a positive strategic development in 

the context of Scotland’s wider quest for affordable low carbon heat.    

The geothermal potential of the Hill of Fare granite has been found to be greater than had 

been supposed, though some uncertainty inevitably remains.  Heat from a geothermal well 

at Hill of Fare would probably not be competitive with the unusually cost-effective biomass 

fuels currently used by the Hill of Banchory heat network, but it would be competitive against 

natural gas and heating oil, the dominant heat sources in the NE of Scotland.  Furthermore, 
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as the Banchory network expands it is likely to become more gas-dependent, creating the 

necessary conditions for the Hill of Fare geothermal project to become commercial.   

There is scope to use this project’s findings as a template for other appraisals in similar 

locations across Scotland.  The high-level analysis of the full technical potential of 

radiothermal granites suggests that as much as 70% of the total head demand in the 

adjacent regions could come from this source.  This is equivalent to around 5% of total 

Scottish heat demand, and this figure could increase further as other potential geothermal 

sources elsewhere in Scotland are explored.    

The next steps for the project should include: 

 pilot drilling to improve understanding of the thermal gradient and granite 

permeability; 

 further geophysical studies;  

 identification of funding;  

 achievement of regulatory approval for the drilling and geophysical testing mentioned 

above;  

 liaison with local landowners to identify possible drill sites and wayleaves for 

pipelines; and  

 events to increase public engagement with deep geothermal energy locally and 

nationally.  This should include opportunities for the public to experience the drilling 

of a test borehole at first hand.  
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1. Introduction 
 

Why deep geothermal energy? 

Deep geothermal energy has the potential to provide some of the low carbon, sustainable 

energy that Scotland needs to meet its objective of a 42% reduction in greenhouse gases by 

2020 compared to 1990 levels, as well as increasing energy security and combatting fuel 

poverty.   The size of contribution the technology can make will depend on the geothermal 

potential of Scotland’s deep geology and on the engineering and economic challenges in 

exploiting suitable geology.  Our understanding of that potential is still at an early stage, as 

no deep geothermal boreholes have yet been drilled in Scotland. 

Deep geothermal energy can in principle be tapped to provide power and / or heat.  The 

former requires high rock temperatures: more than 130 °C, whereas successful heat-only 

geothermal systems can be based on temperatures of 60-70 °C. All indications to date are 

that the Scottish geothermal resource base is most likely to be a useful source of low carbon 

heat, with only limited and localised scope for combined heat and power (CHP). 

Identification of a substantial low-carbon heat source is good news, as the majority (55%) of 

Scotland’s energy consumption is heat-related, and heat gives rise to more than half of our 

carbon emissions; hence it is essential that low carbon heat be rolled out at scale if our long-

term climate change targets are to be met.  Yet there are few low carbon heat technologies 

available at a large enough scale to really make a difference; hence, if it proves viable, deep 

geothermal heat could emerge as a significant source of decarbonised heat for Scottish 

homes and businesses.   

 

Why Banchory? 

Hill of Banchory has all the hallmarks of a potential deep geothermal demonstrator site, as it 

combines an apparently attractive geological setting with an existing, large-scale local heat 

customer.   

As will be explained in Chapter 4, one obvious place to start looking for deep geothermal 

heat is the suite of granite ‘plutons’ – huge masses of largely subterranean rock – that form 

much of the Grampian mountain chain.  Enormous amounts of heat are present in these 

plutons, both conducted from greater depths and produced in situ by the slow decay of 

radioactive elements.  One such pluton, the ‘Hill of Fare’, is located just north of Banchory.  

Helpfully, this granite is exposed in several quarries on the flanks of the eponymous hill, 

making it easy to take samples.   

The Hill of Banchory heat network, meanwhile, has been in operation since 2008, 

combusting locally-sourced wood chips to supply heat to houses and businesses on the 

north side of Banchory.  The network has significant options for expansion both from the 

ongoing new development at Hill of Banchory and across the wider town, including from 

large public sector buildings.  Its energy centre already features a 100 m3 thermal store (a 

hot water tank) which would greatly assist in the efficient exploitation of a deep geothermal 

heat source: as heat would be produced continuously by geothermal boreholes, a heat store 
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allows efficient smoothing of time-lags between peaks of heat demand and steady 

production (Kyriakis and Younger 2016).   The Energy Centre also has back-up gas boilers 

already installed.  

In short, the Hill of Fare may well possess suitable geology for geothermal heat production; 

and such heat, if produced, already has a large local heat customer in place.  At this point in 

the history of low-carbon heat development, this is a highly unusual set of circumstances, 

not just for Scotland but for the wider UK, making Banchory an exceptional site for a deep 

geothermal demonstrator project. 

 

The Project Team and timeline  

The members of the Hill of Banchory Geothermal Energy Consortium brought together the 

academic and commercial skills required to assess the technical feasibility of a deep 

geothermal energy project at Banchory and the financial and regulatory knowledge to model 

its commercial viability.  It comprised:   

 HOBESCO/Jigsaw Energy, the owners and operators of the Hill of Banchory heat 

network; 

 Leading academic experts in the fields of geology and deep geothermal energy from 

the Universities of Glasgow and Aberdeen; 

 British Geological Survey – Scotland; 

 Cluff Geothermal, a London-based deep geothermal company; 

 Ramboll Energy, a global Energy Consultancy;  

 Town Rock Energy, a Scottish deep geothermal consultancy; and 

 Aberdeenshire Council. 

The project team was assembled in March 2015 and, following the successful application to 

the Scottish Geothermal Energy Challenge Fund (part of the Low Carbon Infrastructure 

Transition Programme, LCITP), met again in late June 2015 to formulate a project plan.  The 

team committed to deliver the following:  

 a detailed geological assessment of Banchory as a location for a heat-only 

geothermal borehole doublet system; 

 a detailed operational and financial model of the whole system, including provisional 

borehole design, an assessment of the potential heat production based on analysis 

of the local geology, a risk management strategy, and the extent to which the 

geothermal heat resource is complementary to the existing heat network; 

 an estimate of potential carbon savings; 

 a report on community attitudes towards a potential scheme; and  

 a final feasibility study report. 
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The end-date for the project was expected to be early 2016.  Initial fieldwork (gamma 

spectrometry and heat conductivity measurements) was carried out in July-August 2015, 

with a gravimetric survey carried out in October (when equipment became available).   

The data collected were analysed in November and early December to produce an initial 

model of the sub-surface geology underlying Hill of Fare and Banchory.   Drawing on this, 

the team also produced a provisional borehole plan, and commentary on the likely location 

for a drill site.   

The financial model was developed over the period July-December 2015.  Initial data from 

the geological fieldwork were used to make estimates of the cost of drilling, and the likely 

yield from the well (though until preliminary drilling takes place, this factor will remain subject 

to much uncertainty).    This in turn allowed a financial model to be constructed of the likely 

cost of heat production from the geothermal well.  In parallel, a financial model was 

constructed of the necessary price requirements of the Hill of Banchory heat network.   

Integrating these two parts of the financial model answers, at least provisionally, a key 

question: could the geothermal well produce heat cheaply enough to be competitive with the 

current cost of heat to the heat network?   

This analysis was complicated by the fact that the Hill of Banchory heat network utilises low-

cost locally-sourced biomass.  In the interests of producing a result that could inform thinking 

at most other locations, the decision was taken to consider natural gas as the competitor 

fuel. 

A local community event held in November 2015 related to new housing developments in the 

area included information on the use of renewable energy to heat the properties provided an 

opportunity for people to learn of the project and to ask questions.  Attendees’ opinions were 

surveyed, as well as those of the existing customers of the Hill of Banchory Heat Network.  

As a member of the project team and a potential large user of heat in its own right, the views 

of Aberdeenshire Council were also extensively canvassed.  Thirdly, local landowners were 

consulted and their support gained for the location of any potential future plant infrastructure.  

The project team also carried out analysis on the likely carbon emissions reduction that 

would be delivered by a fully functioning deep geothermal heat network at Banchory.  Again, 

this was done on the basis that natural gas is the fuel being replaced.  As deep geothermal 

heat is an exceptionally low carbon technology, the potential carbon emissions savings 

versus fossil fuels are enormous.  

Finally, the team produced a risk assessment for the geothermal well, and made 

recommendations on what the conclusions of this project imply for the wider deep 

geothermal energy potential of Scotland. 

    

Purpose of this report 

While this report primarily examines the feasibility of expanding the Hill of Banchory heat 

network by addition of a geothermal heat source, the conclusions and recommendations 

given in Chapter 14 have been drafted such that they might assist Scottish Government as it 

considers the future path of low carbon and renewable energy development.  
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2. Background to Deep Geothermal Technology 
 

Heat at depth 

Geothermal energy harnesses heat that occurs naturally below the ground surface. Heat is 

present within the Earth due to processes that relate to the formation of the planets and the 

natural decay of radioactive elements. Humankind has long taken advantage of geothermal 

waters where they naturally emerge on to the Earth’s surface. Spa towns were often built 

around zones where faults have provided pathways for easy harnessing of hot geothermal 

fluids – although many Victorian spas exploited springs of indifferent temperature (e.g. at 

Strathpeffer and Bridge of Allan).  Modern geothermal energy developments do not rely on 

natural springs, however, but engineer the subsurface to sustainably exploit the renewable 

heat contained in the Earth’s crust.  

The key principle of geothermal energy is that temperature increases with depth; the rate at 

which this occurs defines the “geothermal gradient”.  In the UK the geothermal gradient 

ranges from about 20 to 40⁰C/km, with higher rates tending to coincide with heat-producing 

granites.  The higher (or ‘steeper’) the geothermal gradient, the more likely we are to find 

useable quantities of heat at relatively shallow depths in the Earth and hence an elevated 

geothermal gradient is generally a favourable indicator of a potentially exploitable 

geothermal resource.  

Deep geothermal schemes exploit hot waters captured at depths of anywhere between 

300m down to 5km.  Although this appears deep, these depths are still well within the 

uppermost portions of the Earth’s crust (the solid “outer skin” of our planet which rests upon 

the partially molten high-temperature, high-pressure zone of the Earth’s mantle).  The crust 

is made up of many different tectonic plates, with boundaries separating them.  The 

movement of these tectonic plates causes crustal thinning and collision zones creating 

tectonically derived geothermal hotspots such as Iceland or New Zealand, both of which are 

significantly exploiting their geothermal resources.  However Scotland (and UK) is in the 

middle of the Eurasian plate far from any tectonically derived hotspots; this has the benefit of 

a lack of major geological hazards such as large earthquakes or volcanoes, but at the cost of 

more modest geothermal potential.  Such seemingly unfavourable conditions have meant 

that little progress has been made in exploiting geothermal in Scotland.  Nevertheless, there 

are significant resources to be explored, and similar resources are now being targeted 

elsewhere in the world; these are generally referred to as low to mid-enthalpy systems 

(Younger 2014) due to the generally cooler temperatures compared to other tectonically 

derived resources such as those in Iceland. 

 

The East Grampian Granites 

The heat that we could harness under Scotland comes from two main sources (1) heat 

conducted from the mantle below the Earth’s crust and (2) heat produced within the crust by 

decay of radioactive elements.  Additionally, heat can also be distributed and placed in the 

upper crust of Scotland due to convective flow of hot ground water from depth. 
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The granites of the East Grampians have long been known to host high concentrations of 

the radioactive elements potassium (K), uranium (U), and thorium (Th) (Downing and Gray 

1986, McCay et al. 2014). These granites were investigated previously by drilling heat flow 

boreholes (Figure 1). Temperature measurements in these boreholes found that the 

radioactive heat production significantly increases their geothermal gradient compared to the 

surrounding metamorphic Dalradian Supergroup rocks. However the geothermal gradient 

appeared not to be as high as in other UK high-heat production granites (Downing and Gray 

1986). As such, the East Grampian granites were not further pursued as a geothermal 

resource during the studies in the 1980s, because the exploration paradigm at the time was 

solely to find locations suitable for the production of electricity – which is a much more 

challenging ambition in the UK. 

                      

Figure 1 – Location of granite bodies in north east Scotland and the heat flow boreholes used to estimate 
geothermal potential (modified by Rob Westaway from Fig. 2.1 of Wheildon et al. (1984), and used with 
his permission). NB Areas shown as ‘Moine' rocks south of the Great Glen Fault should be white – this 
colour indicates Dalradian and other metamorphic rocks. 

More recent reappraisal of the apparently disappointing geothermal gradients in the East 

Grampian granites has  restored their attractiveness for geothermal prospecting, by accurate 

accounting for the remnant effect of the last ice age, which led to an underestimation of the 

geothermal gradient from the few available measurements from relatively shallow boreholes 

in the region (Westaway and Younger 2013, Busby et al. 2015).   

 

Extracting the heat  

A geothermal development involves drilling to the appropriate depth to extract the 

geothermal heat. In granite the heat is primarily contained within the rocks so we must use 

the circulation of fluids to extract the heat; by using the geo-fluids as a heat exchange 

medium. If these heated fluids were merely extracted, like an oil or gas reservoir, then the 

geothermal reservoir could suffer excessive drawdown and performance would be 

significantly affected.  Therefore sustainable geothermal schemes use borehole-doublet 

systems, which consist of pairs of boreholes, one used for abstraction, the other for re-



Page | 21 

 

injection (Figure 2). As the fluid is circulated between the boreholes it picks up the heat from 

contact with the rock. Pressure is maintained in the system by re-injecting the fluids after 

their heat is extracted by a heat-exchanger at surface. The rate of injection and production of 

fluids can be designed to be in balance with the natural heat replenishment in the subsurface 

to ensure that a geothermal scheme has a lifespan of several decades before major 

refurbishment is required. 

Figure 2 shows a schematic of a generic geothermal borehole doublet system. To illustrate 

the scale of the depth of the operations the Troll A Oil Platform and Castlegate (on Union 

Street, Aberdeen) are shown at the land surface on the image. The left box shows a likely 

transit pathway for fluid as it flows through the rock from an injection borehole to a 

production borehole. As the water flows through the rock it warms up as it picks up the 

naturally occurring heat. The example here does not show any fractures or faults in the rock, 

however these would be likely to be naturally present within the granite and would create a 

more complicated fluid flow pathway between the boreholes.  

 

Figure 2 – Schematic of a generic geothermal borehole doublet system 
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Drilling is required to access the depths where the geothermal sources are located. The 

techniques used in geothermal drilling are similar to those of oil and gas exploration and 

production. Temporary drilling rigs (an example of which is shown in Figure 3a) are required 

to be on site during exploratory and production drilling. This process can take several weeks. 

Once the drilling is completed the rig is removed and a permanent well head is left in place. 

Figure 3b shows an example of a wellhead from the Southampton geothermal scheme. 

Here, the wellhead is unobtrusively located in a commercial car park.  

 

 

Figure 3 – (a) Geothermal drilling in Newcastle upon Tyne in 2011 (b) Geothermal wellhead at the 
Southampton scheme. This photo was taken during maintenance work; usually the wellhead is encased 
in insulation and is even less conspicuous. 
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3. The Hill of Banchory Biomass Heat Network 
 

Background 

Banchory is a small rural town of approximately 8,000 people, located in Deeside, 

Aberdeenshire (Figure 4).  Popular with Aberdeen commuters, the town has seen 

considerable expansion in recent years.  Hill of Banchory is a development by North 

Banchory Company on the north east edge of the town, which includes residential 

commercial and community buildings.1 

 

Sustainable Development 

North Banchory Company (NBC) set sustainability at the heart of Hill of Banchory.  In 

seeking a low carbon energy solution, NBC conducted a technical options appraisal and 

decided to build a Biomass Energy Centre and Heat Network. 

Given the abundant local forest resources, and a long tradition of forestry in Deeside, 

biomass was a natural choice for providing a renewable heat resource.  A capacity study 

concluded that sufficient timber could be sourced locally without impacting supply of 

established industries.  Woodfuel could be produced at affordable prices, and local 

businesses would receive a new income stream. 

 

 

Figure 4 – Local Wood Chips Production near Banchory 

                                                           
1
 See http://www.banchoryfutures.co.uk/Banchory/home.html. 
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Whilst Heat Networks are not yet widely used in Scotland, particularly incorporating biomass, 

they are commonplace in continental Europe and are a cost-effective and energy efficient 

way of providing distributed energy.  A Heat Network comprises a network of pre-insulated 

pipes which deliver heat, in the form of hot water, from the point of generation to the final 

customer.  Networks vary in size and length, from small schemes supplying heat to 2 or 3 

houses, to city-wide schemes with tens of kilometres of pipes supplying heat to entire 

communities and industrial areas.  They are flexible in design, allowing new customers to be 

added simply by extending the pipework and adding new heat sources as necessary.  These 

heat sources are diverse and can include renewable energy such as biomass, energy from 

waste facilities and geothermal sources. 

 

Project Development 

In order to drive forward its sustainable vision for Hill of Banchory, North Banchory Company 

created a new subsidiary company, Hill of Banchory ESCo (HOBESCO), tasked to design, 

build, own and operate the Biomass Energy Centre and Heat Network.  Its primary objective 

was to provide the new development with affordable green heat. 

The Hill of Banchory Biomass Heat Network was designed to be built to support the 

development as it progresses, which has required a flexible solution.  The phases of project 

development to date are shown in Figure 5. 

 

Figure 5 – Hill of Banchory Biomass Heat Network Development to Date 

 

The first buildings to be connected to the Heat Network in 2008 were residential properties.  

Heat demand from these is relatively low, particularly during the day and summer months, 
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and could be provided from a temporary 1.1MW containerised gas boiler.  As the Network 

was expanded to Banchory Business Park, the increased heat demand from offices and 

commercial enterprises and improved load balancing (day/night usage), enabled the 

Biomass Energy Centre to become the heat generation source.  The Biomass Energy 

Centre was commissioned in 2012 and the temporary gas boiler was removed from service. 

The Energy Centre has the capacity to provide heat to current and future development at Hill 

of Banchory, as shown in Figure 6.  The Energy Centre is centrally located to provide heat to 

the development areas as detailed.  In 2016 residential properties are planned to be built at 

the Neighbourhood Centre and at Lochside of Leys, resulting in a further 400 homes over 

the next 10 years.  The Neighbourhood Centre will also include a leisure centre including 

swimming pool to be built by Aberdeenshire Council in 2016, which could be a large and 

important heat user, and discussions are being had about potential connection.  Other 

potential buildings include retail and a care village for elderly people. 

 

Figure 6 – Heat Network Plan 

 

Biomass Energy Centre 

The Biomass Energy Centre (Figure 7) comprises a primary 900kW biomass boiler and two 

gas back-up boilers.  A second 700kW biomass boiler will be commissioned as more 

connections are made and heat demand increases.  The biomass boilers are integrated with 

two 50,000 litre thermal stores (hot water tanks) to ensure efficient operation. 

Biomass supplies the base load heating requirement, and will account for 70% of total heat 

generated when the Network is fully built out.  Gas will supply the remaining 30% of total 

heat generated, providing a top-up to the biomass boilers in meeting peak loads, which can 

be more cost-effectively achieved than biomass. 
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By incorporating multiple boilers and fuels, the Energy Centre provides resilience in being 

able to continuously supply heat should plant failure occur.  The Energy Centre also has 

space for additional boilers, or CHP, providing flexibility to allow for the evolving nature of the 

development. 

 

Figure 7 – Hill of Banchory Energy Centre Plant Room  

 

The Energy Centre has generated 11,000MWh heat to date, with 90% from biomass.  As a 

very low carbon fuel, biomass has saved 1,800 tCO2e compared with natural gas, making an 

important contribution in reducing greenhouse gas emissions to the atmosphere. 

 

Customer Satisfaction 

HOBESCO is committed to delivering excellent levels of customer service, and The Hill of 

Banchory Biomass Heat Network is very well supported by its existing customers. 

HOBESCO recently conducted its biennial Customer Survey2 in which 89% of customers 

stated that they were either satisfied or very satisfied with their heat supply.  The majority of 

customers (74%) supported being part of a communal heating system, and 66% considered 

receiving their heat from a renewable source as being either important or very important.  

54% of customers felt that the cost of their heating represented value for money.  Whilst this 

is lower than desirable, customers’ opinions are likely influenced by currently low oil and gas 

prices.  Despite expressing some concerns on current price competitiveness, no customers 

have chosen to disconnect from the Heat Network. 

                                                           
2
 Survey results can be found at http://www.hobesco.com/ 
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The housebuilder, Bancon Homes, has supported the Heat Network since the first 

connections were made in 2008, which as a long-term investment in renewable energy has 

been vital.  Bancon’s Planning Director, Harry McNab said; 

‘We are very satisfied with the biomass heating system which has enabled us to 

provide our customers with more sustainable homes in Banchory, and with the 

satisfaction that their heating is produced from a local renewable energy 

resource.  District heating integrates very easily with our homes and is simple for 

our customers to use.  We are fully supportive of HOBESCO’s Hill of Banchory 

Biomass Heat Network and it is our intention to connect additional new homes 

as part of our rolling build programme over the next 10 years.  It is very 

interesting that geothermal energy might be added to the energy mix, which we 

welcome as another locally produced renewable resource.’ 
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4. Geological Background 
 

Introduction 

Any study of the feasibility of a potential geothermal energy project needs to address three 

key questions regarding the geological suitability of the selected site. 

1. How much heat is in the target rock mass (and is there enough to sustain a 

viable energy distribution scheme)? The size of the heat resource at any given 

point in Earth’s crust depends on heat flow at that point, which in turn depends on the 

amount of heat emanating from deep in the Earth (background heat) and any 

contribution made by heat generated in the rock by the radioactive decay of naturally 

occurring elements (radiogenic heat). Heat flow can only be measured accurately in 

a deep borehole, but the amount of radiogenic heat created by any rock (i.e. its Heat 

Production capacity) can be measured in an outcrop or a hand sample. 

2. Is the heat readily extractable? Currently, all tested technologies for accessing 

deep geothermal energy use water to transport heat from depth to the surface (via 

one or more boreholes), so this really is a question about how much water can be 

abstracted sustainably from the rock mass at a given depth. This in turn depends on 

rock permeability and the amount of water that is accessible within a network of 

permeable features.  

3. Are there geological factors that might complicate or constrain the process of 

accessing and extracting heat? Such factors might include: geological structures 

and rock properties that have the potential to cause drilling problems; groundwater 

that is naturally corrosive or polluting if brought to the surface; and physico-chemical 

conditions in the network of permeable fractures that might cause new minerals to 

precipitate, thereby reducing the permeability of the system over time. 

The Banchory area was identified as a good target for a geothermal energy feasibility study 

because of two key factors: (i) the presence at Hill of Banchory of an existing biomass- (and 

gas-) fuelled district heating scheme that could be adapted to incorporate geothermal 

energy; and (ii) the relative proximity to the district heating scheme of a geological unit with 

the potential to provide above-background levels of geothermal energy. This geological unit 

– the Hill of Fare Granite Pluton – is reported to have elevated concentrations of radiogenic 

elements at outcrop, raising the possibility that it is, or is close to being, a body of High Heat 

Production granite (Gillespie et al., 2013). The pluton (which simply means large intrusion) 

crops out about 5 km to the north of Banchory, so a successful project would require the 

district heating scheme and a geothermal borehole to be connected by a pipeline. 

This section of the report presents a review of the geology of the Hill of Fare pluton and, as 

far as the available information allows, addresses the questions set out above. 

In common with other large granite intrusions in the region, the Hill of Fare pluton is a three-

dimensional body of rock that may extend 5, 10 or even 15 km into the subsurface. 

However, no boreholes have been drilled into the pluton, so all of the available published 

information about it comes from observations at the ground surface. For this reason this 

section of the report includes some information from other nearby intrusions of granite that 
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are believed to be related to the Hill of Fare pluton and could be considered analogues of it; 

shallow boreholes have been drilled into some of these intrusions. 

A general introduction to the geology of the Banchory district is also presented to provide 

geological context.  

 

Geology of the Banchory district 

Bedrock 

Most of north-east Scotland, including the town of Banchory, is underlain by the Dalradian 

Supergroup, a thick sequence of metamorphosed sedimentary strata consisting mainly of 

interlayered beds of sandstone and mudstone, with occasional beds of limestone and other 

rock types. The original sedimentary rocks were altered by high heat and pressure 

(metamorphism) between 500 and 400 million years during a major tectonic event, the 

Caledonian Orogeny, which accompanied a collision of tectonic plates. During 

metamorphism sandstone became metasandstone (also known as psammite) and mudstone 

became metamudstone (also known as pelite). Another effect of the Caledonian Orogeny 

was to cause widespread melting of rocks deep in Earth’s crust, with the result that 

numerous large and small bodies of magma were emplaced into the Dalradian strata where 

they cooled to form intrusions of crystalline igneous rock. These intrusions collectively are 

known as the Caledonian Supersuite. Rapid uplift and erosion of the crust during the 

Caledonian Orogeny brought to the ground surface rocks that previously had been up to 10 

km deep. These rocks form the bedrock of north-east Scotland today.  

The bedrock throughout the Banchory district is formed entirely of geological units assigned 

to the Dalradian Supergroup and the Caledonian Supersuite (Figure 8). The town of 

Banchory is underlain by two units of the Dalradian Supergroup; the Queen’s Hill Formation, 

which consists of interbedded and partly melted psammite and pelite, and the Tarfside 

Psammite Formation, which consists mainly of psammite. Several large and many small 

intrusions of the Caledonian Supersuite - including the Hill of Fare Granite Pluton - crop out 

in the ground around Banchory (Figure 10); part of the Crathes Granodiorite Pluton underlies 

the eastern-most edge of the town. 

The Dee Fault is a large geological fault that extends from the coast at Aberdeen into the 

ground south of Banchory, and truncates the southern edge of the Crathes Granodiorite 

Pluton (Figure 8).  Other than this structure, very few geological faults are recognised in the 

Banchory district. Poor exposure means that smaller faults may simply be concealed, but the 

lack of obvious large offsets in any of the mapped geological boundaries in the district 

suggests there are few large faults near to Banchory and the Hill of Fare pluton.  

 

Superficial deposits 

For the past 2.6 million years Earth has been in an Ice Age, with higher latitudes 

experiencing alternating periods of cool (glacial) and warm (interglacial) climate. The 

landscape of north-east Scotland has been modified in two ways by the Ice Age. During 

periods of ice formation and advance the bedrock surface locally has been scoured and 
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sculpted by moving ice (this effect is most pronounced at higher elevations where ice 

streams have carved out glacial valleys and localised accumulations of ice on slopes have 

produced corries) and in places has been ‘plastered’ in a layer of poorly sorted, clay-rich 

sediment (till) that formed beneath ice sheets. In flatter, lowland areas (such as Banchory) 

the ice caused little focussed erosion but instead produced a widespread general 

denudation of the land surface. During periods of ice melting and glacier retreat meltwater 

channels formed at the margins of glaciers and beneath glaciers, scouring out v-shaped 

channels, and glacial rivers deposited vast quantities of sand and gravel in mounds and 

fans. 

Bedrock exposure around the town of Banchory is generally very poor: nearly all of the 

bedrock in the local area is concealed by vegetation, soil and glacial deposits, or by alluvium 

and river terrace deposits on the banks of the River Dee. 

 

                   

Figure 8 – Generalised bedrock geology of the ground west of Aberdeen. The dark grey polygon 

represents the approximate extent of Banchory. Coloured polygons representing generalised bedrock 

units from the BGS Digital Geological Map of Great Britain 1:625,000 scale model are superimposed on 

the OS 1:250,000 scale topographic map.  Key to colours: green = Dalradian Supergroup; red, purple and 

orange = Caledonian Supersuite; brown = Old Red Sandstone Supergroup. Dashed black lines are 

geological faults. 

. 

 

Banchory

C
o

n
ta

in
s 

B
ri

ti
sh

 G
eo

lo
gi

ca
l S

u
rv

e
y 

m
at

er
ia

ls
 ©

 N
ER

C
 2

0
1

6
 



Page | 31 

 

                    

Figure 9 – Bedrock geology of the Banchory district. The dark grey polygon represents the approximate 
extent of Banchory. Coloured polygons representing bedrock units are from the BGS Digital Geological 
Map of Great Britain 1:50,000 scale model.  

 

Hill of Fare Granite Pluton 

The Hill of Fare pluton has been mapped in detail by British Geological Survey but has not 

been the subject of detailed geological research. The information presented in this section is 

based on a review of the published BGS 1:50,000 scale geological map sheet 

encompassing the Hill of Fare and surrounding country (Sheet 76E Inverurie; BGS 1992), 

the unpublished BGS 1:10,000 scale field geological maps of Hill of Fare, and a review of 

rock and thin section3 samples held by BGS. 

 

Extent and topography 

The Hill of Fare pluton has a roughly pear-shaped outcrop and is relatively small compared 

to many plutons, measuring c. 8 km on its longest (E-W) dimension, 6.5 km on its shortest 

(N-S) dimension, and with a surface area of around 37 km2. The pluton underlies a 

topographically upstanding massif, the Hill of Fare; the ground overlying the pluton rises 

gently on all sides from a base at ~ 100-200 m OD to an extensive area of undulating upland 

with a high point of 471 m OD. The close spatial coincidence between the Hill of Fare massif 

and the Hill of Fare pluton leaves little doubt that the massif has formed because the 

underlying granite has in general eroded at a slower rate than the surrounding rocks. 

                                                           
3
 A thin section is a slice of rock cut thin enough to be transparent (~0.03 mm), so the mineral and 

textural characteristics of the rock can be examined using a microscope. 
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Exposure  

The outcrop of the Hill of Fare pluton is very largely concealed beneath heather moorland 

and blanket forestry. Natural bedrock exposure in general is sparse and limited to scattered 

patches of ice-scoured pavement and low crag; however, in places loose boulders provide 

an indication of the character of the underlying bedrock. The best exposures of fresh 

bedrock are presented in a dozen or so disused quarries (many of which are flooded) on the 

south flank of the massif, particularly around Corfeidly, Raemoir and Craigton.  

 

Geology 

The contact between the Hill of Fare pluton and the surrounding rocks is not exposed, but is 

inferred on BGS geological maps to be the original, intrusive contact with the exception of 

one short section on the south-east margin of the pluton where a faulted contact is inferred 

(Figure 10). The simple, smooth outline of the contact, and the fact that in places it cuts 

directly across undulating ground, suggests it is everywhere very steep or sub-vertical, 

though the contact may not remain as steep throughout its depth. 

The Hill of Fare pluton is emplaced into, and is in contact with, three older geological units 

(Figure 10).  

 All of the south-east margin and most of the west margin of the pluton are in contact 

with the Crathes Granodiorite Pluton 

 The entire north margin is in contact with the Balblair Granodiorite Pluton 

 Most of the south margin is in contact with strongly metamorphosed (and in places 

partly melted) sedimentary rocks of the Dalradian Supergroup (assigned to the 

Craigievar Formation and Queen’s Hill Formation) 

A ‘metamorphic aureole’ approximately 400 metres wide is recorded in the Dalradian rocks 

bordering the south margin of the Hill of Fare pluton; the aureole represents the zone in 

which the mineral and textural character of the Dalradian rocks has been changed as a 

result of the intense heat the rock was subjected to when the hot magma of the Hill of Fare 

pluton was emplaced. 

The geological character of exposed rock in the Hill of Fare pluton can be summarised as 

follows – 

 All of the rock is of ‘granite’ composition (i.e. there is no other type of igneous rock, 

such as granodiorite or diorite) 

 The main mineral constituents are quartz, alkali feldspar and plagioclase feldspar, 

which occur in roughly equal proportions and together occupy more than 95% of the 

rock volume (Figure 11).  The remainder is occupied mainly by mica minerals (2-3%; 

including dark biotite mica and silvery muscovite mica), iron-titanium oxide minerals 

(~1%), and tiny amounts (<<1%) of the minerals apatite, zircon and monazite; the 

latter two minerals are likely to be the main repositories of the radiogenic elements 

uranium and thorium 
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 Chemical analysis of rock samples from many parts of the Hill of Fare pluton reveal 

that between 73% and 79% of the granite is silica (SiO2); this is towards the high end 

of the range for granite intrusions in general, and the Hill of Fare granite can be said 

to be compositionally highly evolved 

 The granite is texturally variable. In the commonest variant (referred to hereafter as 

‘main granite’) the rock is evenly textured and individual crystals typically are 3-5 mm 

in size. In many parts of the outcrop the granite is slightly or significantly finer-grained 

than this, and in some places the bodies of finer-grained rock are of significant size: 

three discrete, km-scale bodies of relatively fine-grained granite (microgranite) are 

mapped within the Hill of Fare pluton, one roughly in the centre, one close to the west 

margin and one abutting the south-east margin (Figure 10). In many respects the 

rock forming these bodies is similar to the main granite, but the rock commonly 

consists of scattered, relatively large crystals of feldspar and quartz set in a mass of 

smaller crystals (this association is commonly referred to as porphyritic microgranite 

or porphyritic aplogranite). A small body of very fine-grained granitic-rock (aplite) is 

mapped close to the west contact of the pluton (Figure 10). Microgranite and aplite 

have been recorded in many localities on Hill of Fare outwith these mapped bodies, 

suggesting there is significant textural variability in some (perhaps most) parts of the 

pluton (reflecting a fairly complex history of magma emplacement and cooling). 

Granite that is coarser-grained than typical main granite (‘very coarse-grained 

granite’) has been recorded in a few places 

 The boundaries between the main granite and the textural variants are not well 

exposed, but rare observations suggest that both abrupt and gradational boundaries 

occur. Veins of microgranite cutting the main granite are reported in places, 

indicating that the finer-grained variants in general crystallized later. The three 

mapped bodies of microgranite crop out along a curved, roughly east-west-trending 

line (Figure 10), but there is otherwise no evidence of any geometric regularity (such 

as a concentric zoning pattern) in the distribution of textural variants at any scale; it 

therefore is not possible to predict how they might be distributed in the subsurface 

 Fresh samples of the main granite typically are orangeish pink (Figure 11). This 

colour comes mainly from crystals of alkali feldspar, which suffered mild chemical 

alteration as the pluton cooled; the alteration produced numerous tiny crystals of 

secondary minerals, such as clay and iron oxide, within the alkali feldspar crystals, 

which create the colour 

 No fragments of country rock (xenoliths) or entrained igneous rock (enclaves) have 

been reported, and there is no evidence that the present erosion level is within, or 

close to, either the roof zone or the base of the pluton 

 The weathering state of exposed granite varies considerably: reasonably fresh 

granite forms ice-scoured pavements and quarry faces, while completely 

decomposed granite (essentially sand) underlies slopes and hollows that have not 

been ice-scoured. Sections of strongly to completely decomposed granite (‘gruss’) 

can be up to 2 metres thick 
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 No geological faults have been reported within the Hill of Fare pluton, and none 

appear to offset the contact; however, a faulted contact is inferred along one short 

section of the south-east margin of the pluton (Figure 10) 

 No substantial zones of hydrothermally altered granite (such as those that occur in 

the Cairngorm pluton and the Bennachie pluton; see below) have been reported in 

the Hill of Fare pluton. However, the paucity of exposure means that this should be 

viewed more as an absence of evidence rather than as definitive evidence of 

absence 

 There is no topographic evidence (such as steep-sided valleys, prominent cols and 

deep gullies) that might point to the presence of zones of weak rock. This suggests 

the pluton does not contain significant zones of chemically altered or strongly 

fractured rock, at least at the level of present outcrop 

 Mineralized joints (veins) appear to be very rare at outcrop; a vein of quartz 50 mm 

wide on Hill of Corfeidly is recorded on a BGS field slip 

 There has been no systematic survey of unmineralized joints in the Hill of Fare pluton 

(or any part of it), but sparse notes on BGS field slips and observations in quarries on 

the south flank of the Hill of Fare massif (see Chapter 7) suggest the distribution and 

character of unmineralized joints is essentially normal/typical compared with similar 

granite plutons in north-east Scotland. Typically, three sets of unmineralized joints 

are developed at a single locality, each with a distinct orientation. In any one set, joint 

spacing typically is on the metre-scale, but this varies locally (creating zones of 

higher and lower joint density) 

 

Figure 10 – Bedrock geology of the Hill of Fare Granite Pluton 

Coloured polygons representing bedrock units from the BGS Digital Geological Map of Great 

Britain 1:50,000 scale model are superimposed on the OS 1:50,000 scale topographic map 

(1 km grid squares). The Hill of Fare pluton is the large pink polygon. The three small orange 
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polygons represent discrete bodies of microgranite mapped within the generally coarser-

grained main granite. The very small pale polygon close to the west margin of the Hill of 

Fare pluton is a discrete body of aplite (very fine-grained granitic-rock). Part of the south-

east margin of the pluton is inferred to be faulted where the eastern-most body of 

microgranite terminates abruptly against it. (See Figure 10 for the names of adjacent 

bedrock units). 

 

 

Figure 11 – Polished surface of a block of Hill of Fare 'main granite' 

The overall orangeish pink colour of this sample is typical of fresh samples of the main 

granite. Grey crystals are quartz, orangeish pink crystals are alkali feldspar, white crystals 

are plagioclase feldspar, and black crystals are biotite mica. The sample is from the BGS 

rock collection (National Building Stone Collection). 

 

Insights from other intrusions in north-east Scotland 

The Hill of Fare pluton is generally considered to be a member of the Cairngorm Suite, a 

discrete ‘family’ of intrusions within the Caledonian Supersuite that includes a dozen large 

plutons as well as many smaller intrusions (Figure 12). The individual intrusions of the 

Cairngorm Suite are inferred to be related genetically because of similarities in their mineral 

and textural character, chemical composition, age, and topographic expression.  
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Figure 12 – Location of plutons assigned to the Cairngorm Suite 

Coloured polygons representing generalised bedrock units from the BGS Digital Geological 

Map of Great Britain 1:625,000 scale model are superimposed on the OS 1:250,000 scale 

topographic map. 

Plutons assigned to the Cairngorm Suite have the following characteristics – 

 Most underlie topographically upstanding massifs; the Cairngorm Mountains and the 

Lochnagar, Ben Rinnes, Bennachie and Hill of Fare massifs are good examples 

 They consist entirely of granite sensu stricto 

 The granite forming several Cairngorm Suite plutons (Cairngorm, Ballater, Bennachie 

and Mount Battock) has heat production (HP) values above 4 μW/m-3 and therefore 

is considered to be High Heat Production granite (Gillespie et al., 2013) 

 They show considerable textural variability, particularly in grain-size and in the 

degree to which phenocrysts are developed, and several distinct units of km- to 10-

km scale can usually be mapped within individual plutons on the basis of variations in 

textural character. Typically, the coarser-grained units are the earliest and least 

compositionally evolved (smaller silica content), and the finer-grained units are the 

latest and most compositionally evolved (higher silica content). This suggests the 

magma was emplaced in discrete batches over a period of time (instead of one large, 

single batch) 
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 The mappable units within individual plutons usually are arranged irregularly, 

displaying no organised geometric pattern; the Lochnagar and Ben Rinnes plutons, 

both of which are concentrically zoned, are exceptions 

 The granite commonly is coloured in orangeish to pink tones 

 Zones of hydrothermally altered rock are prominent in some intrusions, notably in the 

Cairngorm and Bennachie intrusions, and to a lesser extent elsewhere 

The Hill of Fare pluton is in most respects a typical member of the Cairngorm Suite, though it 

is relatively small (around one tenth of the area at outcrop of the Cairngorm pluton, and 

perhaps only one fiftieth of its volume), and apparently lacks prominent zones of 

hydrothermally altered rock. 

Four plutons in the Cairngorm Suite – the Ballater, Bennachie, Cairngorm and Mt Battock 

plutons – were the focus of detailed investigations during a wide-ranging programme to 

investigate the geothermal potential of the UK in the late 1970s and early 1980s (details of 

this programme, and additional references, are in Gillespie et al., 2013). These plutons were 

selected because of their exceptionally high Heat Production values, and a vertical borehole 

300 metres deep was drilled into each one. Unfortunately, the boreholes were not cored 

continuously: only three short (<7 metre) sections of core were obtained from each borehole, 

at approximately 100, 200 and 300 metres depth. However, geophysical logs recording a 

range of rock properties (including rock density, electrical resistivity and natural radioactivity) 

were obtained over the full length of each borehole. These logs, and the short cored 

sections, still provide the best information available about the character of Cairngorm Suite 

plutons in the (relatively shallow) subsurface. The following information, which may be 

relevant to the present Hill of Fare investigations, comes from a brief review of published 

details of the geophysical logs and core descriptions (full references are in Gillespie et al., 

2013). 

 The rock in each borehole is texturally variable to some degree (i.e. none of the 

boreholes encountered texturally homogeneous granite throughout their length) 

o In the Cairngorm borehole around one third of the rock (all of it in the bottom 

third of the borehole) is described as “pale red granite, fresh”; around one 

quarter is described as “possible aplite/pegmatite sheets” (very little of which 

is in the fresh granite); and the remainder (around half of the borehole) is 

described as “undifferentiated granite” because “the imprint of alteration 

makes it difficult to identify rock type” 

o In the Mount Battock borehole around three quarters of the rock is described 

as “microgranite” and the remainder as “undifferentiated granite or 

microgranite” 

o In the Ballater borehole around four fifths of the rock is described as “coarse, 

pinkish-grey granite, fresh” and the remainder as “granite undifferentiated” 

o In the Bennachie borehole around one third of the rock is described as 

“pinkish-grey granite, mostly fresh”; around one tenth is a single body 

described as “aplite/pegmatite”; and the remainder was not described 
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because the “imprint of jointing and alteration obscures variations due to 

changes in lithology” 

 The rock in each borehole displayed considerable variability in the degree to which it 

was chemically altered and fractured 

o In the Cairngorm borehole less than half the rock is described as “mainly 

fresh granite”; more than half is described as “slightly altered and/or jointed 

granite”; and roughly 10% is described as “mildly to severely haematized and 

jointed” 

o In the Mount Battock borehole less than half the rock is described as “mainly 

fresh but strongly jointed” and the remainder is described as “severely jointed 

and possibly partially altered”; in around half of the borehole these two 

variants occur in alternating bands of 1-metre- to 10-metre scale 

o In the Ballater borehole around two thirds of the rock is described as “fresh 

granite, some joints”, and most of the remainder as “mildly altered and/or 

jointed granite”; an interval at least twenty metres long at the bottom of the 

borehole is described as “severely jointed and/or haematized granite” 

o In the Bennachie borehole around 20% of the rock is described as “mainly 

fresh rock with some haematization and jointing” and nearly all the remainder 

is described as “mainly altered, haematized and/or jointed rock”. The top 20 

to 30 metres of the borehole is described as “badly caved, especially over the 

most altered and jointed sections” 

 A crude log of the fractures in each cored section revealed the following details; 

unfortunately the width of joints and veins, and whether or not they contain pore 

space, is not recorded 

o In the Cairngorm borehole a joint density of approximately 2 joints per metre 

is recorded in the upper and middle cored sections, and a single haematite-

quartz vein is recorded 

o In the Mount Battock borehole a joint density of around three joints per metre 

is recorded in the upper and lower cores, while the middle core is described 

as “severely jointed throughout”. Several veins of quartz and hematite are 

recorded in the upper core, and “intense alteration near joints” is recorded in 

the lower core. Occurrences of calcite-mineralised veins and calcite-

cemented breccia are recorded in both the middle and lower cores, and 

disseminated pyrite is recorded at one location in the middle core 

o In the Ballater borehole a joint density of around one joint per metre is 

recorded in the upper core, and only one joint is recorded in the 5.5-metre 

length of the middle core 

o In the Bennachie borehole a joint density of around three joints per metre is 

recorded in the upper core. No joints are recorded in the 5.5-metre length of 

the middle core, but several veins and patches of pegmatite and one “thin 

jasperoid vein” are recorded 
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Low heat flow values calculated in all the boreholes led the investigators to infer that the 

Heat Production capacity of the granite in each pluton must diminish rapidly with depth, but 

the project found no direct evidence to support this. It is now generally accepted that 

atmospheric warming since the last glaciation has perturbed the shallowest part of the 

geothermal gradient and is the main cause of suppressed heat flow values (Westaway and 

Younger 2013, Busby et al. 2015). It therefore remains unclear to what extent the 

concentrations of radiogenic elements encountered at outcrop in Cairngorm Suite plutons 

changes with depth. 

 

Summary of key points 

 The Hill of Fare Granite Pluton is a relatively small intrusion of granite that is roughly 

pear-shaped at outcrop and underlies the Hill of Fare massif, around 5 km north of 

Banchory. The granite is reported to have moderately elevated concentrations of 

radiogenic elements at outcrop, raising the possibility that it is, or is close to being, a body 

of High Heat Production granite and therefore has the potential to provide above-

background levels of geothermal energy. The pluton is the main subject of the geological 

component of this feasibility study because of this geological character and its relative 

proximity to an established district heating scheme in Banchory. 

 The Hill of Fare pluton is considered to be a member of the Cairngorm Suite, a ‘family’ of 

granite intrusions that crop out across north-east Scotland and are inferred to be related 

geologically because they display similarities in their mineral and textural character, 

chemical composition, age, and topographic expression. The other Cairngorm Suite 

intrusions, some of which have been characterised in significantly more detail than the 

Hill of Fare pluton, can to some extent be considered analogues of the Hill of Fare pluton. 

 The contact between the Hill of Fare pluton and enclosing rocks is not exposed, but the 

outcrop pattern of the pluton suggests the contact is very steep to subvertical (at least at, 

and near to, the outcrop level). 

 The depth to which the pluton extends into the subsurface has not been determined but is 

likely to be at least several kilometres. 

 At outcrop the pluton consists entirely of granite (made up very largely of the minerals 

quartz, alkali feldspar and plagioclase feldspar). 

 The granite has a silica content of between 73% and 79%, and is therefore 

compositionally highly evolved. Moderately elevated concentrations of the radiogenic 

elements potassium, uranium and thorium (more details in Chapter 8) are consistent with 

this highly evolved character. The concentrations of silica and radiogenic elements are 

likely to decrease with depth, but currently there is no evidence (in the Hill of Fare pluton 

or other plutons of the Cairngorm Suite) to indicate how rapidly such changes might 

occur. There is also no evidence to suggest that igneous rocks other than granite would 

be encountered within the depth range of interest to a geothermal project (i.e. down to ~5 

km). 
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 At outcrop the granite is texturally variable at the 10-metre to km-scale. Three discrete, 

km-scale bodies of microgranite have been mapped within the pluton; these crop out 

along a curved, roughly east-west-trending line. There is otherwise no evidence of any 

geometric regularity in the distribution of textural variants at any scale; it therefore is not 

possible to predict how they might be distributed in the subsurface. 

 Based on the evidence described above it is reasonable to assume that a borehole drilled 

vertically to a depth of up to several kilometres anywhere in the Hill of Fare pluton would 

encounter only granite, but the granite is likely to exhibit textural variability on a range of 

scales and may exhibit a measurable decrease in the concentration of radiogenic 

elements (and therefore Heat Production capacity) with depth. 

 The success of a geothermal energy scheme in the Hill of Fare pluton (and in any other 

body of granite) depends on the borehole(s) intersecting one or more fractures at depth 

that form part of a network of connected, permeable fractures. There are two ways in 

which a network of connected, permeable fractures can form naturally in a body of 

granite: (i) as a direct result of rock rupturing in response to Earth movements (e.g. 

displacement on a geological fault); (ii) as a result of the dissolution of soluble minerals in 

veins due to a change in groundwater conditions. These two processes can operate 

together, for example when Earth movements create new cracks in pre-existing calcite 

veins, allowing groundwater to come into contact with, and perhaps dissolve, the calcite. 

 No geological faults have been recorded within the Hill of Fare pluton, and few have been 

observed or inferred in the ground surrounding the pluton or in other intrusions of the 

Cairngorm Suite. It therefore seems unlikely that a borehole through the Hill of Fare 

pluton would intersect a sizeable fault or fault-zone, though this remains a possibility.  

 No major zones of strongly altered rock have been recorded within the Hill of Fare pluton, 

and there are no topographic features that might point to the presence of zones of weak 

rock. This suggests the pluton does not contain significant zones of chemically altered or 

strongly fractured rock, at least at the level of present outcrop. It therefore seems unlikely 

that a borehole through the Hill of Fare pluton would intersect a major fracture zone, or a 

major zone of altered rock, though this remains a possibility. 

 The distribution and character of unmineralized joints on the outcrop of the Hill of Fare 

pluton is essentially normal / typical when compared with similar granite plutons in north-

east Scotland. However, unmineralized joints develop in the near-surface zone of all 

granite intrusions as they are uplifted in Earth’s crust (because the brittle rock expands 

and cracks as the overlying rock is removed), and they provide little direct evidence of the 

character of the fracture network at depth. 

 Very few mineralized joints (veins) have been recorded at outcrop in the Hill of Fare 

pluton; those that have been recorded have fillings of quartz and, locally, hematite (an 

iron oxide mineral). Calcite, a common fracture-filling mineral, has not been recorded in 

joints on the outcrop of the Hill of Fare pluton; however, calcite is soluble in near-surface 

groundwater and may be present in fractures below the near-surface zone. 

 The evidence from 300 metre-deep boreholes drilled into several other Cairngorm Suite 

plutons suggests: a ‘background’ joint density of up to 3 joints per metre may be typical in 

Cairngorm Suite plutons, at least in the shallowest few hundred metres; zones of 
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hydrothermally altered (and locally densely fractured) rock can be encountered to a depth 

of at least 300 metres; calcite-filled fractures and calcite-cemented breccia are present 

locally. The latter point raises the possibility that a network of fractures made permeable 

by calcite dissolution may exist at depth in the Hill of Fare pluton. 

 A test borehole will be needed to provide a more robust understanding of the geology at 

Hill of Fare and thereby reduce the risk attached to some of the geological uncertainties 

of a geothermal energy project here. The borehole, ideally drilled to a depth of around five 

hundred metres (which should be well below the influence of weathering), could be used 

to: measure heat flow in the borehole and changes in heat production capacity with 

depth; record changes in rock texture, rock weathering/alteration condition, and thermal 

conductivity with depth; determine the character and distribution of permeable fractures 

and other discontinuities; measure the temperature, composition and flow-rate of water in 

permeable features. 

 Boreholes for a geothermal energy project probably should be drilled at least 2-300 

metres from the edge of the pluton due to uncertainty over the position of the contact at 

depth, and the possibility that there is a ‘contact zone’ within which the character of the 

rock mass changes and/or is unpredictable. 
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5. Provisional Borehole Design 
 

A future geothermal system serving Hill of Banchory will require a minimum of two deep 

boreholes – one for abstraction, the other for reinjection. As it is advantageous to be able to 

reverse the polarity of the system to combat clogging in reinjection boreholes, the basic 

design for both boreholes will be the same. The outline design presented here is based on 

direct experience over the last dozen years in the drilling of deep geothermal boreholes in 

northern England (see Manning et al. 2007), informed by wider insights from the geothermal 

sector worldwide.  

Deep geothermal boreholes are essentially extremely deep water wells, and their design 

follows the same principles as commonplace shallow water wells, in that: 

 The borehole must be engineered to stand open, without ingress of unwanted fine 

particles etc., and 

 In the zone from which water production is desired, any means of holding the 

borehole open must allow for ingress of groundwater, while still preventing ingress of 

fine particles etc.  

The key to achieving these two requirements is an effective borehole lining system, in which 

‘casing’ (i.e. unperforated steel pipe) is installed from surface to the upper limit of the 

targeted production zone, with ‘screen’ (i.e. perforated pipe) being installed below, 

throughout the intended production zone.  Where a rock is very strong (as is the case with 

granite) the screen may be dispensed with; this was done, for instance at Eastgate in 

Weardale, and the well was found to be standing open 6 years later without any problem. 

Dispensing with long runs of pipework saves on both costs and embedded carbon 

emissions, but a final decision on that can only be taken when the behaviour of the rock 

during drilling has been assessed in detail. Precautionary screening of deep sections can be 

achieved at lower cost (and lower notional emission) by re-using casing that has been 

remaindered from the offshore hydrocarbon industry. 

Borehole lining requires that the installed casing be fixed in place to prevent unwanted 

migration of fluid outside the open lumen of the borehole. To this end, the annulus between 

casing and drilled borehole wall is typically plugged with ‘grout’, which may be a simple 

Portland cement or some more elaborate composite, e.g. including bentonite as an aid to 

impermeabilisation. In geothermal wells, a simple cement grout usually suffices, as this 

performs well at elevated temperatures, actually increasing in strength with temperature. A 

further feature of geothermal wells is that cement is typically installed through the full length 

of the cased zone (in the hydrocarbon sector, sometimes only a limited interval of a few 

hundred metres may be fully cemented). This is because the anticipated differential thermal 

expansion of steel casing and cement grout is best managed by minimising accommodation 

space; full grouting of successive concentric casings also serves a useful insulation purpose.   
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Of course, as the screened section must be open to allow water to 

enter the borehole, no cement is installed in the annulus between 

the screen and the borehole wall; this is either left empty (most 

common in geothermal boreholes) or else packed with a coarse, 

permeable sand / gravel filter pack. Design of a borehole essentially 

proceeds from bottom-up: the first thing to establish is the final 

screened diameter. A common choice is to select a standard steel 

pipe diameter of 9 5/8” (note that borehole components are still 

quoted in old units, because of US dominance of the sector). This in 

turn means that the drilled hole needs to be wide enough to receive 

pipe of this diameter; a 12” drilled diameter should usually provide 

enough clearance.  This screened section is normally flush jointed 

(screw fit) continuously to join the run of unperforated pipe above the 

production zone all the way to surface, forming the pipe through 

which geothermal fluid will be induced to flow by pumping at a higher 

level. This innermost, narrowest string of pipe (perforated near the 

base, unperforated above) is often termed the “production casing”. 

Depending on the characteristics of the overburden, one or more 

outer (larger diameter) casings may also be required, to exclude 

from the borehole any caving or fines-releasing strata.  The number 

and diameter of such casings would depend on whether future 

boreholes at Banchory were commenced on the granite outcrop, or 

on adjoining Dalradian outcrop. If the borehole commences on 

granite, then a single outer casing might be all that is required, from 

surface down to about 20 – 30m until the hole is well established in 

sound granite. To allow for response to unanticipated conditions, this 

‘surface casing’ is usually drilled and lined at a generously large 

diameter (the short length means that the costs are not excessive 

despite this). Drilling at 26” and casing at 20” is anticipated, and this 

would be fully cemented back to surface. If starting on the Dalradian, 

a secondary casing run would also be installed to prevent ingress of 

fine particulates (e.g. muscovite grains). This would typically be 

drilled at 17 1/2" and lined with casing of 13 3/8", again cemented to 

surface. The production casing would then be drilled at 12”, as 

already explained, and completed at 9 5/8”. It is also possible to 

extend the productive zine by adding a narrower (e.g. 7”) lower 

section to the hole, intersecting more fractures at higher temperature 

without committing to the full costs of completing at 9 5/8”. Some of 

these options are summarised on Figure 13. What is not shown on 

the Figure is the possibility that the lower zones of the borehole be 

directionally drilled, to access the granite from a remote site starting 

on Dalradian outcrop, and / or to maximise intersections of sub-

vertical fractures oriented favourably in relation to the local 

maximum compressive crustal stress azimuth to maximise the 

likelihood of tapping sufficient permeability. This detail would need to 

be established during a future project (see Chapter 19).    

 

Figure 13 – Schematic 
profile of drilled and 
cased diameters and 
cement runs for the 
range of possible 
geologies (i.e. allowing 
for a section through 
the Dalradian) that could 
be drilled at Banchory 
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While it is typical for oil wells at these depths to be drilled using downhole motors and 

polycrystalline diamond compact (PDC) bits, the high strength of granite typically demands 

use of special tri-cone ‘rock-roller’ bits and / or down-the-hole hammer, actuated either by 

compressed air or water.  In granite, we can normally achieve adequate flushing of cuttings 

from the hole with air, water or foam, rather than the bentonite mud suspensions favoured in 

the hydrocarbon industry, thus avoiding the risk of clogging permeable fractures with mud 

cake. 

Although drilling in granite is slower than in sedimentary strata, casing is generally swifter, so 

that the overall programme is not greatly attenuated. An indicative programme of about 6 

weeks per well would be anticipated, allowing for preparation of the site (installing any liner 

required by SEPA, plus a hard core platform to receive the rig. The drilling compound would 

be enclosed with fencing to prevent casual access by livestock or passers-by.   
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6. Expanding the database: additional survey work on the Hill of 

Fare granite 
 

Although the existing data for the region have provided the bulk of the evidence used to 

develop this analysis, the lifetime of the feasibility project provided an opportunity to collect 

some more detailed site-specific data for the Hill of Fare pluton, to help constrain geothermal 

resource estimates. Results of this survey work are summarised in this chapter. 

6.1. Heat Production 

 

What is heat production?  

Heat production is the heat energy produced in each cubic metre of rock due to radioactive 

decay of naturally occurring radio-elements. Many granites, such as the Hill of Fare Pluton, 

have elevated concentrations of uranium (U) and thorium (Th) compared to other rocks, as 

well as a significant component of potassium (K). These elements have radioactive isotopes 

which produce heat during decay. If present in large enough quantities then the heat 

produced by the decay of K, U, and Th can significantly elevate the geothermal gradient 

making higher temperatures accessible at shallower depths.   

The heat production rate of the Hill of Fare has previously been estimated at 3.9μW/m3 

(Downing and Gray 1986). However only two samples were used to make this estimate; as 

such there would be significant risk when using this value for predicting the geothermal 

gradient of the Hill of Fare granite. We conducted a new survey of the Hill of Fare granite to 

produce a robust value of heat production.  

 

Method 

Field Methods  

The method used is this study is consistent with that shown in McCay et al. (2014). That 

paper also provides a comprehensive but accessible introduction to gamma-ray 

spectrometry in geothermal exploration.  

A hand held portable gamma-ray spectrometer was used to measure concentrations of 

K(wt%), U (ppm), and Th (ppm.) The equipment used was a GSII model spectrometer 

produced by GF instruments in Brno, Czech Republic. This model of spectrometer 

automatically produces concentration of K, U, and Th without the need for calibration or 

manual calculation.  

To take a measurement the gamma-ray spectrometer is placed onto the rock and held there 

for several minutes. In this study, each measurement lasted five minutes as this has been 

found to be a sufficient trade-off between accuracy and speed when using a GSII on such 

moderately radioactive granites. Measurements were repeated until two consistent values 

were found. Consistent readings were judged as being less than 1ppm difference in uranium 

or 10nGy/hr difference in total dose rate. 
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Measurement locations are ideally flat surfaces with good rock exposure. This minimises any 

over or under-estimation that may affect the results, due to local topography, vegetation 

cover, or preferential erosion of grains that contain K, U, or Th. The Hill of Fare granite is 

poorly exposed and highly weathered in most locations. As such, most measurement 

locations were either likely underestimates or overestimates of the true concentrations of K, 

U, and Th; the following section outlines how these were dealt with.  

 

Data Processing  

In total 38 sample locations were measured of the Hill of Fare granite, 3 of the microgranites 

within the Hill of Fare, and 6 measurements of the surrounding Crathes granite. At least two 

consistent measurements were collected at each sample location. When just two 

measurements were taken then the first of these was used for the representative K, U, and 

Th concentrations. If three or more measurements were taken then the middle value was 

used.  

Many sample locations were taken from abandoned quarries which are located around the 

Hill of Fare granite. These quarries have the advantage of being relatively fresh faces so 

have not undergone erosion to the same degree as natural exposures. However 10 of these 

sample locations had the disadvantage that the nearby quarry walls and ledges created 

overestimated results. There are no standard methods detailed in the gamma-ray 

spectrometry literature to deal with such problems, so a novel solution is proposed here. K% 

is often the most consistent of the three radio-elements across granites and it is the change 

in U and Th concentrations that generally determine higher and lower heat production zones. 

K is typically between 3.8 and 4.5% in granite intrusions of the Cairngorm Suite. However 

K% values in the quarries were consistently higher than this indicating that they are likely 

overestimates due to the other quarry walls and surfaces. This was tested by taking a 

reading in the corner of a quarry wall which should lead to an overestimation by 50%. The 

K% value from this test was 7.14 which is 58% higher than an assumed reasonable value of 

4.5. This test shows that the assumption of using K% as an indicator of overestimation is 

reasonably sound. Therefore, all the heat production values taken from the quarries have 

been lowered by the ratio that their K% estimate is higher than 4.5.  

Nine values have not been used for the Hill of Fare granite because they were identified as 

likely underestimates. This underestimation results from topography of the rock or partially 

exposed rock surfaces where it isn’t clear if we are sampling bedrock or a large boulder. Due 

to the small number of measurements in the micro-granite and Hill of Fare granites all of 

these values were used to estimate heat production of those units.  

The following equation was used to calculate the heat production value of each of the 

measurements of K, U, and Th: 

HP = ρ{(0.035CK)+(0.097CU)+(0.026CTh)} 

Where ρ is the granite density in (kg m-3) CK is concentration of potassium by % weight, and 

CU and CTh are concentrations of uranium and thorium in parts per million.  
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Data and Results 

The raw data are contained within Appendix 4, which also explains which samples were 

used to calculate the averages shown below, and which samples were discarded due to 

underestimation errors, or else corrected for overestimation. 

Sample Location Mean Heat Production (μW/m
3
) 

Hill of Fare Granite 4.04 

Hill of Fare Microgranite 3.13 

Crathes Granodiorite 2.09 

Table 1 – Heat Production Values for the Hill of Fare Granite, Hill of Fare Microgranite and the 

neighbouring Crathes Granodiorite 

The average value of 4.04μW/m3 is slightly higher than the previous estimate of 3.9μW/m3, 

however the new value is taken from 29 samples across the Hill of Fare granite so is much 

more robust than the earlier figure. The Hill of Fare granite has a lower heat production 

compared with other high heat production granites in the East Grampians, i.e. Cairngorm 

(7.3), Ballater (6.8), Mount Battock (4.8), and Bennachie (7.0), however the heat production 

of Hill of Fare is significantly higher than several other granites (e.g. Crathes Pluton (2.09) or 

Aberdeen granite (2.2)) and the surrounding Dalradian metasedimentary rocks.   

 

6.2. Temperature Projections 

The method used for predicting subsurface temperatures in the granites is consistent with 

previous geothermal studies into the East Grampian granites (e.g. Downing and Gray 

(1986)). The use of consistent methods allows direct comparison between the Hill of Fare 

and the other granite bodies of the East Grampians, as well as to radiothermal granites 

elsewhere.  These predictions have also been tested against other methods for predicting 

subsurface temperatures to add robustness and confidence in the predictions; these other 

methods are discussed in Westaway and Younger (2013).  

The following equation has been used for the temperature predictions.  

Tz = a’ exp[(q0z – f(z))/a’λ0)]-b’ 

Where: Tz is the temperature at a given depth (⁰C), q0 is surface heat flow (mW/m2), z is 

depth (m), λ0 is surface thermal conductivity (W/m/k). b’ is a constant of 823.33 and a’ = b’ – 

θg where θg is mean surface temperature which is taken here at 7.5 ⁰C.  

The function of f(z) depends on whether the heat production of the granite is assumed to 

decline exponentially or linearly.  

When heat production is assumed to decline exponentially the function is: 

  f(z) = A0D[z – D(1-exp(-z/D))] 

When heat production is assumed to decline linearly the function is: 
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F(z) = [(A0z
2)/2] – [(uz3)/6] 

Where A0 is surface heat production (μW/m3) and u is a constant with the value of 0.3. 

These predictions provide a one dimensional heat profile. However the granite will be a 

complicated three dimensional structure. In reality, areas such as the microgranite with lower 

thermal conductivity will create a more complicated temperature profile. 

The key inputs to the temperature equation are heat flow, heat production and the thermal 

conductivity. The new robust estimates of heat flow and thermal conductivity (see section 

6.3) will be used as inputs. However heat flow is best estimated from temperature data in 

boreholes several hundred metres deep, preferably 500m – 1 km deep. Lack of suitable 

boreholes meant that this could not be done during the present project. Fortunately, four 

neighbouring high heat production granites have previously had heat flow boreholes drilled 

as part of the original East Grampian geothermal exploration in the 1980s. The four heat flow 

boreholes were drilled in the Cairngorm, Bennachie, Ballater, and Mount Battock granites. 

As previously noted, heat flow estimates in these boreholes were found to be surprisingly 

low. However, it is now clear that these low values were due to routine corrections to palaeo-

climate not being applied. Two recent publications have added the palaeo-climate 

corrections. Westaway and Younger (2013) corrected the Ballater borehole as part of a 

wider study of the UK’s heat flow as well as applying a new topographical correction. 

Additionally, Busby et al. (2015) applied corrections to all four East Grampian boreholes and 

significantly upgraded the heat flow estimates. We have also applied the methods of 

Westaway and Younger (2013) to the Cairngorm, Bennachie, and Ballater granites (Table 2) 

to independently verify the corrected results presented by Busby et al. (2015). The relatively 

close correspondence of these two recent suites of estimates is highly encouraging. 

Granite Original heat flow  

estimates (Downing 

and Gray 1986) 

(mW/m
2
) 

Busby et al (2015) heat 

flow estimates 

(mW/m
2
) 

New Heat flow 

estimates using the 

method of Westaway 

and Younger (2013) 

(mW/m
2
) 

Cairngorm 69.5 88.9 95 

Bennachie 75.8 89.9 87 

Ballater 71.4 87.8 89.5* 

Mount Battock 58.7 76.3 87 

Table 2 – Heat Flow Estimates of the High Heat Production East Grampian Granites 

 

The Hill of Fare granite is in the same suite as these four high heat-producing granites and is 

geochemically similar. Therefore we can expect the heat flow in the Hill of Fare granite to at 

least be similar to that of the other four HHP granites, so that we can use these heat flow 

values to guide the Hill of Fare temperatures prediction. 
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Scenario Heat Flow 

(mW/m
2
) 

Heat Production 

(μW/m
3
) 

Thermal Conductivity 

(W/m/k) 

Most favourable 90 4.5 3.00 

Intermediate 85 4.04 3.16 

Pessimistic 75 3.6 3.33 

Table 3 – Heat Flow, Heat Production and Thermal Conductivity Estimates for Hill of Fare Granite 

Table 3 shows the values that have gone into creating the three downhole temperature 

scenarios for the Hill of Fare granite. The intermediate scenario for heat production and 

thermal conductivity was selected as the baseline for this project. The ‘most favourable’ 

scenario was calculated by using the best estimate of heat production from measured 

values, increased by double the standard error of the mean. The ‘pessimistic’ scenario for 

heat production used the same best estimate, this time reduced by double the standard error 

of the mean. (For the thermal conductivity the favourable and unfavourable scenarios were 

developed by lowering and raising the maximum density Gaussian kernel by 5%, which is a 

reasonable range for this relatively invariant parameter).   Each of these scenarios was also 

modelled with two assumptions relating to the decline of heat production with depth, as 

outlined above (i.e. exponential and linear).  

 

Figure 14 – Geothermal Gradient Prediction Scenarios for Hill of Fare Granite 
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Figure 14 shows the predicted temperatures for both heat production assumptions for each 

of the three scenarios. The heat production assumptions do not seem to make a significant 

difference down to 5km depth. The favourable scenario has a geothermal gradient of 

29.0⁰C/km, the modest scenario of 25.9⁰C/km, and the unfavourable scenario of 21.1⁰C/km. 

At 3km depth there is already a 22⁰C difference between the favourable and unfavourable 

scenarios.  

Table 4 indicates the depth each scenario predicts for two possible target temperatures for a 

heat only geothermal scheme. For a 90⁰C temperature to be reached in the granite there will 

be a 1km difference in target depths between the favourable and unfavourable scenarios. 

Even for the 75⁰C temperature the difference remains large at 0.8km. Generally, the 

difference in depths between the favourable and unfavourable scenarios means that drilling 

will be around 30% deeper for the unfavourable scenario for a specific targeted temperature. 

Target Temperature    

(°C) 
Depth to target temperature (km) 

 Favourable Modest Unfavourable 

75 2.2 2.4 2.9 

90 2.8 3.2 3.8 

Table 4 – Depth to Typical Target Temperatures 

 

6.3. Thermal Conductivity  

Calculation of heat flow requires knowledge of the thermal conductivity of the rocks. Thermal 

conductivity is a material’s capacity to conduct or transmit heat and is measured in W/mK. 

Being rich in quartz (the most thermally conductive of the common rock forming minerals), 

granites are usually good heat conductors. However, site-specific data for the Hill of Fare 

Granite were not available, so 18 plug samples from the Hill of Fare Granite were analysed 

using a Portable Electronic Divided Bar.  

 

Methods 

Sample Collection 

The 18 samples were collected from the Hill of Fare granite and microgranite at three key 

localities. They were collected using a handheld 1-inch diameter diamond-edged plug drill. 

Full details of the samples are listed in Appendix 1. 

Sample Preparation  

The drill core samples (roughly 24mm in diameter) were cut into roughly 1 cm thick slices.  

During the rock sawing process some of the samples chipped along the edges, most 

commonly due to pre-existing fractures within the core. These features are noted in 

Appendix 1. 
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Sample preparation was an important part of the process as irregularities along the sample / 

plate contact can impede the heat flow across the sample and can produce lower thermal 

conductivity values. These irregularities can come in the form of grooved sample faces from 

the rock sawing process, chips along the edges of the samples, and fractures within the 

samples. To create the best sample/plate contact they underwent two polishing processes. 

First, both faces and the edges of each sample were smoothed using grinding wheels of 

roughness 175 and 40. Another round of polishing was then completed using 300 grit. 

Thermal Conductivity Analysis  

Data were gathered using a Portable Electronic Divided Bar, which produces a temperature 

gradient across rock samples and allows thermal conductivity of the samples to be 

calculated using Fourier’s Law.  

Once the samples had been prepared the top and bottom faces were coated in petroleum 

jelly to facilitate good thermal contact.  They were then clamped into the divided bar until the 

sample equilibrated. ∆T (a unitless software calculated parameter) versus time was graphed 

using a Pico Logger coupled with the divided bar, allowing us to visualise when the sample 

had equilibrated.  Thermal conductivity values were then calculated by inputting sample 

thickness, sample surface area, sample diameter and ∆T at equilibrium into the master 

spreadsheet.  The following equation was used; 

Thermal Conductivity = d/R 

R= (A (∆T – c))/ (a (diameter + b)) 

A = surface area of sample in mm2  

D = diameter of sample in mm 

a, b, c = calibration constants 

Standards were run every two samples. The standards, provided by HDR, were gabbro, 

sericite and granodiorite. Readings from these samples during this project were combined 

with measurements of the standards taken over the lifetime of the instrument. This allowed 

us to produce “lifetime corrected” thermal conductivity values. 

The granites were put into the divided bar with the outermost surface facing up. This was 

done to allow for future research into weather conductivity values vary when heat flows in 

different directions through the rock. 

Each sample was run three times to increase confidence in calculating an accurate average 

and to highlight anomalies.  
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Results  

Table 5 details lifetime corrected K values. 

Lifetime Corrected K (W/mK) Summary  

HoF# Run 1 Run 2 Run 3 Average 

1 3.21 3.22 3.42 3.284 

2 3.27 3.26 2.46 2.995 

3 3.12 3.10 3.41 3.213 

4 2.24 2.24 2.56 2.349 

5 2.81 2.82 2.77 2.803 

6 2.92 2.94 3.15 3.004 

7 2.92 2.90 3.04 2.955 

8 2.74 2.71 2.65 2.697 

9 3.08 3.06 3.26 3.133 

10 2.57 2.56 2.67 2.601 

11 3.05 3.03 3.14 3.072 

12 3.23 3.21 3.33 3.256 

13 3.33 3.32 3.39 3.346 

14 3.33 3.30 3.21 3.279 

15 3.11 3.10 3.00 3.071 

16 2.04 2.02 2.46 2.176 

17 3.54 3.53 3.97 3.682 

18 3.19 3.15 3.58 3.305 

Table 5 – Lifetime Corrected K Values 

Univariate statistics were deemed inappropriate for this type of data due to the number of 

variables, so it was fitted to a Dernel Density Estimator (KDE). Results show that the data 

show maximum likelihood at a thermal conductivity value of 3.16 W/mK.  
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Figure 15 – Estimated thermal conductivity, Hill of Fare 

 

This statistical analysis was carried out by using the following online software - 

http://www.wessa.net/rwasp_density.wasp. 

 

Discussion 

Average thermal conductivity values for the Hill of Fare Granites range between 2.176 and 

3.682 W/mK, which is consistent with the range of 2.9 and 3.6 W/mK given for other High 

Heat Production Granites (HHP) in Scotland in the Scottish Government paper ‘Study into 

the Potential for Deep Geothermal Energy in Scotland’ (Gillespie et al. 2013).   

The highest, most consistent results were found amongst the Craigton Main Quarry 

samples, which yielded values that were consistently above 3 W/mK. 

The lowest results were found in the Raemoir North Quarry samples with values consistently 

at or below 3 W/mK. 

http://www.wessa.net/rwasp_density.wasp
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No real correlation was seen between thickness and thermal conductivity. Chips, tapers and 

other minor irregularities in the samples also didn’t seem to have a noticeable impact on the 

results. 

The third round of readings show, in general, slightly higher values than the first two. 

However, within the set they show relatively similar patterns to the first two sets. This 

systematic discrepancy may have arisen as a result of the laboratory being of a significantly 

lower temperature than when the first two sets were run. The effect of room temperature on 

readings given by the Divided Bar is now being interrogated by Town Rock Energy and the 

University of St Andrews, where the tool is held. For the purpose of this study, the effects on 

the results are negligible and within the 5% degree of uncertainty.  

 

6.4. Gravity and Magnetic Surveying 

Background 

Potential field methods are geophysical methods that use variations in the Earth’s gravity 

and magnetic fields (“anomalies” – differences in what are measured from some reference 

value) to infer variations in the geometry and properties of rocks below the surface that are 

not otherwise directly observable (as in outcrop geology). In the case of gravity and 

magnetic methods the rock properties that vary are density and magnetic susceptibility 

respectively. Regional gravity and magnetic anomalies for an area of north eastern Scotland 

centred on the Hill of Fare pluton are shown in Figure 16. 

 

Figure 16 - (a) Regional Gravity [left-side image], (b) Magnetic Anomalies [right-side image] for a part of 
north-eastern Scotland (BGS Data (2002)) 

Figure 16 is based on measurements approximately one per 2 km2 (BGS, 2002), which 

gives an indication of its resolving capability. The magnetic map is compiled from 

aeromagnetic data observed on E-W flight lines with 2 km spacing. The location of the Hill of 

Fare pluton is schematically indicated by the white ellipse and the white tick mark the 

location of the local gravity and magnetic surveys carried out as part of this project. 
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Figure 16 demonstrates that the gravity and magnetic fields of north-eastern Scotland 

correlate to a large degree with the distribution of igneous plutons (cf. McGregor and Wilson, 

1967; Johnston, 2015). Gravity anomalies associated with the Hill of Fare pluton are 

generally less than surrounding areas and magnetic anomalies generally greater; the latter is 

most evident although in both cases, for the low resolution, regional data available, any 

singular Hill of Fare anomaly coalesces with those sourced from surrounding igneous (and 

possibly other geological) bodies. 

Bulk density of upper crustal rocks varies in the approximate range 2,000-3,000 kgm-3. This 

depends on the constituent minerals of rocks with common rock-forming minerals that are 

“light-coloured” (quartz, white and pink feldspars such as those that dominate in “felsic” 

rocks like granites) being less dense than minerals that are “dark-coloured” (amphibole, 

pyroxene, grey and black feldspars such as found in “mafic” rocks like basalt and 

amphibolite) are denser. A typical density for the Hill of Fare granite (“biotite granite, pink, 

leucocratic”; BGS, 2002) would be in the range 2,600-2,700 kgm-3 and according to 

measurements made by McGregor and Wilson (1967) it is 2,630 kgm-3. The country rocks to 

the south of the Hill of Fare granite are “psammitic” and “pelitic” (metamorphosed 

sandstones and shales) metasedimentary rocks of the Argyll Group (BGS, 2002) and such 

rocks are likely characterised by higher density than the granite of the Hill of Fare; a value of 

2,740 kgm-3 is reported by McGregor and Wilson (1967) for the Dalradian Supergroup, of 

which the Argyll Group forms one subdivision. Accordingly, the Hill of Fare granite (and 

associated igneous plutons) should display negative gravity anomalies relative to 

surrounding areas as is the case in Figure 16. 

Bulk magnetic susceptibility of upper crustal rocks lies in the range 0-0.2 (SI units) and 

depends on the presence of magnetic minerals such as, especially, magnetite. Magnetite is 

generally most prevalent in dark-coloured mafic crystalline rocks, less so in light-coloured 

crystalline felsic rocks and relatively uncommon in (meta) sedimentary rocks. According to 

McGregor and Wilson (1967) suitable values of magnetic susceptibility are 0.025 (SI units) 

for Hill of Fare granite and nil or very small for Dalradian strata. Accordingly, the Hill of Fare 

granite (and associated igneous plutons) should display positive magnetic anomalies relative 

to surrounding areas as is the case in Figure 16. 

 

Objectives 

The project activity was a small-scale pilot survey aimed at testing whether high resolution 

(tightly-spaced) gravity and magnetic field measurements along a profile crossing the 

geologically inferred boundary of the Hill of Fare granite pluton and Dalradian country rocks 

would be capable of pinpointing its location exactly, possibly with inferences about its 

subsurface geometry (e.g. dip direction, thickness). The results were expected to provide an 

indication of whether density and/or susceptibility contrasts would be sufficient for 

delineation of this boundary in three dimensions from high resolution gravity and magnetics 

surveying on a two dimensional grid in an area of specific interest such as a potential future 

geothermal well site. 
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Data acquisition, reduction and results 

The scope of the work and logistical considerations dictated that surveying was limited to 

several days in the field and at one locality with good road access crossing the inferred Hill 

of Fare granite-country rock contact. Figure 17 shows the chosen location of the surveying, 

which took place on the southern slopes of the Hill of Fare on and near the Burnhead Farm 

road off highway A980 just north and west of the Raemoir House Hotel. 

Figure 17 shows the location of the observed gravity and magnetic profiles. Gravity 

observations were made on 21-23 January 2016 using a Scintrex CG-5 “Autograv” gravity 

meter. The instrument is extremely sensitive to levelling and therefore ground stability. For 

this reason measurements were made as much as possible along hard roadbed or other 

surfaces. Measurements in fields was also possible though more time-consuming, by 

reinforcing the ground surface with harder materials before measuring. Some 40 stations 

were observed as shown in Figure 18. Weather conditions prevented measurements being 

made in the later part of the afternoon of 21 January and all of the morning of 22 January. 

Suitable daylight was available from about 9 am until 4 pm. 

 

Figure 17 - Location of the observed gravity and magnetic profiles 

Gravity observations were made every 15-20 m along the Burnhead farm road and in the 

field north of Burnhead cottage; the western “murky green” solid line represents a profile 

projection of the gravity data. Magnetic observations were made every ~10 m on a line 

roughly coincident with the eastern “murky green” solid line. The dotted line indicates the 

inferred contact between the Hill of Fare granite to the north and Dalradian (Argyll Group) 

metasedimentary rocks to the south (from BGS, 2002). 
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Figure 18 – Locations of gravity stations along the track from the main road (A980) to Burnhead Farm  

Figure 18 shows the locations of gravity stations along the main road (A980) to Burnhead 

Farm. The Base Station (labelled 8 here) was near the farmhouse and several additional 

stations, not plotted here, were measured between it and Station 14. 

The Earth’s gravity field is sensitive to height (altitude) as well as latitude and variability 

associated with these is not of geological interest so corrections are made to account for 

them. In particular the relative altitudes of stations must be known very accurately. In the 

present case, with geological variability in the order of 0.1 mGal, elevations should be known 

to within 30-50 cm. Differential GNSS equipment was used to determine horizontal as well 

as sufficient vertical co-ordinates at each measurement station with each observation point 

requiring some 20 minutes of data accumulation. Analyses during and after the fieldwork, 

however, revealed that the vertical co-ordinate was not likely recorded with the intended 

accuracy of ± 1-10 cm although the reason(s) for this are not clear. It is estimated that 

elevations are known only to ± 1 m at best and this has resulted in some degradation of the 

resolution of the calculated gravity anomalies. 

Figure 19 shows the observed gravity anomalies corrected for latitude and elevation 

changes, along the projected profile shown in Figure 17. The absolute values of the gravity 

anomalies do not have significance (they are calculated relative to the base station value at 

Burnhead cottage) but the change in anomaly value along the line does. The observed 

anomalies have an absolute range of about 2.5 mGal (milligals). “Noise” levels related to 

height measurement inaccuracy are in the range 0.5 mGal. 
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Figure 19 - Gravity anomalies along the (westerly) profile shown in Figure 17 

The arrow in Figure 19 shows the approximate location of the inferred Hill of Fare granite-

country rock contact from BGS (2002).  

Magnetic observations were made on 9 October 2015 using a Geometrics G-857 

magnetometer. Measurements of the magnetic field are sensitive to nearby metal and 

electrical currents so they must be made at least 10 m from fences and overhead wiring. For 

this reason measurements were taken in the middle of fields. Access was easy and non-

problematic as crops had already been harvested. Some 90 stations were observed roughly 

along the line shown in Figure 17 with gaps between stations being greater where fences 

between fields were encountered. (An additional line of observations was made running 

roughly in an E-W direction in fields north of highway 977 east of “The Green” farm [cf. Fig. 

17] but these are not discussed further here.) 

Besides the profile magnetic measurements being made a second magnetometer is used as 

a “base station”, remaining stationary but recording continuously throughout the survey 

period so that diurnal variations in the Earth’s magnetic field (related, for example, to 

electrical activity in the atmosphere and/or solar activity) are known and can be removed 

from the station observations. 

Figure 20 shows magnetic anomalies, corrected for the diurnal variations, along the profile 

located in Figure 17. The observed anomalies lie in the range -160-250 nT (nanotesla). A 

correction for latitudinal variation, which in the UK is about 2 nT/km increasing to the north-

west, was not applied but the effect is clearly very small compared to the size of the 

observed anomalies. 
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Figure 20 - Magnetic anomalies along the (easterly) profile shown in Figure 17 

The arrow in Figure 20 shows the approximate location of the inferred Hill of Fare granite-

country rock contact from BGS (2002). 

Discussion 

The gravity field along the observed profile (Fig. 19) is dominated by a gradient derived from 

sources that are more regionally and more deeply distributed than the small scale of the ~1 

km long survey itself. The polarity of the observed local gradient, with gravity decreasing to 

the north, appears to be consistent with what can be inferred from the regional field as seen 

in Figure 16 and what is indicated on the BGS (2002) geological map of the area. Given that 

the density of the Hill of Fare granite is thought to be less than the adjoining 

metasedimentary country rocks (McGregor and Wilson, 1967) it can be inferred that the 

(regional) source of the gradient is the large Hill of Fare pluton itself along with associated 

granitic bodies occupying the crust north of the survey area. There is a suggestion of an 

increase in (negative) gradient just to the north of the BGS (2002) inferred contact (in the 

distance range ~400-600 m), which would be expected since this contact lies near the 

ground surface and suggesting that the actual contact is some tens of metres further north 

than where it has been mapped. The negative perturbation in the distance range 500-600 m 

is the local feature that is greater than perturbations that are likely noise (altitude 

measurement) related. It may be related to a buried channel on the soil-bedrock surface, 

something that is suggested by the physiography of the area. 

The magnetic field along the observed profile (Figure 20) clearly shows the signature 

anomaly of the edge of a buried magnetic body (such as an igneous intrusion) adjacent to 

relatively non-magnetic country rocks (e.g. Kearey et al. 2002). This is in the distance 

range~ 250-650 m with a positive peak of about 250 nT and probably a negative lobe to the 

south of some -50 nT. A theoretical example of the same effect – which is the magnetic 

anomaly of the magnetic body induced by the Earth’s own magnetic field superimposed 

upon the Earth’s own field, is shown in Figure 21. The observed data were complicated by 

superimposed regional or other intermediate and local effects as well as noise. The last may 

include “cultural noise” derived from buried pipes and cables, since the survey took place 
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near a built area with dwellings and other (farm) buildings, although typically these would 

have an identifiable effect. A second magnetic anomaly, centred at around 1000 m, is also 

evident. If the larger of the two anomalies is the signature of the geological contact of 

interest then it is near its location inferred by BGS (2002), though perhaps some tens of 

metres further north of the arrow in Figure 20, but the second, smaller, anomaly indicates 

that there may be structural complications and/or compositional heterogeneity within the Hill 

of Fare granite at the scale of the survey. 

                        

Figure 21 - Theoretical effect in the induced magnetic field of the contact of a magnetic body and a non-
magnetic one 

 

Conclusions and prognosis 

High resolution gravity and magnetic surveying is possible in the fields at the base of the Hill 

of Fare granite in the vicinity of its contact with Dalradian Supergroup country rocks. There 

are significant magnetic field anomalies that appear very likely related to the granite-country 

rock contact and they suggest that there is local compositional heterogeneity within the 

upper hundreds of metres (below the present ground surface) of the igneous pluton. In 

contrast, there are no specific small scale local effects in the gravity field associated with the 

granite-country rock contact although there is a suggestion of an increased negative (to the 

north) gradient in the gravity field that could be indicative of the country rock-pluton contact. 

One likely significant local anomaly is probably related to the underlying bedrock topography. 

Otherwise, the gravity field is dominated by the effects of larger, more regional structures 

such as the Hill of Fare body itself as a whole. 

A high resolution magnetic survey on a 2-3 km2 grid would provide sufficient data and data 

redundancy to allow three-dimensional modelling of the subsurface structure and 

composition on a local scale. These data could be augmented with new gravity and 

magnetic observations at lower resolution spacing in the surrounding area (say ~15-20 km2) 

to provide further context for the locally inferred structure and strengthen its robustness. 
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7. Assessment of Existing Baseline Data 
 

Potential fluid flow rates in the Hill of Fare granite 

Fractures in granite 

In granite, fluid flow is generally concentrated in fault and fracture networks due to the very 

low permeability of the rock mass. These faults and fractures are typically heteregenously 

distributed due to the long and complicated tectonic history of many granites. Fractures can 

either be distributed evenly throughout the rock or they can be tightly clustered in fracture 

zones with larger expanses of relatively intact rock between; different granite bodies will 

display fracture distributions somewhere between these two extremes. Since the faults and 

fractures are controls on permeability their properties affect how easy it is to transmit fluid 

through the granite. These properties are frequency, fracture length, orientation, 

connectivity, mineral fill, and aperture. The combination of these influences creates 

significant challenges to predicting the permeability of granite at depth.  

Figure 22 shows examples of fracture systems intercepted by drilling in geothermal 

boreholes. Observations from these examples are generally consistent, in that the fractures 

appear in small discrete zones surrounded by larger areas of more intact granite. In the case 

of the Habenero project these fracture zones could be matched up between boreholes so 

although each fracture system is discrete they are extensive and can operate over a wide 

area within the granite (Wyborn 2010). Underground excavations related to radioactive 

waste disposal have encountered more evenly distributed fracture distribution within granite 

although still with significant variation (Olkiewicz 1979) however this study was at much 

shallower depth, being only within 400m of the surface.  

Figure 22 shows three examples of fracture systems encountered in geothermal boreholes; 

 a, is from Cooper Basin in Australia (Wyborn 2010) and shows three boreholes 

encountering the same fracture systems at different locations. Each of these fracture 

systems are separated by many tens of metres of relatively intact granite. 

 b, shows the cumulative number of fractures encountered at depth within the granite 

by one of the boreholes in the Soultz-sous-Foret geothermal project in France 

(Dezayes et al. 2010). Here zones of higher fracture density are separated by longer 

stretches of granite of lower fracture density (i.e. more intact). 

 c, is from the Rosemanowes geothermal project in Cornwall, UK (Richards et al. 

1994). The RH12 and RH15 boreholes show the location of fracture zones which 

were encountered in addition to the proportion of fluid flow rate which is attributed to 

each fracture zone. The %flow values indicate that a high proportion of the fluid flow 

was located within a relatively small proportion of the fractures.  
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Figure 22 – Examples of Fracture Systems in granites 

 

These localised fracture zones can create concentrated zones of fluid flow or permeability. 

This is demonstrated in Figure 22, c, where in borehole RH12 70% of the fluid flow comes 

from a single fracture zone; similarly, in RH15 43% of the fluid flow comes from a single 

fracture zone. Such discrete zones of fluid flow were also noted in the Swedish granite HDR 

experiment (Jupe et al. 1992) where two fracture zones appeared to be responsible for most 

of the fluid flow across hundreds of metres of the borehole. These observations are repeated 

by other studies not related to geothermal. Barton et al. 1995 found that hydraulically 

conductive fractures are a subset of the overall fracture population with many being closed 

to any fluid flow. The Swedish radioactive waste underground laboratory in fractured granite 

(Olkiewicz 1979) found a relatively more even distribution of fractures but the fluid flow was 

still attributed to a small subset of these fractures (Black 2007).  

Information on fractures and faults in Scottish granite is sparse as few comprehensive 

studies have been conducted (an exception being Thomas et al. 2004). Old heat flow 

borehole records have been used to gain information about the fractures of the other high 

heat production granites in the East Grampians of Scotland. As previously mentioned, these 
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four boreholes were each 300m deep, and were drilled into the Ballater, Bennachie, 

Cairngorm, and Mount Battock granites. Three 10m cores from each borehole were taken at 

90m, 190m, and 290m depth.  From these cores the fractures were counted and their 

fracture densities (fractures per metre) calculated (Figure 23). 

           

Figure 23 – Fracture Density calculated from borehole cores of the high heat production East Grampian 
granites 

 

It must be borne in mind that the fracture densities shown in Figure 23 are for the first few 

hundred metres of depth. This upper part of granite is known as the ‘active’ zone and is likely 

to be more fractured than the deeper geothermal target zones. Each of the East Grampian 

granites has at least one zone of high fracture density (i.e. >2 fractures per metre). The 

fracture density in these zones is similar to that of the high density areas of Soultz-sous-

Forĕt (Figure 22b) which has had successful fluid circulation tests after further stimulation). 

That these zones exist within each of the East Grampian granites is positive as it indicates 

that such zones could also be found in the Hill of Fare Granite, possibly providing natural 

permeable zones. Nevertheless, it remains uncertain how these shallow fractures will 

correspond to those at the depths of interest.  

 

Fracture system on the Hill of Fare granite 

The first step in characterising the fracture patterns of the Hill of Fare granite would be a 

surface study of exposed fractures and faults. Unfortunately, initial field work showed that it 

would not be possible to collect robust data on the fractures without a much more detailed 

study requiring significantly more time and resources than the current study afforded. This 

could involve using a Lidar system at abandoned quarries in which the fracture orientations 

and distributions could be identified and analysed for otherwise inaccessible faces.  

Despite the limited exposure, basic observations were still feasible at several abandoned 

flooded quarries. There appears to be a general trend for faults and fractures to be 
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contained within a single slip surface which has minimal surrounding damage. General sets 

of faults and fracture appear to strike either North to South or West to East.   

The Hill of Fare granite was emplaced at the same time as the other high heat producing 

East Grampian granites (shown on Figure ES.2). The shared tectonic history between these 

granites suggests that the fractures of the Hill of Fare would likely be similar to those shown 

on Figure 22. Nevertheless, the emplacement of each granite creates unique conditions so 

while the other granites are analogous they cannot be assumed to be identical.   

 

Granite geothermal systems borehole flow rates: case studies 

The amount of energy that can be extracted from a geothermal system is dependent upon 

the flow rate from the production well. Therefore, in order to investigate the energy output 

from a possible geothermal system it is necessary to provide some constraints on possible 

flow rates through fracture systems in the Hill of Fare granite. There are insufficient site-

specific data to constrain likely flow rates, as explained above. Consequently, we have used 

several case studies to inform what fluid flow rates have been achieved in previous 

geothermal demonstrations and operational schemes in fractured granite. The granites in 

these schemes will have already undergone an appraisal  process like that presented here, 

and thus will already have been targeted for areas that are likely to be amenable to 

geothermal development. These case studies cannot be considered close analogues to the 

Hill of Fare, but are considered as examples should the Hill of Fare granite proceed to a 

more detailed pilot borehole appraisal in future.  

In some cases granites can produce suitably high flow rates without stimulation (Manning et 

al. 2007).  However, in most cases, hydraulic stimulation has been used to increase the 

permeability of the fractured granite.  Following such stimulation, Evans et al. (2005) and 

Jupe et al. (1992) both reported increases in permeability of several orders of magnitude, 

while Chabora (2012) reported an increase in productivity of 10 times.  Low-magnitude 

induced seismicity can be anticipated during such stimulation, though never at levels likely to 

cause any problems (Majer et al. 2007).   

Each of the case studies listed below will have distinct fault/fracture distributions.  However 

consistent trends across the case studies will inform upper bounds to fluid flow rates that 

could be expected from a successful geothermal scheme in the Hill of Fare granite.  

 Cooper Basin, Australia 

The 1MWe Habanero Pilot plant is run by Geodynamics Ltd in the Cooper Basin in 

Australia. The plant targets natural occurring fractures, which are then hydraulically 

stimulated, in a granite body that is buried beneath several kilometres of sedimentary 

rock.  The plant operated a trial at 4km depth where geothermal fluids were produced 

at 215⁰C at flow rates of 19 L/s. The planned flow rate for a production borehole in a 

full scale commercial plant is 70-100 L/s.  

During the stimulation testing in the Cooper Basin granite, fluids were injected into 

the granite at flow rates of between 10-40 L/s (Baisch et al 2006). The tests also 
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found that a single fracture within the granite could host flow rates of up to 30 L/s 

(Wyborn 2010).  

 Soultz-sous-Foret, France  

Soultz-sous-Foret (SSF) in France has been the location of the main European test 

site for Enhanced Geothermal Systems (EGS). A four month long trial circulated 

water between two boreholes (Gerard et al 2002) achieving a stable flow rate of 25 

L/s.   

During hydraulic stimulation tests at SSF fluids were successfully injected into the 

fractured granite at flow rates of 5 – 40 L/s. 

 Rosemanowes, U.K.  

This experimental EGS reservoir was created in the south-west of the UK in 1985. 

Stimulation of the fractures successfully linked an injection and production well with a 

separation of 133m. Testing continued for 300 days of circulation and achieved an 

average flow rate of 8.5 L/s (Richards et al. 1994), though ranging up to 20-35 L/s at 

various stages of testing. The planned commercial production flow rate for the 

scheme was 50 L/s, but the project never progressed beyond test phase.   

 Fjallbacka, Sweden 

Injection tests were carried out at an EGS test site in a jointed granite in Sweden 

(Jupe et al. 1992). Most of the fluid flow occurred at two highly-fractured 

hydraulically-conductive zones at 452m and 472m depth. A total of 400m3 of fluid 

was injected at flow rates of between 20-30 L/s.  

 Weardale, U.K. 

An exploratory borehole targeted a fault known as the “Slitt Vein” in the Weardale 

granite (Manning et al. 2007). The granite is buried beneath several hundred metres 

of Carboniferous sedimentary rocks. A pumping test was carried out upon 

interception with the Slitt Vein to test the permeability of the fault and fracture system. 

Groundwater was pumped at 17 L/s for 24 hours with only a 1m drop in head 

suggesting a highly permeable active fracture system that could be sustained at far 

greater rates as part of a doublet well system (Younger and Manning 2010), with no 

need for stimulation. This underlines the value of deliberately targeting large faults 

that are inferred to be appropriately aligned with the present-day crustal stress field.  

 Fracture oil reservoirs 

Fractured basement rock (i.e. hard, crystalline rock lacking matrix permeability) is an 

uncommon but established target for oil and gas exploration. These hydrocarbon 

reservoirs are analogous to the fluid flow regime of a geothermal target in fractured 

granite. Experience in the hydrocarbon reservoirs suggest individual fault/fracture 

zones are capable of providing flow rates of between 1.5-10 L/s without any reported 

stimulation (Li et al. 2004, Tandom et al. 1999, Donofrio 1998). Individual boreholes 

within these reservoirs have experienced flow rates of up to 37 L/s when multiple 

fault/fracture zones are intercepted (Tandom et al. 1999).  
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Constraining fluid flow rates for the Hill of Fare granites 

The case studies above consistently show test circulation or injection fluid flow rates in the 

tens of litres per second. The test circulations ranged from a low average of 8.5 L/s at 

Rosemanowes, UK to 25 L/s at SSF, France, although Rosemanowes circulation did range 

up to 35l/s for a limited time. These test circulations indicated how much fluid it is feasible to 

circulate in a fractured granite if favourable conditions are found, such as those in Weardale, 

U.K where flow rates of up to 17 L/s were achieved with minimal head change in a pumping 

test (Younger and Manning 2010), without any stimulation of the fracture network.  

Additionally, the case studies of hydraulic stimulation of fractures show flow rates during 

injection that are similar to the above case studies for fluid circulation. The examples shown 

here indicate that a successful borehole-doublet in fracture granite would achieve flow rates 

of tens of litres per second. 

Three flow rate scenarios were chosen with values informed from the case studies above 

(Table 6). These scenarios are not informed from any geological information from the Hill of 

Fare but are designed to be representative of a generic geothermal scheme in a fractured 

granite. As such they are not predictions of flow rates that could occur in the Hill of Fare 

granite, but will be used in subsequent upstream modelling to investigate how these 

hypothetical scenarios impact upon feasibility of the geothermal scheme. 

Scenario Flow rate (l/s) 

Most Favourable 50 

Intermediate 15 

Least Favourable 5 

Table 6 – Assumed flow rate scenarios for a borehole-doublet scheme in fractured granite 
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8. Vision Statement – A Deep Geothermal Heat System at Hill of 

Banchory 
 

This chapter sets out a concept of what an ideal outcome of deep geothermal exploration at 

Hill of Banchory would mean.  

 

A trail-blazer for the deep geothermal sector in Scotland  

The granites in the north east of Scotland undoubtedly contain large amounts of thermal 

energy suitable for exploitation as low-carbon, renewable heat.   For that energy to be 

exploited commercially, the right combination of temperature and permeability must be 

present.  Without actually drilling into the deep rock we cannot establish with certainty the 

quality of the geothermal resource.   At present, we do not know if the Scottish granites offer 

exceptional geothermal potential, or something less attractive.   

A deep geothermal borehole at Banchory would greatly improve our understanding of the 

deep geothermal potential of the Grampian granites.  These extend over a large area of the 

country (see Figure 24) and could potentially represent a significant future energy resource 

for Scotland as a whole. 

  

                 

                                             

Figure 24 – Granite Plutons in Scotland 

It is hard to put a figure on the overall energy potential of the Scottish granites, but the 

Weardale Granite underlying parts of the Pennines (which has no surface outcroppings) is 

estimated to have a heat potential of 9,000 MW – in other words, it produces as much heat 

in a year as Scotland’s total annual heat demand.  While only a fraction of that could be 

exploited commercially, the scale of this heat source strongly suggests that it is worth 

investigating the heat potential of the Scottish granites.     
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The sections below set out a vision of what would be possible if the geothermal potential at 

Hill of Fare proved to be good – which we have assumed to mean the well could produce 30 

litres per second of water at a temperature of 75 °C.  That equates to a heat source with a 

capacity of around 2.5 MW. 

 

A sustainable source of ultra-low carbon heat energy 

Following the successful exploratory borehole, test pumping is conducted to establish how 

much water can be pumped sustainably from depth.  In other words, it assesses how much 

hot water can be pumped out before the water level in the borehole drops below an 

economically viable maximum depth to the pump intake.   Assuming a positive outcome, the 

other elements of the deep geothermal heat system will be put in place, chief among them 

the reinjection borehole.  This will carry the geothermal water back to depth after useful heat 

has been extracted, creating a geothermal ‘doublet’ system.  This is a typical arrangement 

for a deep geothermal heat system, and found widely in areas such as Iceland, Central 

Europe or Eastern Paris, where geothermal heat use is relatively common.  

 

A minimal environmental footprint 

Pumps and a heat exchanger will be installed in a small containment building above the 

wellheads, which would be located somewhere in the sparsely populated farmland between 

the Hill of Fare and the northern outskirts of Banchory.   The heat exchanger will be the 

interface between the geothermal water and fresh water circulating in the heat network 

pipelines.  

The visual intrusion represented by the surface elements of the geothermal system will be 

extremely small.  The building will be roughly on the scale of a two car garage, and can be 

designed to fit into the landscape.  There will be no emissions of steam, or any other gases, 

as the geothermal boreholes will be a closed system.  The piping carrying the water to and 

from Banchory will be buried where necessary to minimise visual intrusion.   

Overall, the geothermal system should be so low key it could be overlooked entirely.  

Though this may seem unrealistic, the panorama of an urban area in Reykjavik (Figure 25) 

includes five geothermal wellheads with a total capacity of around 10 MW.     

 

Figure 25 – Geothermal wellfield in Reykjavik. The wells are in inconspicuous cabins about the size of 
bus shelters 

P
h

o
to

: C
lu

ff
 G

eo
th

er
m

al
 



Page | 69 

 

A long-lived, sustainable energy asset 

At the energy centre the hot water piped from the production borehole effectively becomes a 

2.5 MW heat source that generates heat nearly continuously (in many existing systems the 

system loading is in excess of 90%, with down times for maintenance etc. scheduled in for 

periods of low demand).  By making use of the existing heat stores already present in the 

HOBESCO system, demands of up to 5 MW peak can be met, ensuring that the heat from 

the well is used with high efficiency.  Gas boilers, which are already in place, act as a back-

up and for covering exceptionally high demand peaks.  

Although the input temperature of 75°C is marginally too low to be used in much of the 

existing network without some boosting, the space heating systems across the later 

expansion stages of the Banchory heat network have been designed to accommodate the 

slightly lower temperatures coming from the geothermal well. 

Operation and maintenance costs for the geothermal heat system are low.  Thanks to the 

support from the Renewable Heat Incentive the price of heat to the network (and to the 

network’s customers) is competitive and also highly stable; as the main input cost of a unit of 

heat is the financing of the boreholes and connecting piping, it is not exposed to the volatility 

of fossil fuel markets.   After the capital costs have been paid off, the network will become a 

long-lived, fully sustainable low carbon energy asset able to supply very cheap heat.     

A key advantage of a geothermal system is longevity.  Although the pump and other small 

elements will need replacement every 10-15 years, the boreholes themselves should be very 

long lived and could potentially supply heat to Banchory for the rest of the century.  The 

oldest geothermal heat system in the world in Boise, Idaho has been operating since the 

1890s. 

 

Ultra-low carbon heat, able to replace gas and heating oil 

The carbon intensity of deep geothermal energy is recognised as very low, especially for 

heat generation.   1 MWh of geothermal heat will give rise to fewer carbon emissions even 

than biomass or solar heating, and much less than 1 MWh of fossil fuel heating.  Our 

calculations suggest that geothermal heating at Banchory, on a ‘central’ case of 

assumptions, will be 18 times less carbon intensive than natural gas heating (which is the 

least carbon intensive of the fossil fuel heating technologies).    A 2.5 MW well running at a 

gross annual loading of 60%, and replacing gas heating, would deliver an annual saving of 

around 2250 tonnes of CO2. 

 

A template for other geothermal systems across Scotland  

Once the practicality – and commercial validity – of a deep geothermal well utilising the heat 

from deep granite was established, the potential for rolling out similar projects across the NE 

of Scotland would be large.  Each system would use only a small proportion of the available 

geothermal energy; and, as knowledge of the deep geology of the granite increased, risks - 

and thus financing costs - would reduce. 
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In time, deep geothermal systems could come to provide a core element of low carbon, 

sustainable and competitive heating for a significant number of Scots, contributing towards 

carbon emission reduction targets and improving energy security. 
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9. The potential market for a geothermal well; heat demand in 

Banchory  
 

In the following three chapters we consider the financial aspects of the proposed project.  In 

this Chapter, we consider the available heat demand in Banchory.  In Chapter 10 we 

consider the economics of heat production from the well itself, and in Chapter 11 we 

consider the economic viability of a geothermal well in Banchory. 

An essential element in any large scale heat generation project - renewable or otherwise – is 

availability of a suitable customer.  Since there is no national heat grid (as is the case for 

electricity), establishing – with a high degree of confidence - local, secure heat loads must 

be a priority. 

The Hill of Banchory (HOB) heat network is the most proximate potential customer for a 

geothermal well at Hill of Fare.  In this chapter we assess the existing network demand 

(current and planned), and assess heat demand in the wider area of Banchory to determine 

other possible network opportunities that could either be developed in tandem with, or 

separately to, the HOB scheme, using data from the Scotland Heat Map. 

 

Hill of Banchory Heat Network 

The current extent of the existing Hill of Banchory Network has been explained in Chapter 3.  

Future planned expansions for the Network are shown in Figure 26. 

 

Figure 26 – Future Hill of Banchory Heat Network Expansions 
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Estimated heat demand for future developments in the Hill of Banchory Network are shown 

in Table 7. 

Development Area 
Diversified 

Peak (kW) 
Peak (kW) 

Annual 

Demand 

(MWh) 

Connection 

Year 

Phase 11/12 Residential 616 246 1,224 2012 

BBP1 960 384 1,441 2012/15 

BBP2 298 119 448 2015 

Neighbourhood Centre 2,042 817 4,085 2016-18 

North 1a 415 166 831 2016 

North 1b 703 281 1,406 2017 

North 2 888 355 1,780 2019 

Grampian
4
 395 158 790 2020 

Table 7 – Future Expansions for the Hill of Banchory Heat Network 

 

It can be seen that over the next five years a substantial amount of new demand is planned 

to be connected to the HOB network, making full use of both the currently operational 

900kW biomass boiler and the yet to be commissioned 700kW biomass boiler.  The planned 

increase in demand is analysed in more detail below to determine whether the existing 

biomass capacity is likely to be sufficient to supply all of this demand, or whether another 

source of heat - for example geothermal - will be needed. 

 

The Wider Heat Potential in Banchory 

The town of Banchory presents a large source of heat demand, approximately 85,000MWh 

in total.  

A heat demand density analysis was performed to determine heat demand per square 

metre, measured in kWh/m².  This is a good early stage indicator of which areas will be best 

suited to district heating, as a high heat demand density suggests less pipe is required to 

supply the properties, resulting in a higher Linear Heat Density (LHD)5 (Figure 27). 

 

                                                           
4
 Grampian Housing Association properties have not yet been agreed for connection but a heat 

supply agreement may be established in the future. 
5
 LHD is a ratio of demand to pipe length (MWh/m) and can provide a good early stage indication of 

whether the network has enough demand to justify the initial capital costs of pipe installation. 
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Figure 27 – Heat Demand Density Analysis for Banchory 

In this analysis, each point is represented by a circle that is assigned a value according to 

the heat demand of that point. Where the circles of more than one point overlap, the demand 

is summed and the result of these points and summations are then colour coded from lowest 

(blue) to highest value (red).  An erroneous point is not considered in any analysis. 

As can be seen, there are some clear “hot spots” around Banchory, including some clusters 

of buildings in the town centre, and some large individual demand points such as the sports 

centre and the swimming pool. These areas were chosen to be the main focus points for 

proposed network designs and will be covered in more detail in the following chapter. 

The majority of residential properties in Banchory are privately owned.  There are Council-

owned properties in the Raemoir housing estate which is sited close to Banchory Academy, 

a Primary School, a care home, and Banchory Sports Centre.  These types of buildings are 

usually ideal candidates for connection to a DHN as they provide large, reliable sources of 

demand (often referred to as “anchor loads”) that provide baseload demand on the Network; 

particularly the swimming pool that requires almost constant heating.  Connecting to Council-

owned properties helps the Council reduce its carbon emissions and can assist in reducing 

fuel poverty amongst tenants.  Councils may also be able to avoid building fabric upgrade 

costs by connecting to a Heat Network. 

 

A preliminary appraisal of the network’s demand 

Once the shape of heat demand across Banchory had been identified and prioritised, 

preliminary network layouts were drawn using ArcGIS.  These networks targeted all of the 

key points of heat demand that had been shown in the analysis of the heat map data.  The 
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demand throughout Banchory is quite varied, which is a good thing for a district heating 

network as the different load types will help to flatten out the overall network demand profile 

throughout the day. This effectively raises the baseload threshold, meaning more of the heat 

could come from the geothermal source (which will produce heat at a constant rate). 

These potential networks are shown in Figure 28.  The existing Hill of Banchory Heat 

Network is shown in blue, while potential new Networks are shown in red.  Connection to a 

new geothermal Wellhead would be via the dashed blue line. 

 

 

Figure 28 - Proposed Heat Networks in Banchory 

 

 Network element BN001 – Banchory Academy 

Banchory Academy and the surrounding area present a good source of demand as it 

consist of several large buildings concentrated into a small area. Adjacent to the school is 

a residential care home, sports centre and smaller Primary School. As these buildings are 

quite central in Banchory they would provide a good starting point from which the network 

could be expanded. Although it will require a large length of transmission pipe from the 

energy centre – probably located on the outskirts of Banchory – the length of pipe 

required to connect the points of high demand together would be relatively short, 

therefore ensuring a good linear heat density. 
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 BN002 – Raemoir Housing Estate 

This first residential expansion would see the Council Properties in Raemoir Estate 

connect to the network. Although this area does not have a particularly high heat demand 

density, council housing properties are always a preferred customer of district heating 

networks as secure and affordable heating are an important part of providing affordable 

housing. 

 BN003 – Woodside Residential 

On inspection of the heat demand density analysis, it was seen that to the west of the 

main road into Banchory there was a patch of council-style housing that had a good 

demand. This was made more attractive as an option by the fact that rear access was 

possible to two rows of houses at once, providing a large demand for low length of pipe. 

This housing is most likely private so further investigation in the likelihood of connection 

should be undertaken before considering this option. 

 BN004 – Forestside Residential 

To the North of Banchory, lies another more modern residential area. Although this is a 

less closely packed area of housing, the properties tend to be larger and so the area has 

a good heat demand density. Once again these properties will all be privately owned so a 

large portion of individual connection arrangements would have to be agreed before this 

extension could be seriously considered. 

 BN005 – Morrisons Supermarket 

This extension could connect the network to the local Morrisons Supermarket as well as 

several potential customers in the industrial estate. These large commercial demands 

should help to increase the load diversity on the network and could provide some stable 

demand and therefore income. Although the supermarket is not particularly close to the 

previous network stages, there is a well suited path through another residential area with 

a good heat demand, meaning no pipe is wasted on transmission only. 

 BN006 – Banchory Town Centre 

Extension to Banchory town centre is the furthest away from the initial branch at the High 

School, but is also one of the largest sources of demand. The town centre has a large 

commercial demand, including retail, restaurants and hotels. Along with the densely 

packed residential properties, this could provide a concentrated demand for the network 

that would make up for the length of pipe required to reach it. The extension would also 

have the option of supplying some more residential properties along the way to help 

increase the overall linear heat density. 

 

Network Options Appraisal 

Ramboll’s District Heating Opportunity Assessment Tool (DHOAT), developed for the 

Scottish Government, was used to analyse the heat map data and preliminary network 

designs. This tool provides clear indications of what the peak and annual demands would be 
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at each stage of the network’s development, as well as a preliminary set of KPI data 

including: 

 Total heat demand 

 Linear Heat Density 

 Indicative CAPEX 

 Indicative Network OPEX 

 Indicative heat sales 

The results are shown in Table 8. 

 

Connection BN001 BN002 BN003 BN004 BN005 BN006 

Description School 

area 

Raemoir 

Estate 

Woodside Forestside Morrisons Banchory 

Town 

Centre 

Network Length 

(m) 

400 1,314 713 2,096 1,808 1,758 

Heat Demand 

(MWh) 

3,200 2,200 2,100 4,900 4,800 4,000 

Peak Demand 

(MW) 

1.58 1.11 1.07 2.44 2.72 2.30 

Primary Supply 

Capacity (MW) 

0.38 0.26 0.25 0.59 0.58 0.48 

No. of Connections 23 164 113 192 237 182 

Linear Heat 

Density (MWh/m) 

8.0 1.7 3.0 2.3 2.6 2.3 

Heat Sales 

Revenue 

£148k £131k £127k £291k £282k £240k 

CAPEX £1.5-

£2.3m 

£2.0-

£3.3m 

£1.5-

£2.4m 

£3.6-£5.9m £3.6-

£5.8m 

£3.2-£5.2m 

Weighted Average 

Heat Sales Price 

(£/MW) 

£46 £60 £60 £59 £59 £60 

Table 8 – District Heating Network Analysis 
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Table 8 shows the potential connections which are quite similar in terms of heat demand and 

linear heat density.  Typically any network with a linear heat density greater than 3 could be 

viable, though it should not be assumed that values lower than this have no potential.  

BN001; the network supplying the Academy and surrounding buildings, yields the highest 

linear heat density of 8.0, showing how a large single consumer can improve the 

performance of a Network. 

Given their large linear heat density, relative proximity to a new geothermal network 

connection, and the benefit of single tenure, BN001 and BN002, are most favourable for 

initial development.  
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10. The Economics of the Geothermal Well 
 

We now move on to the economics of the geothermal well itself.  The key question we seek 

to answer is: what is the likely unit cost of the heat produced by such a well?  If this is too 

high it will be uncompetitive against alternative future heat sources for the Banchory heat 

network, such as natural gas or (especially) continuing biomass heat. 

 

Production costs: assumptions about the geothermal well  

To model the financial viability of a geothermal heat generating station at Hill of Banchory we 

must first make some reasonable - and clearly defined - assumptions about the 

characteristics of the geothermal system itself.  These will include: 

 system lifetime; 

 operation & maintenance costs; 

 heat production capacity and (crucially) 

 the likely capital cost of drilling the boreholes   

 

System lifetime and operation and maintenance costs 

Deep geothermal heat systems are known for having exceptionally long lifespans – several 

decades is quite normal.  From the point of view of financial modelling this could actually be 

problematic, as it raises difficult questions over how to value income far in the future.  In 

practice, energy sector investors will not make decisions based on a time frame greater than 

20-25 years.  Furthermore, RHI income is only available to a project for 20 years from 

commissioning.      

While we would expect the major physical elements of the system (especially the boreholes) 

to last for much longer, we have therefore based the financial modelling of the Banchory 

system on a twenty year lifetime.         

For operations and maintenance costs, we have assumed a figure of 0.5p/kWh, which is a 

normal (and quite conservative) assumption across the geothermal heat sector.    

 

The heat capacity of the geothermal well: flow rates and temperature 

Chapters 4 to 7 set out the Consortium’s analysis and conclusions about the likely 

geothermal potential of the Hill of Fare Pluton.  These suggest that, on a reasonably 

conservative estimate, water temperatures of approximately 75°C could be obtained at a 

depth of 2.5 km.  It is entirely reasonable that an efficient and effective heat network could 

operate using this input temperature; we might also assume a maximum achievable ‘ΔT’ (i.e. 

the difference between input and output temperatures for the heat network) of around 30°C, 
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with the network operating at between 70-80°C flow temperature and a 40-50°C return 

temperature. 

We address the challenges of matching well output and network input temperatures below - 

the current HOB network operates on a flow/return of 85/60°C, with the return temperature  

sometimes being as high as 65°C. 

 

 

Figure 29 – Biomass fuel at the Hill of Banchory Biomass Energy Centre 

        

Flow rate 

The available heat output from the system will be heavily dependent on the maximum 

sustainable flow rate (in litres per second) from the geothermal well.  The geological 

members of the Consortium recommended that three representative flow scenarios 

(‘favourable’, ‘modest’, and ‘unfavourable’) should be used when modelling the geothermal 

potential as set out in Table 9. 

 

Scenario Flow rate (l/s) 

Favourable 50 

Modest 15 

Unfavourable 5 

Table 9 – Estimated flow rates for the Hill of Fare granite at Banchory 

 

Table 10 below illustrates how flow rate and output temperature influences the heat capacity 

of the well.  We vary the achievable ΔT from 5-30°C and vary the flow rates across the 5 l/s 

to 50 l/s range suggested by our geological analysis.  As will be seen, there are many 

combinations of flow rate and output temperature that imply a well heat capacity of more 

than about 1.5 megawatts, the level at which the project becomes worthwhile from a 

presentational point of view.   If conditions turn out to be favourable, a capacity of 5 MW plus 

can be expected.   
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Table 10 – Estimated heat available from geothermal resources for given flow rates and temperature 
drops 

It should be noted that the values in Table 10 are for the heat capacity of the well at the 

wellhead.  There will be some heat loss as the heat is transported to the network and 

processed though the heat exchanger – though these should only be a few percent at most. 

As the primary goal of this project was to look at the geothermal integration with the existing 

scheme, for the purposes of the financial modelling, the current network’s operating 

temperatures were used as a benchmark for the resource temperature requirements in the 

later stages of system design.  In other words, we use as a benchmark a source temperature 

of 85°C, a minimum expected ΔT of 20°C and thus a return temperature of 65°C.  This will 

allow the geothermal well to interface directly with the HOB network. 

 

The capital costs of the boreholes 

We have used £1.5 million as the approximate unit cost of the boreholes.  Every borehole is 

different and the cost of each one is subject to uncertainty.  However, we are aware of costs 

for similar geothermal boreholes in the recent past. We would also note that drill rig hire 

costs will depend, inevitably, on the level of demand in the UK onshore drilling market.      

It must be noted that there will always be some uncertainty over the physical parameters of 

any proposed geothermal project.  Ultimately, the output temperature and flow rate from the 

well will be known with 100% confidence only once a borehole has been drilled and the 

geothermal potential measured. 

 

 

 

 

 

 

 

 

Observations on the economics of deep geothermal heat systems 

For almost all deep geothermal energy systems drilling costs will have a dominant impact on 

the cost per unit of heat generated.  In this case, significant outlay will also be required for the 

pipeline connecting the Hill of Banchory Energy Centre to the likely site of the wellhead 

(which we assume will be not far from the B977 road).  

Two other factors are key determinants of the final unit cost (here we have used pence per 

kilowatt-hour) of the geothermal heat produced.  These are: 
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 volume of heat sold per year; and 

 availability of subsidy income, in particular the Renewable Heat Incentive (RHI) 

Volume of heat sold.  This is important because the costs of building a deep geothermal 

system are only weakly proportional to the final heat capacity.  Drilling the borehole(s) will 

inevitably involve a multi-million pound investment, and this must be made before any heat is 

produced.  While there will be some continuing production costs (powering the pump, 

maintenance etc.) this up-front capital expenditure dominates the unit cost of heat, even in 

the medium to longer term.   

Consider a 3 MW geothermal system that has cost, say, £3 million to build.  The cost of 

financing an investment of this size will be high, certainly in the hundreds of thousands of 

pounds per year.  For the sake of arithmetic simplicity, let us imagine that the full cost of 

operating the system and meeting the financing costs is £500,000 per year.  If the system 

sells only 100 megawatt-hours (MWh) of heat per year, this would represent a very expensive 

way to produce heat: £5,000 per MWh.  However, if the same system operates at a 40% 

load, it will sell 10,512 MWh per year at very little extra cost equating to a production cost of 

£48/MWh.  (Given the long system lifetime we would expect unit heat cost to drop as the 

system reached financial maturity.)      

In other words, the financial viability of a deep geothermal heat system is strongly dependent 

on good heat sales.  The presence of the already existing Hill of Banchory heat network thus 

represents a great advantage to this project: subject to a suitable water temperature being 

achieved, it offers a ready-made large scale heat customer - and one with considerable 

scope for expansion. 

Renewable heat subsidies.  At present geothermal heat is eligible for support under the RHI 

at a rate of £50 per MWh produced.  This is payable only on ‘useful heat’ i.e. heat that has 

been consumed by customers who meet defined energy efficiency standards i.e. it is not 

payable simply on heat produced.  The RHI tariff is index linked and payable for 20 years 

from a system’s commissioning date.  DECC is currently considering a review of the structure 

of the RHI, though a commitment has been made to its future funding.  The deep geothermal 

tariff is generally seen as unlikely to be adversely affected by the RHI review, though there 

can be no guarantee of this. 

As a consequence of EU State Aid rules, projects in receipt of a public sector grant for the 

heat-production facilities (i.e. not including the cost of pipes, civils etc.) are not eligible for the 

RHI.  However, OFGEM (who administer the RHI) have put in place a recognised and 

officially sanctioned process under which projects that pay back any such grants can regain 

RHI eligibility.  In many cases the cumulative RHI payments will be more valuable than the 

grant, and this will normally be the case for deep geothermal projects.  In modelling the 

financial viability of the Hill of Banchory project we have assumed that the grant will be paid 

back, using bank finance, in order to regain RHI eligibility.  
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Results of the production costs modelling 

The parameters set out above were input into an adaptation of Cluff Geothermal’s financial 

model for deep geothermal heat systems.  We also made some assumptions that are not 

directly dependent on the geothermal outcome: 

 the RHI in the first year of operation is available at a rate of £52/MWh; 

 the cost of the connecting pipeline between the wellhead and the heat network is 

£1,000,000; 

 fixed annual costs for the geothermal well (site rental, salaries, are £20,000 per 

year);   

 the relevant part of the grant can be repaid through a loan at 6% over 15 years; and  

 heat prices rise with RPI, which we take to be 2.5%   

We also need to decide how to compare the different variables.  We have adopted an 

approach based on well capacity, desired rate of investment return, the associated price for 

heat sold, and – as the output - annual heat sales.   For example, if the well has a capacity 

of 3 MW, and heat is sold at 1p/kWh, how much heat must be sold to meet an investor’s 

required rate of return of - say - 10%.  (These rates of IRR are not unreasonable given the 

high risk factor involved in this type of exploratory drilling) 

To phrase this another way, given a particular combination of well capacity and required 

investment return, reviewing how the other variables scale tells us how much the geothermal 

operator needs to charge for heat for a given level of heat sales. 

 

Matching supply and demand 

One complication for this part of the analysis is that the geothermal well will generally not be 

able to supply 100% of the heat demand from the network.  Geothermal wells produce heat 

at a constant rate, while heat demand varies considerably both seasonably and diurnally.   

When demand is too high the well cannot simply be 'turned up' - instead, the backup heat 

generators (either gas or biomass) will need to cover the peaks.  This problem is mitigated 

by having heat stores installed (essentially large water tanks; Kyriakis and Younger 2016).  

Such heat stores are already installed at Hill of Banchory.  

This does not mean that heat customers cannot be supplied - it should always be possible to 

meet a given level of heat demand using the back-up heat sources.  However, it does mean 

that some of the time the geothermal well is 'missing out' on supplying heat (and also 

receiving RHI income).  Producing an exact figure for the percentage of 'missed sales' is not 

possible without knowing the exact future heat demand profiles.  The model incorporates 

reasonable estimates for the ‘missed heat’ factor, for each geothermal well capacity being 

considered.    

   

 



Page | 83 

 

Outputs of the financial model 

We set out this relatively complex set of output data in Table 11 below, and also in graphical 

form in figure 31.  The 'heat sales required' figure refers to the overall sales across the heat 

network; the actual heat sold by the geothermal well to the network will be slightly less. 

  

1.25 MW well 
 
To reach 10% IRR 
Heat sold at                 Heat sales required (MWh) 
1p    13,600  
2p             9,000  
3p             6,650  
(1.25 MW well cannot reach 20% IRR) 

 
 
2.5 MW well 
 
To reach 10% IRR 
Heat sold at                 Heat sales required (MWh) 
1p     9,800  
2p              7,800  
3p              6,650  
To reach 20% IRR 
1p         cannot be reached  
2p              7,800  
3p              6,650  
 
 
4.25 MW well 
 
To reach 10% IRR 
Heat sold at                 Heat sales required (MWh) 
1p     10,200  
2p              8,100  
3p              6,650  
To reach 20% IRR 
1p           21,350 
2p              17,500 
3p              13,500 
  

Table 11 – Heat sales required to reach 10% and 20% IRR for wells of differing capacities 

 

Summary of downstream financial model outputs 

Given reasonable assumptions about the capacity of the well, a deep geothermal heat 

system at Banchory would be commercially viable if it could sell heat at 2p/kWh at a volume 
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approaching 10,000 MWh.  This would make it competitive against natural gas heating, but 

not biomass at the lower end of the price range (as analysis in the following chapter shows). 

 

Note - Output/input temperature: a key challenge for geothermal heat at Banchory  

Before moving on to consider the economics of the Banchory heat network itself, we 

consider one specific issue that has major implications for the system’s overall viability. This 

is the output temperature of the geothermal well.   

Many heat networks operate at a relatively high water input temperature – say 85-90 °C. 

This is the temperature of the water as it leaves the Energy Centre to begin its journey 

around the network.  The existing Hill of Banchory network uses a flow temperature of 85°C.  

Given the typical thermal gradient in the UK, and the constraints imposed by drilling costs 

and likely levels of permeability, we would expect the output temperature of a geothermal 

well to be lower than this – perhaps in the range 60-85 °C.         

If the geothermal well’s output water temperature proved to be too low to be compatible with 

the existing heat network, there would be a requirement to boost it, either by fossil fuel or 

renewable means.  That would mean extra cost, and it is possible this would increase unit 

heat costs to the point where they became uncompetitive.  However, there is no reason that 

water at lower temperatures - 70 °C, say – cannot be used to provide space and water 

heating.  However, doing so requires installing heat delivery equipment that is designed 

specifically to utilise lower temperatures (this can be underfloor heating or larger radiators).  

Retro-fitting existing residential heat customers to allow them to use lower temperature water 

in this way is generally expensive and unlikely to be economic – though the cost of 

conversion will be lower for larger scale heat customers.     

Our assumption is that powering the existing Hill of Banchory heat network using the 

water from the geothermal well (without boosting the temperature) is unlikely to be 

possible.  However, it would be entirely possible to exploit the geothermal heat 

available if future extensions to the existing heat network are designed to be 

compatible with lower temperatures. 

There is real scope for this development route, building on cooperation with Aberdeenshire 

Council, which has several large properties and future projects in the areas most likely to 

see organic network expansion.  These include a group of properties on Raemoir Road: the 

Banchory Academy and Sports Centre, Banchory Primary School and Nursery, Dalvenie 

Gardens Sheltered Housing and around 150 council-owned residential dwellings.  The heat 

demand for these buildings was assessed in a report produced by Jigsaw Energy in 2013 as 

5,300 MWh/yr, and peak load estimated at 3MW.6 

A heat network large enough to make a 'mid-case', 2.5 MW geothermal well economically 

viable - for example, able to sell heat at 2p/kWh - would, under our analysis, require annual 

heat sales of 7,800 MWh.  This group of properties would appear to form a highly attractive 

anchor heat load to form the core of such a network. 

                                                           
6
 Report to Aberdeenshire Council through AECOM (2013) 
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11. Integrating the Upstream and Downstream Economic Models 
 

We now draw together the analysis set out in the two previous chapters to answer the key 

question: given the configuration of the current and future heat network at Hill of Banchory, 

and the financial constraints under which it operates, could it operate using the heat output 

of the proposed geothermal well, given our estimates of its likely capacity? 

In terms of unit heat price, we can summarise our analysis in Figure 30 below, which shows 

how the unit price of heat sold from the geothermal well (blue line) and the required 

purchase price of heat for the heat network (green line) change as demand from the heat 

network increases.   

In other words, the blue line indicates the unit price that heat can be sold from the 

geothermal well and still remain profitable for a given level of investment return.  (As 

explained in the box on page 80 and 81, the high up-front capital cost and low operating 

costs of geothermal heat mean that this price falls steadily as more heat is sold.) 

 

Figure 30 - Indicative Cost of Heat Model Outputs 

The green line indicates the required cost of heat from the point of view of the heat network 

operator.  As the heat network expands to service less densely grouped heat demands, 

more piping must be installed per unit of heat sold.  This means that the network operator 

must produce heat at a lower unit cost if it is to remain profitable.  Although the green line 

tends to fall from left to right as the size of the network increases, it does not do so 

monotonically – spikes can appear in the line as large heat customers join the network.  

The red shaded area in this (indicative) graph shows the area in which the green line is 

above the blue line – which means there are levels of heat demand where both the 
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geothermal well and the heat network can make a profit: in other words, the system is 

economically viable.  Does such a region exist for the Hill of Banchory heat network?  

 

Geothermal Heat Cost 

As we have seen from Chapter 10, if the geothermal potential of the Hill of Fare site is able 

to support a geothermal well with a heat capacity of at least a few megawatts, and 

depending on a sufficient level of heat sales (perhaps 10,000 megawatt-hours per year or 

higher) it can achieve economic viability with sales of around 2p/kilowatt hour.  With higher 

heat sales, the price could be lowered further and in ideal circumstances could approach 1p 

per kilowatt hour. 

             

Figure 31 – Required heat sales for the geothermal well to be financially viable 

The calculations around these results assumed that regardless of heating capacity the well’s 

annual production would be limited to account for low summer demand and periods of 

maintenance down-time in which it could not run. This resulted in a yearly production limit for 

the wells calculated from: (well capacity x operating hours) which in turn defined a minimum 

heat sale price. 

The existing HOB network uses biomass fuel.  For the geothermal resource to be utilised in 

the existing HOB network, it would either have to replace the biomass boilers as the main 

heat supply, or there would have to be enough extra demand from the proposed expansions 

that it could be included as an extra primary heat source. For the former to be the case, the 

cost of heat from the geothermal supply would hence have to be lower than the current cost 

of heat from the biomass boilers. To make this comparison data were obtained from both the 

current network operator, HOBESCO and the team member responsible for the well costing; 

Cluff Geothermal. 
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Current Fuel Cost Benchmark 

The cost of delivered wood chips (at 40% moisture content) varies depending on the local 

market, and is typically around 3.1p/kWh.  In comparison, due to their integrated woodfuel 

supply chain, HOBESCO’s cost of biomass fuel is just 1.5p/kWh. 

 

RHI Tariff Considerations 

A geothermal project is likely to take several years before it can supply heat.  In Banchory 

further extensions to the HOB network would have been completed and the second biomass 

boiler would be operational. This would bring the energy centres total capacity to 1.6MW 

putting it over the “medium commercial scale” threshold of 1MW, and therefore lowering the 

available RHI income from the second boiler, as shown in Figure 32 below.  

                        

Figure 32 – Commercial RHI Biomass Tariffs as of January 2016 

A simple comparison of these figures shows that even for the reduced RHI tariff, currently 

2.24 p/kWh, HOBESCO has a negative fuel cost of -0.53p/kWh.  It should be noted that RHI 

is only payable on delivered heat, therefore network heat losses would diminish this margin.  

As well as this, there will be other costs involved in handling the biomass and running the 

energy centre, but many of these would remain irrespective of the source of heat. Despite 

these simplifications, the comparison shows that the geothermal supply would have to 

supply heat to the network at close to zero to be competitive, therefore relying solely on RHI 

payments for income; currently 5.08p/kWh. 

Due to the difficulty of competing with the low cost of heat generation from biomass at Hill of 

Banchory, geothermal heat supply would have to be at a point where the biomass boilers 

had reached their maximum generation capacity, when the alternative heat supply would be 

natural gas.  For this analysis the cost of natural gas heating was taken as 3.2p/kWh, based 

on an 80% efficiency and the most recent DECC announcements available at the time of 

writing.  This suggests that by 2019 (given an assumption of rising fossil fuel prices), 

geothermal energy would be a potentially favourable option. The next step was therefore to 

assess the demand growth planned for the network and determine at what point this might 

be feasible. 
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Network Growth Projections 

To establish how much additional heat supply might be required due to the network 

expansions, it was first necessary to determine the annual capacity of the existing boilers. 

This was done by assuming that at their maximum operating conditions the boilers would be 

running for 5,000 equivalent full load running hours, which was then simply multiplied by the 

combined boiler capacity (1.6MW). 

             

Figure 33 – Demand projections for the Hill of Banchory Heat Network 

Figure 33 shows how the demand on the HOB network is planned to increase over the next 

5-10 years along with the estimated generation capacity of the biomass boilers and the 

estimated proportion of demand that could be supplied by a baseload heat source, namely a 

geothermal supply.  It can be seen that until 2018-19, the biomass boilers can supply the 

majority of demand, with a deficit of 2,000MWh per annum thereafter. 

 

Initial Conclusions 

Considering the cheaper cost of heat that the biomass boilers provide, their maximal 

operation would be the first priority for HOBESCO, leaving 4,000 MWh per annum of 

demand that could in theory come from the geothermal supply.  Referring back to the heat 

sales price estimates however, suggests that even when natural gas was the fuel source to 

compete against, therefore allowing the geothermal heat sale price to be at least 3p/kWh, 

around 6,500MWh of heat would have to be sold per year for the well to achieve its required 

IRR, i.e. more demand than is forecast under current plans, meaning the inclusion of at least 

some of the networks described in Chapter 9. 
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The Network’s required cost of heat  

Our analysis suggests that for a geothermal heat scheme to have sufficient heat sales in 

Banchory to be commercially viable, extra demand above the existing forecast for the Hill of 

Banchory Network is required.  A model was built to calculate how the cost of heat varies at 

different geographical scales of network and capacity of supply asset, using data from 

HOBESCO for the existing network and heat map data from the Scottish Government for the 

wider network opportunities (a list of the input variables is found in Appendix 2).  The 

calculated cost of heat from the geothermal plant is shown in Figure 34.  

                

Figure 34 – Cost of heat model cumulative expansion results for proposed Banchory networks 

Figure 34 shows that for most scales of network, the Banchory scheme could afford to pay at 

least 1p/kWh for its heat, a figure that is achievable from the geothermal operator’s point of 

view provided at least 10 GWh of heat were sold per year. 
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12. Preliminary Heat Network Design Considerations 
 

To be compatible with the customer heating system the geothermal heat supply must 

achieve specified parameters of flow and return (F/R) temperatures.  With no upgrades to 

customer heating systems the network F/R temperatures would need to achieve 85/60°C.  If 

customer upgrades to properties facilitated a low temperature network then 75/45°C may be 

achievable.  A range of potential scenarios were evaluated at a high level for variations in 

flow rates and source temperatures to determine the most suitable type of heating system. 

This included a brief discussion on the pros and cons of each specific solution and the 

scenarios were then colour-coded based on their simplicity, cost of heat, and heat 

production capability as seen in Table 14. 

 

Heat Available From Geothermal Resource 

Source Temp 

From 

Geothermal 

Well 

<45°C <75°C >75°C >85°C 

Achievable 

ΔT 
10 ≈20 30 20 

System 

Description 

Not sufficient for 

low temperature 

network. Heat 

pump system 

used but lower 

delta T 

achievable due to 

lower source 

temperature. 

Not sufficient for 

low temperature 

network. Heat 

exchangers and 

upgrade boilers 

used to meet final 

flow temp 

requirements. 

Direct heating if 

network is altered 

to operate at low 

temperatures. 

Suitable for direct 

heating in 

scheme with 

normal operating 

temperatures. 

Cost 

Evaluation 

More expensive 

heating system 

required and 

lower delta T and 

therefore COP 

increases cost of 

heat. 

More expensive 

heating system, 

but no retrofitting 

is required. Extra 

cost of heat 

upgrade will 

increase as 

source temp 

decreases 

Low equipment 

CAPEX but high 

modification 

costs as the 

system requires 

new buildings 

and all retrofit 

connections to 

be designed / 

refurbished for 

low temperature. 

Cheap and 

Simple system 

with little to no 

building fabric 

work required. 

Can integrate 

with existing HOB 

scheme easily. 

Flow = 5 l/s 

Insufficient flow 

to operate a 

viable system. 

Only 314kW 

available. 

Insufficient flow 

to operate a 

viable system. 

Only 627kW 

available. 

Insufficient flow 

to operate a 

viable system. 

Only 418kW 

available. 

Insufficient flow 

to operate a 

viable system. 

Only 630kW 

available. 
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Flow = 15 l/s 

Insufficient flow 

to operate a 

viable system. 

Only 941kW 

available. 

Could produce 

approximately 

1.25MW. 

However heat will 

be more 

expensive. 

Approximately 

1.9MW available, 

therefore cost of 

heat limited to 

0.5p minimum 

Approximately 

1.25MW 

available 

therefore would 

require a higher 

cost of heat. 

Flow = 30 l/s 

Could produce 

approximately 

1.8MW. However 

heat will be more 

expensive. 

Could produce 

approximately 

2.5MW.  

However heat will 

be more 

expensive. 

3.8MW available: 

Geothermal 

system has high 

enough capacity 

to cover costs if 

demand is 

available. 

2.5MW available: 

Geothermal 

system has high 

enough capacity 

to cover costs if 

demand is 

available. 

Flow = 50 l/s 

Could produce 

approximately 

3.7MW.  

However heat will 

be more 

expensive. 

Could produce 

approximately 

4.25MW.  

However heat will 

be more 

expensive. 

Best case 

assumptions, 

6.3MWth 

available, System 

has high enough 

capacity to cover 

costs if demand 

is available. 

Best case 

assumptions, 

4.25MW 

available, System 

has high enough 

capacity to cover 

costs if demand 

is available. 

Table 12 - Summary and Evaluation of heating solutions for potential heat production scenarios at the 
Hill of Fare 

 

Table 14 would inform a second phase of the project if a test borehole is commissioned and 

used to highlight the preferred system design based on more accurate temperature and flow 

data. A flow chart further illustrating this process can be seen in Figure 35 below. 
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Figure 35 - Heating System Decision Flow Chart 
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Summary of Technical Solutions 

 

Direct Heating 

This is the simplest heating system design that could be employed at Banchory involving 

high capacity heat exchangers installed in the energy centre to extract heat from the 

geothermal fluid and transfer it into the network. However as there is no additional heat 

input, it would require the most favourable operating conditions, i.e. the source temperature 

would have to be above the network flow temperature. This becomes less likely for higher 

flow temperatures as the chances of obtaining that temperature decreases. 

 

Figure 36 – Simplified system schematic for direct geothermal heating in Banchory 

 

Geothermal Pre-heating 

If the temperature from the resource is below the required network flow temperature, good 

use could still be made of the geothermal energy by pre-heating the network flow and 

upgrading it using boilers to meet the desired network temperatures. The design of this type 

of system would depend on the return temperatures that can be achieved in the network 

since the source temperature would need to be higher than network return temperatures to 

have any pre-heating effect. 

 

High Source Temperature Heat Pump 

It might be the case that the Hill of Fare granite can produce reasonably high flow rates, but 

at a much lower temperature than is required for direct heating. If the source temperature 

were to be close to or below the network return temperature, then it would be impossible to 

utilise any of the heat directly regardless of the flow (as the heat transfer is dependent on 

temperature difference). 

One way to solve this problem and utilise the geothermal energy could be a heat pump. 

To utilise more than just 5 degrees of delta T on the source side, an unbalanced flow heat 

exchanger could be utilised to warm an intermediate loop acting as the cold side input to the 

heat exchanger. This would extract 10°C from the geothermal source but only raise the heat 

Im
ag

e:
 R

am
b

o
ll 

En
er

gy
 



Page | 94 

 

pumps input by 5°C by utilising a larger flow on that side. Figure 37 below shows an 

indicative set of conditions under which this may be used. 

 

Figure 37 – Unbalanced flow heat exchanger to increase source-side temperature drop 

 

Conclusions 

Although it was initially assumed that an existing network would be a positive asset to a 

future geothermal project, modelling has shown that existing operating parameters may 

constrain the ability of a new geothermal system to link-in and supply additional heat.  

Furthermore with the existing Hill of Banchory Network already receiving renewable energy 

generation, in the form of biomass, which benefits from a low cost base and government 

subsidy via the Renewable Heat Incentive, it makes it difficult for an alternative renewable 

resource to displace an existing renewable resource. 

Whilst the existing circumstances for the Hill of Banchory Heat Network perhaps make this a 

somewhat exceptional case, were a similar geothermal system to be analysed as a 

standalone opportunity, or against fossil fuels as the alternative fuel, it could be a much more 

financially viable option. The prospect in Banchory of an expanded network beyond the 

scope of the existing scheme could present such an opportunity. 
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13. Risk Strategy 
 

A risk and opportunity register has been compiled in this feasibility study. The register 

documents the current view of risks and opportunities and identifies potential actions that 

can be taken in the later stages of the project to reduce risks and access opportunities. In 

this project a risk is any issue that may lead to a loss in value; an opportunity can add value 

to the project. Risks and opportunities may be discrete events, such as loss of the RHI; or 

broader uncertainties, such as rock permeability being too low to give economic flow rates of 

hot water. Risks and opportunities have been recognised in all aspects of the project: 

subsurface; well design and tie in; District Heating Network; project financing; and 

stakeholder management. Risks have been ranked relatively from Low to High, where the 

ranking indicates both the potential impact on the project value if the risk materialises and 

the probability of the risk occurring.  Risks are also ranked relatively according to the ability 

of the project to manage the risk, again from Low to High. 

 

Risk Matrix 

Figure 38 shows the current relative impact and manageability of risks included in the risk 

register which is in Appendix 2. The risks in the red top right hand corner are the most 

concerning as they have high impact and low manageability. The risks in the green bottom 

left hand corner are least significant, but should still be managed. Individual risks are colour 

coded by the area of the project. 

Figure 38 – Risk Matrix 
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Review of most significant risks 

 

Insufficient permeability or connectivity to sustain flow 

The largest impact risk is that having drilled a deep well into the granite the well does not 

flow at adequate rates. At this point there will be large sunk costs, with limited opportunities 

to utilise the well. The following possibilities can be considered in the next stage to assess 

alternative uses for a poor well:   

1. Evaluate and make case for well stimulation to improve flow rates 

2. Evaluate completing a closed loop system 

3. Evaluate completing as a low flow system 

4. Abandon the well and Supply heat to expanded DHN from alternate sources, e.g. 

biomass, gas 

5. Evaluate maintaining the well for research 

There are further geological and geophysical studies that have been outlined in chapter 19 

(Next Steps) which can reduce the risk of an unsuccessful well, but there will be residual risk 

prior to drilling that is irreducible given that this is the first geothermal well in the area.  

 

RHI cutback or abolition 

The project economics include an assumption that RHI remain available for deep geothermal 

wells as current. The value of RHI to the project is remarked on in Chapter 10. The recent 

changes in FIT and uncertainty about long term strategy towards renewable energy 

incentives at UK Government level raises the probability of loss or reduction of the RHI. The 

project can work with industry bodies to lobby for maintenance and certainty in policy. 

 

District heating return temperature too high 

There is a risk that the flowing temperature from the wellhead is too low to be easily utilised 

in the existing District Heating Network. Action can be taken to understand the range of 

useable temperatures, engineering solutions and costs, and depth of well prior to drilling, but 

some risk will remain until well productivity and temperature is assured. 

 

Lack of general public support locally 

The project plans an expansion of the District Heating Network into new public sector 

buildings and private sector homes. It will involve construction of pipelines for District 

Heating and to tie in the well. Each of these has an element of risk, which have been 

captured separately. Overall there is an additional risk that the public in the project area are 
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not supportive, raising objections, or misconceiving the risks through association with 

unpopular deep drilling activities in other parts of the UK. Early and frequent stakeholder and 

public engagement will mitigate all of these general and specific risks. 

 

Government moratorium on deep geothermal wells: 

There is presumably a risk that the existing Scottish Government moratorium on fracking 

could be extended to deep geothermal wells if there is likelihood that stimulation is required 

to deliver acceptable well productivity – albeit there is a vast difference in scale and risks 

between the two types of operation. Action would need to be taken to clearly articulate what 

the project will consider, and close cooperation with Government and local councils will be 

required to manage both the reality and the perceptions. 

 

Thermal breakthrough; rock water interactions reduce permeability; well flows at 

lower temperature 

These three risks are all essentially unpredictable uncertainties of the subsurface geology 

that will manifest themselves after drilling and after initial production. The project can attempt 

to cover acceptable uncertainty ranges in the economic evaluation, and can design in 

mitigations but cannot fully reduce these uncertainties. 

 

Opportunity to design and drill a test bore 

The project may evaluate drilling a shallow cored borehole extending several hundred 

metres below the weathering zone. This bore would aim to determine whether soluble 

minerals (e.g. calcite) form a significant component of the filling in the fracture network in the 

granite, and whether there is evidence for Recent or ongoing dissolution of soluble minerals 

(this would increase the likelihood that 'flow zones' in de-mineralised fractures occur at 

depth). A test bore may also measure the geothermal gradient, and possibly recover water 

samples. 

All the risks and opportunities are described in the register in Appendix 3. 

 

Risks after mitigation 

Figure 39 shows how the risks can be influenced if all mitigating actions are taken and are 

successful. 
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Figure 39 – Risk Matrix Post-Mitigation 
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14. Deep Geothermal Regulation 
 

The regulation and control of activities which may be undertaken during the exploration and 

exploitation of geothermal heat is described in brief below, with reference to the Scottish 

Government’s Regulatory Guidance: Geothermal Heat in Scotland (2016)7 and to SEPA’s 

Supporting Guidance Groundwater Abstractions – Geothermal Energy (WAT-SG-62)8 

(2014). 

 

Planning 

Planning permission from the relevant Planning Authority is required for any new 

development – any building, engineering, mining or other operations in, on, over or under 

land – which includes works associated with borehole construction and wellhead 

development.  As part of a planning application, an Environmental Impact Assessment may 

be required to be undertaken. 

 

Environment 

The Scottish Environmental Protection Agency (SEPA) regulates activities that may cause 

pollution or that pose another risk to the environment.  Abstractions (including borehole 

construction) from, and discharges to, the water environment are controlled activities as 

described by the Water Environment and Water Services (Scotland) Act 2003.  The 

introduction of heat into the water environment is included in “pollution” as defined in the Act.  

SEPA regulates such activities through the Water Environment (Controlled Activities) 

(Scotland) Regulations 2011 (‘CAR’). 

Operating a ‘closed-loop’ deep geothermal system, i.e. no abstractions from or discharges to 

the water environment, SEPA will generally not require authorisation under CAR as the 

impacts on groundwater are likely to be negligible. However, where a borehole is to be 

drilled to or below a depth of 200m a complex licence application is required.  Details of 

information required to support an application are contained in SEPA’s guidance document 

Regulatory Method Licensing Groundwater Abstractions including Dewatering (WAT-RM-

11)9 (2013). 

 

Operations / Health & Safety 

Under the Water (Scotland) Act 1980 anyone proposing to sink a well or borehole for the 

purpose of searching for, or abstracting, water must notify the British Geological Survey 

                                                           
7
 https://www.sepa.org.uk/media/151867/wat_rm_24.pdf  

8
 https://www.sepa.org.uk/media/34709/wat-sg-62-groundwater-abstractions-geothermal-energy.pdf  

9
 http://www.gov.scot/Topics/Business-Industry/Energy/Energy-

sources/19185/GeothermalEnergy/RegulatoryGuidance  

https://www.sepa.org.uk/media/151867/wat_rm_24.pdf
https://www.sepa.org.uk/media/34709/wat-sg-62-groundwater-abstractions-geothermal-energy.pdf
http://www.gov.scot/Topics/Business-Industry/Energy/Energy-sources/19185/GeothermalEnergy/RegulatoryGuidance
http://www.gov.scot/Topics/Business-Industry/Energy/Energy-sources/19185/GeothermalEnergy/RegulatoryGuidance
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(BGS) before drilling commences, and maintain a journal to be sent to BGS on completion or 

abandonment of the work. 

The Borehole Sites and Operations Regulations 1995 are not applicable since the Hill of 

Banchory project does not involve mine water.  The Offshore Installations and Wells (Design 

and Construction, etc.) Regulations 1996 places obligations on the operator concerning the 

safety of the well at all stages in its life.  These Regulations inform the broader requirements 

of the Health and Safety at Work etc. Act 1974.  Regulation 10 of the Management of Health 

and Safety at Work Regulations 1999 requires wellhead operators to provide employees with 

health surveillance.  Provision and Use of Work Equipment Regulations 1998 requires that 

equipment is suitable for use, and for the purpose and conditions in which it is to be used. 

The equipment must also be maintained in a safe condition for use so that people’s health 

and safety is not at risk. 
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15. Carbon Emissions Savings 
 

Overview 

Deep geothermal energy is widely recognised as a very low carbon energy type, particularly 

when used to produce heat.  The calculations set out below suggest that for a system with 

the same likely parameters as the proposed Banchory scheme each megawatt hour of 

thermal energy would produce around 4.4 KgCO2/MWhth.  This compares to the commonly 

accepted figure of 184.45 KgCO2/ MWhth for natural gas, the most common type of heating 

in Scotland for both domestic and non-domestic consumers, and 246.57 KgCO2/MWhth for 

heating oil, the most common type of heating found off the gas grid.   

Where geothermal heating replaces gas or oil heating, therefore, significant amounts of 

carbon emissions will be abated.   

At Banchory, our calculations suggest that for a geothermal doublet system with a capacity 

of 2.5 MWth meeting 13,140 MWh of heat demand annually, where that demand had 

previously been met by natural gas, the annual amount of CO2 abated would be 

approximately 2,370 tonnes.  Over the thirty year lifetime of the geothermal system this 

equates to an abatement of 71,000 tonnes of CO2.      

In the ‘best possible case’ under which a positive outcome to the Banchory project results in 

250 similar geothermal heat projects across areas of Scotland with suitable granite plutons, 

we estimate the total carbon saving achievable as 900,000 tonnes of CO2.  Such an 

outcome would be equivalent to meeting around 5% of Scotland’s heat demand.  

 

The carbon footprint of deep geothermal energy 

A commonly used unit of carbon intensity for heat is ‘kilogrammes of carbon dioxide per 

megawatt-hour of heat produced’ (KgCO2/MWhth).  Various sources provide 'reference' 

figures for the carbon intensity of a wide range of heat-producing technologies.  For 

example, in the UK Defra publishes the ‘Greenhouse Gas Conversion Factor Repository’10, 

an official database that is often used when modelling carbon footprints or evaluating 

proposals for carbon emission reductions.  We have used the Defra figures for this analysis.    

Deep geothermal heat generation requires only minimal input of fossil fuels, and as a result it 

produces a very low level of greenhouse gases per megawatt hour of heat delivered.  

However, there are relatively few sources in the academic literature offering a detailed 

analysis of this question, or providing a reference figure for general use.  The Defra tables 

do not quote figures for geothermal heat or power, for example.  Internationally, figures are 

available for the carbon intensity of deep geothermal power production (for example, the 

standard figure given by the US Government11 is 26.6 KgCO2/MWhe). This includes a large 

component of volcanogenic sources which are naturally rich in CO2, which is released to the 

atmosphere in flash steam operations. As geothermal heat production does not require 

                                                           
10

 http://www.ukconversionfactorscarbonsmart.co.uk/  
11

 http://www.theclimateregistry.org/wp-content/uploads/2015/04/2015-TCR-Default-EF-April-2015-
FINAL.pdf  

http://www.ukconversionfactorscarbonsmart.co.uk/
http://www.theclimateregistry.org/wp-content/uploads/2015/04/2015-TCR-Default-EF-April-2015-FINAL.pdf
http://www.theclimateregistry.org/wp-content/uploads/2015/04/2015-TCR-Default-EF-April-2015-FINAL.pdf
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venting, and as many of the mid-enthalpy sources used for heat do not contain natural CO2 

anyway, the equivalent carbon emissions figures for deep geothermal heat-only systems can 

be confidently be expected to be far lower than the figure for power production quoted 

above. Although accurate figures for deep geothermal heat production are as yet sparse, a 

review of various sources presented by Younger (2015) quotes a figure of 4 KgCO2/MWhth.            

Instead of relying on such generalised estimates, we here calculate the likely carbon 

intensity of deep geothermal heat at Banchory from first principles, using reasonable 

assumptions and approximations.  We do this on the basis of a 'full lifetime' calculation i.e. 

we consider the potential greenhouse gas emissions that arise in the course of a geothermal 

heat project, from the start of the borehole construction process through to the ‘steady state’ 

production of emissions while the system produces heat from the system over its lifetime.  

We do not include a calculation for the carbon emissions arising from decommissioning, 

which we judge to be de minimis in comparison with the construction of the boreholes and 

the operation of the system over decades. 

 

Project Lifetime  

We make a conservative assumption that the lifetime of a deep geothermal system at 

Banchory will be thirty years.  Systems can last much longer than this (one geothermal heat 

system in Boise, Idaho, has been in operation since the 1890s) but the lifetime will be 

dependent on local factors.  This figure assumes there will be some refurbishment of the 

system, such as occasional pump replacement (over a thirty year lifetime the contribution of 

such refurbishments to overall carbon emissions should be negligible). 

 

The potential for venting of gases from the geothermal fluids 

For completeness we should note in passing that greenhouse gases could be produced from 

the geothermal system in ways that are unrelated to energy consumption or heat production.  

Where systems in other countries are based on volcanic geothermal sources some 

greenhouse gases such as CO2 may be vented.  However this is highly unlikely in 

Aberdeenshire and we strongly expect that the geothermal water itself will not give rise to 

any greenhouse gases in this way.  Indeed, the production and re-injection boreholes will be 

operated as a sealed system. 

  

Carbon emitted prior to system operation   

Here we consider the carbon emissions that arise before the system is commissioned.  This 

will include the 'embedded carbon' involved in the manufacture of the different elements of 

the system, and the carbon dioxide emitted during the drilling of the boreholes. There will be 

other sources of carbon - for example, that generated by activities associated with the 

planning phase of the project.   

The 'embedded' carbon emissions associated with the system components can be divided 

into those from the manufacture of the surface elements of the system e.g. the pump, heat 
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exchanger etc. and those arising from the manufacture of the ‘casings’ – the stainless steel 

cylindrical lining that is generally used to stabilise the walls of boreholes as they are drilled.  

We judge the contributions from the surface elements are not large in scale (c.f. the carbon 

emissions involved in manufacturing a mid-size car are around 15 tonnes of CO2). 

As noted in Section 6, the bulk of the steel casing will be 9 5/8” in diameter (dimensions in the 

drilling industry are still given in imperial units).  Casing of this diameter should weigh no 

more than 100 kg/metre.  We note from the World Steel Association’s ‘sustainability 

indicators’ page12 that producing a tonne of steel in 2014 can be assumed to release 1.9 

tonnes of CO2.  Therefore, 100 metres of casing can be taken to equate to 19 tonnes of CO2.  

If both boreholes were fully cased – which would require 5,000 metres of casing – the 

associated embedded carbon associated with the casings could be significant, at around 

950 tonnes.  However, the Banchory project concept is based on drilling through granite, a 

very stable rock.  We therefore expect that for the great majority of the boreholes’ depth an 

'open hole' approach will be used i.e. no casing will be needed as the walls of the borehole 

will be highly stable and reinforcement unnecessary.  If, for example, each borehole was 

cased only to 500 metres depth, the associated CO2 emissions would be around 190 tonnes.  

We will take this as the central assumption, rounding up to 200 tonnes of CO2.    

 

GHG emissions arising from drilling the boreholes   

Moving on from the embedded carbon in the system components, another significant source 

of carbon emissions will be the fuel consumed by the drilling rig (these can vary considerably 

in size, but almost all run on diesel).  For the Banchory project a relatively large drilling rig 

would be required, and based on consultations with drilling industry experts we expect such 

a rig to consume around 1,500 litres of diesel oil per day, or 62.5 litres per hour.   

There is inevitably some uncertainty in any estimation of the number of hours of operation 

required for the rig to drill to the required depth.  Each drilling operation is different, and time 

taken will depend on the hardness of the rock strata and any difficulties encountered (lost 

drill bits, drilling into voids, the need to drill 'daughter' side boreholes etc.).  However, we 

suggest that for a 2,000 to 2,500 metre borehole in granite a figure of 1,500 hours' drilling is 

a reasonable estimate. 

This implies a total consumption of 1500 x 62.5 = 93,750 litres of diesel fuel per borehole.  

Given that we also need to drill a re-injection borehole we need to double this figure, to 

reach a final figure of 187,500 litres of diesel fuel consumed.   

Burning one litre of diesel fuel produces 2.4435 kg of CO2
13.  Therefore the carbon 

emissions arising from the drilling of the two boreholes equate to 458,156 Kg CO2.  Given 

the uncertainties involved we can reasonably approximate this to 460,000 Kg, or 460 tonnes 

of CO2. 

 

                                                           
12

 https://www.worldsteel.org/statistics/Sustainability-indicators.html 
13

 http://www.ukconversionfactorscarbonsmart.co.uk/ , ‘fuels’ worksheet. 

http://www.ukconversionfactorscarbonsmart.co.uk/
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Carbon emissions arising from running the system 

During the actual operation of the geothermal system the dominant energy input is the 

electrical power to the pump (we assume this will operate using grid electricity).      

Note that the geothermal fluid (i.e. the hot water) need not be pumped from the full depth of 

the borehole; artesian pressure will raise the level of water in the borehole to the level of the 

local water table, a point much nearer to the surface (cf Younger and Manning 2010).  This 

greatly reduces the work that must be done by the pump.  

However, without knowing the exact level at which water will settle in the borehole - and 

therefore the height (or 'head') through which the pump will need to raise it - it is not possible 

to produce an exact figure for the amount of work done by the pump.  By extension it is not 

possible to give an exact figure for the electricity consumed and, in turn, the CO2 produced 

per megawatt-hour of heat that is ultimately generated.  However, we can calculate the 

power required to raise water from an estimated minimum and maximum heads (which we 

take to be Hmin = 50 metres and Hmax = 100 metres) to give indicative figures for the power 

consumption.   

The power used by the pump is given by the equation: 

 P = ρ g Q h / η  

where P = the power in watts; ρ = fluid density (kg/m3); g = gravitational acceleration (in 

metres/s2); Q = pumping rate (in cubic metres per second); h = pumping head (in metres) 

and η = the efficiency of pump. 

We use figures of 0.02 m3/s – 20 litres per second – as a reasonable proxy for the pumping 

rate, and 0.6 for the pump efficiency. 

We calculate the pump power using the Hmin and Hmax figures for the pumping heads. 

For Hmin: 

        P = ρ g Q h / η  

           = (1000 × 9.81 ×0.02 × 50) / 0.6  

        P  = 16,350 watts = 16.35 kilowatts 

For Hmax: 

        P = (1000 × 9.81 ×0.02 × 100) / 0.6  

 = 32,700 watts = 32.7 kilowatts 

Using this set of assumptions suggests that the pump power will range from 16.35 to 32.7 

kilowatts.  We now estimate the annual CO2 footprint for pumps with these power ratings. 

This part of the calculation is wholly dependent on the carbon intensity of the grid supply.  At 

present this is 462.19 Kg of CO2 per MWh supplied14.  If the geothermal system operates 

                                                           
14

 http://www.ukconversionfactorscarbonsmart.co.uk/ , ‘UK electricity’ worksheet 

http://www.ukconversionfactorscarbonsmart.co.uk/
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60% of the time (a reasonable assumption given the performance of similar systems in 

continental Europe) this equates to annual carbon emissions between 39.7 tonnes of CO2 

(min) and 79.4 tonnes of CO2 (max).   

Over the thirty year lifetime of the system, this suggests a range of carbon emissions of 

approximately 1,290 to 2,380 tonnes in total.  However this would be a very conservative 

approach given that the carbon intensity of the UK grid is widely expected to fall over this 

period as coal fired power stations are phased out and lower carbon generation from 

renewables, nuclear and gas is phased in.  In fact, the UK Government’s working 

assumption is that their ‘Electricity Market Reform’ policy changes will achieve a reduction of 

grid carbon intensity to only 100 grams of CO2/kWh of electricity generated by 2030 – less 

than a fifth of the current figure.    

Decarbonising the grid this much is ambitious and may, of course, not be achieved for a 

variety of factors inside and outside the Government control.  However it would be surprising 

if the carbon intensity of the grid did not reduce substantially over the 30 years from 2018 

(which we take as the earliest commissioning date for a Banchory geothermal system).   

As a compromise we will assume that the 100 grams of CO2/kWh target is reached, but at 

the end of the thirty year period of the system lifetime, and that grid intensity falls steadily 

over that time. In other words, we take the average carbon intensity of power taken from the 

grid over the plant’s operation as (462 – 100)/2 = 281 grams CO2/kWh.   

The minimum and maximum amounts of carbon generated by the pump’s operation over the 

system lifetime would thus become:  

(minimum case)     16.35 x 8,760 x 0.6 x 0.281 x 30 = 724.4 tonnes of CO2. 

(maximum case) 32.7 x 8,760 x 0.6 x 0.281 x 30 = 1,448.9 tonnes of CO2 

We can reasonably round these figures to 725 and 1450 tonnes of CO2 respectively. 

Bringing the numbers together 

In summary, we have calculated the carbon emissions from the pre-commissioning phase of 

the project as: 

Embedded carbon in the casings       200 tonnes CO2 

Embedded carbon in the system surface elements   not significant 

Emissions from diesel fuel required during drilling   460 tonnes CO2. 

Total pre-operation:      660 tonnes CO2 

During operation, the carbon emissions from the operation of the pump are projected to be: 

Minimum assumed pump rating    725 tonnes CO2 (over 30 yrs) 

Maximum assumed pump rating    1,450 tonnes CO2 (over 30 yrs) 

Bringing the pre- and post-commissioning figures together, we find the following: 
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Minimum carbon emissions over project lifetime:  1,385 tonnes CO2 

Maximum carbon emissions over the project lifetime:  2,110 tonnes CO2.    

To summarise, the main source of carbon emissions over the 30-year lifetime of the 

geothermal system is that associated with the electricity driving the pump.  Having said this, 

the amount of carbon produced by drilling the borehole, and that embedded in the system’s 

components, is not insignificant.  The relative sizes of these contributions will depend on the 

exact depth from which the geothermal fluids will need to be pumped, and the depth to which 

the boreholes are cased.           

 

Heat production over the project lifetime 

We now need to calculate the amount of heat produced by the geothermal system over its 

operational lifetime, being careful to ensure this is consistent with our other assumptions. 

We assume that the well produces 2.5 MW of heat, a plausible mid-range figure for a 

geothermal borehole doublet.  We also assume that the annual system loading is 60%.  

Over thirty years the heat generated by the system will therefore be  

2.5 x 8,760 x 0.6 x 30 = 394,200 megawatt-hours (= 394,200,000 kilowatt-hours). 

This is the equivalent of meeting 13,140 MWh of heat demand per year.    

 

Heat from a geothermal system at Banchory would be very low carbon in nature 

Having calculated approximate bounds for the lifetime carbon emissions from the system, 

and a figure for the amount of heat produced over the same period, we can divide one by the 

other to find the average carbon intensity of the heat produced. 

Lower bound on carbon intensity: 

1,385 tonnes of CO2 / 394,200 megawatt-hours = 3.5 KgCO2/MWh 

Upper bound on carbon intensity: 

2,110 tonnes of CO2 / 394,200 megawatt-hours = 5.4 KgCO2/MWh 

Taking the average of these upper and lower figures, we estimate that a deep geothermal 

heat system in Banchory would supply heat with a carbon intensity of 4.4 KgCO2/MWhth. 

 

Carbon savings versus other heat production technologies 

The calculation above has given us a plausible range for the carbon intensity of geothermal 

heat production of 3.5 to 5.4 KgCO2/MWh.  This compares to 184.5 kg of CO2 per MWh of 

heat from natural gas central heating, 246.6 kg of CO2 per MWh for heating from fuel oil, and 

462 kg of CO2 per MWh of electrical heat.   
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In other words, deep geothermal heat is exceptionally low carbon compared to other fossil 

fuel heating types, and in particular natural gas heat - the 'reference' heat type in the UK. 

 

Potential carbon emission savings in Banchory 

As we noted above, we expect the geothermal system to produce 13,140 MWh of heat per 

year, with an average carbon intensity of 4.4 KgCO2/MWhth.   

The amount of carbon abated by building the geothermal system will depend on the origin of 

the heat that it displaces.  As discussed in the introductory chapter, the current heat network 

at Banchory used biomass fuel.  This is widely recognised as having a low carbon intensity, 

with the exact figure dependent on the fuel variety (wood chip, wood pellets, for example) 

and on the distance the fuel had been transported.  There is therefore no simple reference 

figure for biomass heat from wood chips.  The (now rather dated) report ‘Carbon factor for 

wood fuels for the Supplier Obligation - Final’ gives a figure for combustion of ‘UK forest 

residues’ as 11-17 KgCO2/MWh15.  The carbon intensity of heat from the Banchory heat 

network can be expected to be at or towards the lower end of this range, because the fuel 

used is forestry waste and thinnings from local sources, minimising transportation distances.  

As will be noted, the figure we have arrived at for the carbon intensity of deep geothermal 

heat is still about half that of wood chip heat at the lower end of this range.  This suggests 

that even against the current very low carbon arrangement a geothermal well would reduce 

carbon emissions. 

Compared with the carbon intensities of common heating types, both deep geothermal and 

locally sourced biomass are very low carbon heating technologies. The carbon intensity of 

natural gas heating – which is used to meet the great majority of domestic and non-domestic 

heat demand – is given as 184.5 KgCO2/MWh in Defra’s reference tables.  In other words, a 

carbon intensity 39 times higher than our calculated figure for deep geothermal. (The figure 

given in the Defra tables for heating oil, another common heating type in rural Scotland, is 

246.6 KgCO2/MWh, which is 52 times higher.)   

In other words, where deep geothermal replaces natural gas heating there is scope for very 

large reduction in carbon emissions.  Given that the vast majority of heat consumers in the 

Banchory area are likely to use natural gas heating (or electrical heating, which is even more 

carbon intensive), this is an entirely plausible scenario. 

If we assume that the geothermal system produces 13,140 MWh of heat per year and this 

displaces the same amount of natural gas heating, the amount of carbon emissions saved 

annually will be: 

(184.5 – 4.4)  x  13,140 Kg = 2,366,514 Kg ≈ 2,367 tonnes of CO2 per year. 

Over thirty years operation the geothermal system would thus save around 71,000 tonnes of 

CO2.  

 

                                                           
15

 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/48193/3153-final-
report-carbon-factor.pdf. , fig. 3.1. 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/48193/3153-final-report-carbon-factor.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/48193/3153-final-report-carbon-factor.pdf
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Potential carbon savings across the rest of Scotland  

This section considers how much carbon could be saved if it proved plausible to roll-out 

deep geothermal heat schemes exploiting radiothermal granites across the areas in 

Scotland where they are found.  (We do not consider other types of deep geothermal 

schemes, such as those based on sedimentary aquifers, which may present opportunities 

elsewhere, such as the Central Belt.) 

Such an exercise will inevitably carry uncertainties, but it is possible to draw some broad 

conclusions.  Note that here we are considering the technical potential for what could be 

achieved in the long term i.e. we are not considering the commercial potential - what would 

be economically viable now.   

Is making this estimate we must make one subjective judgement call.  This concerns how far 

we believe heat can be transported before the cost of pipework becomes prohibitively 

expensive, or thermal losses make the system unviable. Heat can, in fact, be transported 

over large distances without a problematic drop in temperature; a famous example is the 

Copenhagen heat main which allows heat to travel tens of kilometres from the city’s 

periphery to reach high heat loads in the centre.   

So it is not unreasonable to imagine some larger diameter heat mains carrying geothermal 

water from the edges of the granite plutons into urban areas – most obviously, Aberdeen. 

    

How much heat could be produced?  

We assume that a typical deep geothermal doublet such as that proposed for Banchory will 

have a capacity of a few megawatts – let’s take 3 MW as an average figure (note that if 

many such projects were rolled out significant expertise would presumably be acquired in  

maximising well outputs). We also assume that these are able to run at a loading of 90% 

(not unusual for systems of this kind, which are relatively common in other countries).  

Wells must be far enough apart to prevent thermal ‘short circuiting’, where the re-injected 

colder fluids from one well find their way through horizontal pathways into the production 

borehole of a neighbouring system, reducing their effectiveness.  Such considerations are 

important in places such as Reykjavik and Paris, where production and re-injection systems 

are relatively close together.  In the latter location systems have been sited 2 km or less 

apart with no impact on sustainability.   

Assuming that systems can be installed round the edges of all the granite plutons in the 

Cairngorms, and system separation was 2 km, we could expect to install 250 systems 

without creating an unsustainable impact on the geothermal potential.  This equates to a 

geothermal capacity of 250 x 3 = 750 MWth the annual heat output would be  

750 x 8,760 x 0.9 = 5,913 gigawatt-hours 

Given the uncertainties we can take this as approximately 6 terawatt-hours (TWh). 
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How much heat demand would be within range?  

Scotland is a voracious consumer of heat.  According to ‘Energy in Scotland 2014’16 total 

non-electrical heat demand in that year was 86.8 TWh, or 55% of Scotland’s total energy 

consumption.    

The Scottish heat map, an online resource, allows us to measure the amount of heat 

demand in any defined area.  Bearing in mind our assumption (above) that meeting heat 

demands within tens of kilometres – but not more – is reasonable, we will assume that 

Aberdeen and the surrounding areas can be supplied by granite-based heat systems.  This 

leads us to identify the area shown in pink in Figure 40 below as able to be supplied with 

deep geothermal heat.  It covers the local authority areas of Angus, Perth and Kinross, 

Highland, Moray, Aberdeenshire and Aberdeen City.   

 

 

Figure 40 – maximum area in which heat demand could be met from geothermal heat from radiothermal 
granites 

We have interrogated the heat map database and established that the annual heat demand 

in this area is 6.4 TWh – very similar to the total geothermal heat capacity that we estimated 

above.  

On first inspection this is a happy coincidence, though we must exercise caution.  The 6.4 

TWh figure will include heat demands at temperatures geothermal heat cannot supply (for 

example, in industrial processes). Furthermore there will be periods of high demand when 

the geothermal sources (which are characterised by constant, unvarying heat production) 

are not able to cover the peaks – just as our financial model at Banchory demonstrates. 

                                                           
16

 http://www.gov.scot/Resource/0044/00444530.pdf  P. 47. 
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Assuming good use is made of heat stores (again, as is the case at Banchory) it should be 

possible to meet the majority of this heat demand.  As a conservative estimate we assume a 

figure of 70%. 

In conclusion, we assume that 70% of the 6.4 TWh = approximately 4.5 TWh, or 5.2% of 

total Scottish heat demand.   

We would again note that we have only considered the potential for deep geothermal heat 

from radiothermal granites.  There may be just as much or more potential to exploit deep 

geothermal heat to meet demand elsewhere in Scotland, including the central lowlands 

where the majority of the heat demand is located. 

 

Converting heat production into carbon savings 

Most of the heat consumers across the selected area will be from natural gas, though a 

significant proportion – given that much of it is off the gas grid – will use heating-oil.  The 

relative carbon intensities of these heating technologies are: 

natural gas heating:  184.5 KgCO2/MWh  

heating oil:         246.6 KgCO2/MWh. 

These figures come from the Defra tables mentioned above.    

Robust data are hard to locate, but we note that while purely in terms of square kilometres 

most of our selected area is off the gas grid, the majority of the population within it (living in 

the urban areas around Aberdeen) will use gas central heating.  We should thus assume a 

figure that is closer to the lower, natural gas figure – the obvious round figure being 200 

KgCO2/MWh.   

(We note in passing that we have not considered the scope for replacing electrical heating 

with deep geothermal heat – which for the foreseeable future would yield a larger carbon 

emission saving per unit of heat delivered than gas and heating oil.) 

The amount of carbon generated by meeting 4.5 TWh of heat using a technology with 200   

KgCO2/MWh is:  

 200  x  4.5  x 1,000,000 = 900,000,000 Kg.  

In other words, we estimate the potential carbon abatement from using radiothermal granites 

is around 900,000 tonnes of CO2 per year.       
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16.    Community Engagement 
 

Geothermal district heating has not been employed on any significant scale in Scotland, 

though there are estimated to be more than 240 schemes in Europe producing 12,900GWh 

of renewable heat17.  With very limited experience of geothermal energy HOBESCO sought 

the views of the community, holding an event for local people to find out more about both the 

existing Hill of Banchory Biomass Heat Network and the work of this geothermal feasibility 

study.  Attendees of the event, as well as existing HOBESCO customers, were invited to 

complete a questionnaire, the results of which are shown below. 

 

Question 1 – What is your level of knowledge of geothermal energy? 

64% of respondents claimed to have a medium level of geothermal knowledge, surprisingly 

high given the low level of geothermal energy in Scotland, though during discussions it was 

apparent that most people have only a very basic understanding.  36% stated a low level of 

knowledge.  Nobody claimed to have a high knowledge level. 

 

 

Question 2 – Do you support the development of geothermal energy in Scotland? 

All respondents supported the development of geothermal energy in Scotland.  One 

commented; 

‘We need a demonstration plant in Scotland as soon as possible.’ 

Another stated; 

‘It is interesting that Aberdeenshire seems to be well suited to using geothermal 

heat and could be an ideal area for its development.  Quite exciting.’ 

                                                           
17

 http://geodh.eu/ 

http://geodh.eu/
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Question 3 – Should development of geothermal energy be supported by government?   

100% of respondents stated that geothermal energy requires government support.  People 

understand how geothermal energy might benefit the country and want to see how we might 

realise its potential. 

 

 

Question 4 – would you be happy to receive your heat from geothermal energy? 

Despite very limited use of geothermal energy in Scotland, all respondents stated they would 

be happy to receive their heat from geothermal energy.  One respondent was concerned 

about fracking, and whilst the method of heat extraction is not the same as fracking, the 

negative public image of fracking needs to be addressed whilst developing geothermal 

energy.  General acceptance by the public of renewable energy technologies over the past 

decade should outweigh any perceptions of association with fracking. 
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Aberdeenshire Council 

Scottish Government has targeted an additional 40,000 homes to be connected to Heat 

Networks by 2020, and local authorities will be a key enabler in achieving this goal.  

However, following the most recent meeting of the Scottish Heat Network Practitioners 

Group, the lead organisation, Heat and The City, concluded that the capacity of local 

authorities to coordinate users is weak, and their appetite to do so is driven by enthusiastic 

individuals.  Heat and The City concluded that in order to drive a ‘step change’ in heat 

decarbonisation, which district heating can support, requires a shift from standalone projects 

to a more comprehensive programme of system change.  This change needs to be driven by 

central Government, providing local government and commercial organisations with the tools 

and resources to facilitate that change, an example being the implementation of funded 

District Heating Officers.18   

The Council’s involvement is vitally important for an expanded Heat Network at Hill of 

Banchory given that public buildings would be potentially large consumers of heat, and 

buildings such as schools and care homes provide key anchor loads, crucial in operating 

efficient systems.  Initial discussions with Aberdeenshire Council have met with a positive 

response, and the future success of an expanded geothermal network would require their 

active participation. 

  

                                                           
18

 http://www.heatandthecity.org.uk/about/?a=187208. 

http://www.heatandthecity.org.uk/about/?a=187208
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17. Conclusion and Recommendations 
 

The work reported here has confirmed that there is indeed a promising prospect for 

augmenting the heat supplied to the customers of the Hill of Banchory heat network by 

developing a deep geothermal well doublet system exploiting the radiothermal Hill of Fare 

granite nearby.  Appraisal of pre-existing geological data, and new data on heat production 

rates and thermal conductivity gathered during this study, reveal that the Hill of Fare Pluton 

is somewhat more promising as a geothermally prospect than had hitherto been supposed.    

The HOBESCO network is unusually cost-effective as it sources its biomass locally, and 

geothermal energy would not be able to out-compete that energy source. However, financial 

appraisal indicates that it could out-compete the use of gas (which is already used or back-

up and peak-up purposes by HOBESCO), and would be an attractive alternative to gas to 

support future network expansion once the limits of local sustainable biomass availability are 

exceeded.  In otherwise analogous situations elsewhere in Scotland where cheap, 

sustainable local biomass is not available, geothermal from similar granites would likely 

emerge as the prime option for low-carbon, renewable district heating.  

Given the limited time and funds available for this project, it has not been possible to 

eliminate all sources of uncertainty relating to the Hill of Fare / Hill of Banchory geothermal 

prospect. In particular, we lack site-specific information on several important aspects of 

hydrogeology and geothermics, including: 

 the geothermal gradient within the Hill of Fare; 

 possible decrease in heat production rates over depth, and the rate thereof;   

 fracture patterns in the granite; 

 permeability of fractured zones; and 

 chemistry of native ground water at depth in the granite (which has implications for 

corrosion control and reinjection practices). 

This study has markedly increased confidence in the viability of developing renewable heat 

from Scotland’s radiothermal granites. It has made ever more poignant and pressing the 

need to finally catch up with other parts of the UK with similar prospects (i.e. Cornwall and 

the North Pennines) and sink some boreholes to resolve some of the above questions in a 

rigorous and timely manner.  The next steps for the Hill of Banchory project (see Chapter 19) 

are therefore focused on addressing this need, and removing the principal remaining barrier 

to project development for this promising source  of low-carbon, renewable heat. 
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18. Strategic Implications of a Banchory Geothermal Project 
 

While it has long been appreciated that the Eastern Grampian granite plutons of Scotland 

represent a potential source of energy, no specific proposals have yet reached the stage at 

which this project has now placed the Hill of Fare pluton. This has only been realised in this 

case because of the pre-existence of a successful heat network at Hill of Banchory, which 

has facilitated concrete consideration of quite what it would take to harness geothermal heat 

from granite for district heating purposes. This project is therefore, in itself, a strategic 

development in the context of Scotland’s wider quest for affordable low-carbon and 

renewable heat.  

Clearly there is scope to use this project’s findings as a template for similar, site-specific 

appraisals of the prospects for community and industrial (e.g. for whisky production) use of 

the heat in similar (and in many cases even more promising) granites elsewhere in 

Aberdeenshire and adjoining districts. Most of the towns in this region are not connected to 

the gas grid, and there is not scope in all of them to exploit sustainable local wood supplies 

for biomass-based district heating. Geothermal probably represents the single best hope of 

simultaneously combatting fuel poverty and carbon emissions from heat in those towns. As 

demonstrated in Chapter 15, this could amount to 70% or more of the total heat demand in 

this region, and in excess of 5% of the total heat demand of Scotland.   

In addition, there are other regions of Scotland where radiothermal granites may be present 

in the deep subsurface (e.g. xenoliths in volcanic plugs in the Midland Valley include notable 

examples of suitably potassium-rich granites, indicating the likely presence of plutons of that 

nature at depth; see Younger et al. 2012). Indeed, the occurrence of such granites at depth 

might explain the relatively high heat flows in the sedimentary basins of the Midland Valley, 

providing a link to the Deep Sedimentary Aquifer prospects in that region.  

If the Banchory project is taken to the next stage (see Chapter 19), the strategic value for 

Scotland will be considerable. But the strategic value will also extend into adjoining regions 

(e.g. the North Pennines and Lake District of England, where similar granites have been 

investigated in recent years) as well as into Northern Ireland, where the Mourne Granite has 

recently been recognised as an exceptionally high heat-producer.  

Wider afield, the European Union continues to invest considerable sums in geothermal R&D, 

such as the Horizon 2020 DESTRESS project which commences on March 1st 2016 (in 

which the University of Glasgow participants in this consortium are the UK partners), which 

is addressing optimal reservoir stimulation techniques for radiothermal granites and other 

deep geothermal prospects.   Thus timely execution of the proposed next steps of this 

project would allow Banchory, and therefore Scotland, to contribute at the very forefront of 

European (and thus global) R&D and demonstration of geothermal energy technology. 
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19. Next Steps 
 

This project has strongly supported the hypothesis that the Hill of Fare granite could be 

successfully exploited to provide low-carbon renewable heat to augment and support 

expansion of the existing Hill of Banchory district heating network.  The results are 

sufficiently encouraging that they justify seeking funding to sink one or more pilot boreholes 

and to expand geophysical prospecting around the Hill of Fare pluton. In parallel, further 

engagement with local landowners and with the public ought to be undertaken, so that if the 

results of the geoscientific work are favourable, the way will be clear to begin to develop 

specific plans to drill a production and reinjection borehole doublet system.   

Accordingly, the next steps to take forward the Hill of Banchory Geothermal Project would be 

as follows.  We assume that the next phase of the project would be predicated on the 

continuation of the current consortium, which would engage third parties with the relevant 

expertise to assist as necessary.  We also expect that some of the consortium members 

would in time form the core of a ‘Banchory Geothermal Energy Services Company’ (ESCO).  

We anticipate that Aberdeenshire Council would play an increased role as the project 

developed and a robust business plan was worked up.      

The consortium members make clear that their ultimate objective is creating a geothermal 

borehole doublet at Hill of Fare that will supply low carbon, renewable heat to customers in 

Banchory. The steps above are designed to take the project to the point where a fully robust 

business case can be produced for this high profile project.  

We note that an essential element in the development of a deep geothermal well at 

Banchory will be the presence of a suitable heat customer.  An expansion of the heat 

network in Banchory offers the most obvious way to deliver this.  This would facilitate the 

wider deployment of renewable heat and align with Scottish Government’s targets on district 

heating.  We expect Aberdeenshire Council to play an important role in this process, not 

least because they oversee several large individual heat customers in Banchory.’ 

We have made indicative estimates of timelines and budget required for each task (italics).   

1. Procure funding and relevant permits (most notably from the Scottish Environmental 

Protection Agency and the local planning authority) to facilitate the actions at point 2.  

We expect obtaining regulatory permission for the pilot drilling to take 3-6 months. There is 

nothing particularly unusual in the drilling being proposed, so this should be relatively 

straightforward. On this assumption, costs of £5-10K0 should cover administrative effort. 

2. Drill, sample (using cuttings and spot coring), case, geophysically log and test-pump 

at least one (and ideally three) pilot boreholes completed to depths of 600m – 1000m (i.e. 

deep enough to extend below the weathering zone and largely below the zone of 

palaeoclimatic influence).  Consider retaining the completed borehole(s) for future 

piezometric and micro-seismic monitoring.  

Drilling each pilot hole should take around 3 months, including well pad preparation and site 

reinstatement.  Preceding this, a procurement exercise to select a drilling company could 

take 2-4 months. Boreholes drilled into granite are relatively rare, but the 995 m deep 
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borehole drilled into the Weardale granite in County Durham in 2004 cost £460K.  Test 

pumping and other analysis could take up to 1 month, and cost (again to judge from 

Eastgate test-pumping in 2006) up to £50K per borehole, depending on the precise regime 

devised from the findings of the drilling and geophysical logging.     

It should be noted that, following completion of the above works, the three boreholes would 

be retained for possible future re-use for monitoring of supra-reservoir water pressures, 

temperatures and micro-seismicity in the event the future production and reinjection 

boreholes are commissioned. Hence the investment in this phase of the work would create 

some reusable assets in addition to essential data. 

3. In parallel, complete surface geophysical surveys (gravity, passive seismic etc.) 

should be carried out.  On a longer timescale, work should be undertaken to improve our 

understanding of the natural fracture networks in the granites and their associated hydraulic 

conductivities.  This would include LIDAR fracture surveys of the exposed granites in the Hill 

of Fare quarries.   

The costs for a geophysical survey, the fracture network analysis, experiments of granite 

failure and coupled numerical simulations would be around £200K.  Initial results could be 

generated within 6-12 months, with a fuller academic study extending into the medium term. 

4. Develop a detailed plan and schedule for the drilling, logging, testing and 

commissioning of the permanent production and reinjection boreholes.  

This would be carried out by the consortium members, assisted as necessary by specialist 

consultancy advice. Estimated cost £30-50K, timescale 6-12 months.  The input from the 

consortium would perhaps be on a similar scale to the first phase of the project.  

The following tasks would be carried out by consortium members, with the transition to an 

ESCO in mind.        

5. Liaise with local landowners over the possibility of agreeing sites for production and 

reinjection boreholes and wayleaves for pipelines to take water to / from the existing Hill of 

Banchory energy centre.  

6. Run further public engagement events locally, regionally and nationally, including 

opportunities for the public to experience drilling at first hand during (2) above. 

7. Initiate the search for investment to allow the project to proceed. 

These tasks are unlikely to require significant non-wage costs, but would involve extensive 

input of employee time for consortium members.  We estimate these tasks will take 2-4 

months, and will cost £50-75K.    

 



Page | 118 

 

 

References 
 

 

AECOM (2013) - Study into the Potential for Deep Geothermal Energy in Scotland, Scottish 

Government paper – online at http://www.gov.scot/Resource/0043/00437977.pdf  

 

Baisch, S., Weidler, R., Vörös, R., Wyborn, D. and de Graaf, L., 2006. Induced seismicity 

during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia. Bulletin 

of the Seismological Society of America, 96(6), pp.2242-2256. 

 

Barton, C.A., Zoback, M.D. and Moos, D., 1995. Fluid flow along potentially active faults in 

crystalline rock. Geology, 23(8), pp.683-686. 

 

Black, J.H., Barker, J.A. and Woodman, N.D., 2007. An investigation of'sparse channel 

networks'. Characteristic behaviours and their causes. Swedish Nuclear Fuel and Waste 

Management Co. 

 

British Geological Survey. 1992. Inverurie. Scotland Sheet 76E. Bedrock. 1:50 000 Geology 

Series.  Keyworth, Nottingham. 

 

British Geological Survey, 2002. Inverurie. Scotland Sheet 76E. Solid and Drift Geology. 1: 

50 000. Keyworth, Nottingham. 

 

Busby, J., Gillespie, M. and Kender, S., 2015. How hot are the Cairngorms?. Scottish Journal 

of Geology, 51(2), pp.105-115. 

 

Chabora, E., Zemach, E., Spielman, P., Drakos, P., Hickman, S., Lutz, S., Boyle, K., 

Falconer, A., Robertson-Tait, A., Davatzes, N.C. and Rose, P., 2012, January. Hydraulic 

Stimulation of Well 27-15, Desert Peak Geothermal Field, Nevada, USA. In Proceedings of 

thirty-seventh workshop on geothermal reservoir engineering, Stanford University, Stanford 

(Vol. 30). 

 

Dezayes, C., Genter, A. and Valley, B., 2010. Structure of the low permeable naturally 

fractured geothermal reservoir at Soultz. Comptes Rendus Geoscience, 342(7), pp.517-530. 

 

Donofrio, R.R., 1998. North American impact structures hold giant field potential. Oil and 

Gas Journal, 96(19), pp.69-83. 

 

Downing, R.A. and Gray, D.A. 1986 Geothermal Energy – The potential in the United 

Kingdom. London: Her Majesty’s Stationary Office 

 

Evans, K.F., Moriya, H., Niitsuma, H., Jones, R.H., Phillips, W.S., Genter, A., Sausse, J., 

Jung, R. and Baria, R., 2005. Microseismicity and permeability enhancement of 

hydrogeologic structures during massive fluid injections into granite at 3 km depth at the 

Soultz HDR site. Geophysical Journal International, 160(1), pp.388-412. 

 

http://www.gov.scot/Resource/0043/00437977.pdf


Page | 119 

 

Gérard, A., Baumgartner, J., Baria, R., Jung, R., Gentier, S. and Genter, A., 2002. Elements 

for a conceptual model of the underground heat exchanger at Soultz-sous-Forêts, France. 

Situation, beginning 1998. In Proceedings of the 4th International HDR Forum in Strasbourg 

(1998), Geologische Jahrbuch Reihe E Geophysics Heft SE1, Hannover (pp. 281-290). 

 

Gillespie, M. R., Crane, E.J. and Barron, H.F. 2013. Study into the Potential for Deep 

Geothermal Energy in Scotland: Volume 2. ISBN: 9781782569862 (web only publication, 

available from http://www.gov.scot/Publications/2013/11/6383) 

 

Johnston, Euan, 2015. Potential field data in NE Scotland and its preliminary interpretation. 

Unpublished MSc Research Report, School of Geosciences, University of Aberdeen. 

 

Jupe, A.J., Green, A.S.P. and Wallroth, T., 1992, July. Induced microseismicity and reservoir 

growth at the Fjällbacka hot dry rocks project, Sweden. International Journal of Rock 

Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 29, No. 4, pp. 343-354).  

 

Kearey, P., Brooks, M. and Hill, I., 2002. An Introduction to Geophysical Exploration. 

Blackwell. 

 

Kyriakis, S.A., and Younger, P.L. (2016) Towards the increased utilisation of geothermal 

energy in a district heating network through the use of a heat storage.  Applied Thermal 

Engineering, 94, (5): 99–110 

 

Li, B., Guttormsen, J., Hoi, T.V. and Duc, N.V., 2004, January. Characterizing permeability 

for the fractured basement reservoirs. In SPE Asia Pacific Oil and Gas Conference and 

Exhibition. Society of Petroleum Engineers. 

 

Majer, E.L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B. and Asanuma, H., 2007. 

Induced seismicity associated with enhanced geothermal systems. Geothermics, 36(3), 

pp.185-222. 

 

Manning, D.A.C., Younger, P.L., Smith, F.W., Jones, J.M., Dufton, D.J. and Diskin, S., 

2007. A deep geothermal exploration well at Eastgate, Weardale, UK: a novel exploration 

concept for low-enthalpy resources. Journal of the Geological Society, 164(2), pp.371-382. 

 

McCay, A.T., Harley, T.L., Younger, P.L., Sanderson, D.C. and Cresswell, A.J., 2014. 

Gamma-ray spectrometry in geothermal exploration: State of the art techniques. Energies, 

7(8), pp.4757-4780. 

 

McGregor, D.M. and Wilson, C.D.V., 1967. Gravity and magnetic surveys of the younger 

gabbros of Aberdeenshire. Quarterly Journal of the Geological Society, 123, 99-120. 

 

Richards, H.G., Parker, R.H., Green, A.S.P., Jones, R.H., Nicholls, J.D.M., Nicol, D.A.C., 

Randall, M.M., Richards, S., Stewart, R.C. and Willis-Richards, J., 1994. The performance 

and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, 

Cornwall (1985–1988). Geothermics, 23(2), pp.73-109. 

 

Olkiewicz, A., Gale, J.E., Thorpe, R. and Paulsson, B., 1979. Geology and Fracture System at 

Stripa Lawrence Berkeley Lab. Report LBL, 7079. 

 

http://www.gov.scot/Publications/2013/11/6383


Page | 120 

 

Tandom, P.M., Ngoc, N.H., Tjia, H.D. and Lloyd, P.M., 1999, January. Identifying and 

evaluating producing horizons in fractured basement. In SPE Asia Pacific Improved Oil 

Recovery Conference. Society of Petroleum Engineers. 

 

Thomas, C.W., Gillespie, M.R., Jordan, C. and Hall, A.M. (2004). Geological structure and 

landscape of the Cairngorm Mountains. Scottish Natural Heritage Commissioned Report 

No.064 (ROAME No. F00AC103). 
 

Westaway, R. and Younger, P.L., 2013. Accounting for palaeoclimate and topography: a 

rigorous approach to correction of the British geothermal dataset. Geothermics, 48, pp.31-51. 

 

Wyborn, D., 2010, April. Update of development of the geothermal field in the granite at 

Innamincka, South Australia. In Proceedings of the World Geothermal Congress, Bali, 

Indonesia (pp. 25-30). 

 

Wheildon, J, Lee M. K., Webb, P. C., Brown, G. C., Rollin, K. E., Crook, C. N., ... & 

Thomas-Betts, A. (1984). HDR prospects in Caledonian granites: evaluation of results from 

BGS-IC-OU research programme (1981-84). Invest. Geothermal Potential UK, 83pp., BGS 

 

Younger, P.L., 2014. Missing a trick in geothermal exploration. Nature Geoscience, 7(7), 

pp.479-480 

 

Younger, P. (2015). Geothermal Energy: Delivering on the Global Potential. Guest editor of 

Special Issue. Energies, 7. 

 

Younger, P. L., Gluyas, J. G., & Stephens, W. E. (2012). Development of deep geothermal 

energy resources in the UK. Proceedings of the Institution of Civil Engineers-Energy, 165(1), 

19-32. 

 

Younger, P. L., & Manning, D. A. C. (2010). Hyper-permeable granite: lessons from test-

pumping in the Eastgate Geothermal Borehole, Weardale, UK. Quarterly Journal of 

Engineering Geology and Hydrogeology, 43(1), 5-10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendices 
 

  



Page | 122 

 

Appendix 1 – Thermal Conductivity Data 
 

 

Sample Locality Locality Grid Ref Orientation Field Notes Hand Specimen Description Laboratory Notes Thickness (mm) Thermal Conductivity (W/mK)

HoF - 01

L1A 

Raemoir - 

Main 

Quarry NJ 70143 00363 345 - 80

Top of main 

quarry NE cliff 

face

Orangy pink granite - medium 

grained (up to 5mm), no foliation,  

granular, rich in pink orthoclase 

and  quartz, otrthoclase (45%), 

quartz (30%), plagioclase (20%) 

mica (5%)    

Chip on top edge from rock saw 

(due to pre existing fracture) - 

roughly 10mm in length, 

<10mm^2 surface area.                                                                                       

Continuous fracture down one 

edge and across some of the 

top.

9.94 3.284

HoF - 02

L1A 

Raemoir - 

Main 

Quarry NJ 70143 00363 062 - 83

3m below HoF - 

01

Orangy pink granite - medium 

grained (up to 5mm), no foliation,  

granular, rich in pink orthoclase 

and  quartz, otrthoclase (40%), 

quartz (30%), plagioclase (25%) 

mica (5%)        

Sample is slightly tapered.

10.99 2.995

HoF - 03

L1A 

Raemoir - 

Main 

Quarry NJ 70143 00363 110 - 87*

5m below HoF - 

02. *sample came 

loose before 

orientation 

taken*

Orangy pink granite - medium 

grained (up to 5mm), no foliation,  

granular, rich in pink orthoclase 

and  quartz.   Slightly less quartz 

than HoF 1 and 2, orthoclase 

(50%) quartz (25%), plagioclase 

(20%) mica (5%)

Slight chip on top edge - 

surface area ~1mm^2.

10.11 3.213

HoF - 04

L1B 

Raemoir - 

Northern 

Quarry NJ 70105 00477 350 - 96*

Top of northern 

quarry N cliff face. 

*loose*

Lighter pink than Raemoir Main 

Quarry (more plagioclase) - 

coarese grained (up to 7mm), no 

foliation, orthoclase (40%) 

plagioclae (30%) quartz (20%) 

mica (10%)

Nothing to note.

7.26 2.349

HoF - 05

L1B 

Raemoir - 

Northern 

Quarry NJ 70105 00477 168 - 80*

3m down and 

10m across on S 

side outcrop. 

*loose*

Lighter pink than Raemoir Main 

Quarry (more plagioclase) - 

coarese grained (up to 7mm), no 

foliation, orthoclase (40%) 

plagioclae (25%) quartz (25%) 

mica (10%)    

Slightly chipped top and 

bottom edges from rock saw.

8.17 2.803

HoF - 06

L1B 

Raemoir - 

Northern 

Quarry NJ 70105 00477 348 - 90

8m E of HoF - 04, 

2m down from 

weathered 

surface

Lighter pink than Raemoir Main 

Quarry (more plagioclase) - 

coarese grained (up to 7mm), no 

foliation, orthoclase (40%) 

plagioclae (30%) quartz (20%) 

mica (10%) 

Large chip on side of sample - 

roughly 10mm^2 surface area.

11.67 3.004

HoF - 07

L1B 

Raemoir - 

Northern 

Quarry NJ 70105 00477 335 - 81

0.5m from HoF - 

06

Lighter pink than Raemoir Main 

Quarry (more plagioclase) - 

coarese grained (up to 6mm), no 

foliation, orthoclase (40%) 

plagioclae (30%) quartz (20%) 

mica (10%)  

Nothing to note.

8.10 2.955

HoF - 08

L2A The 

Skairs - 

Weathere

d Outcrop NJ 689 014* 084 - 19*

15m from x2 

wooden posts 

near summit. 

*sample loose 

and broken into 

pieces*

Light grey/ pink microgranite 

(crystals <1mm) -  no foliation, 

plagioclase (35%) orthoclase 

(30%) quartz (25%) mica (10%)   

Nothing to note.

9.50 2.697

HoF - 09

L2B The 

Skairs - 

Weathere

d Outcrop NJ 689 014* 232 - 04

30m across and 

10m down SE 

from HoF - 08

Dark grey granite - medium 

grained (sub mm to 4mm), no 

foliation,   plagioclase (35%) 

quartz (35%) orthoclase (25%) 

mica (5%)

Slight chip on top and bottom 

edge (1mm^2 surface area 

each). 10.48 3.133

HoF - 10

L2C The 

Skairs - 

Weathere

d Outcrop NJ 689 014* 250 - 78

10m SE from HoF - 

09, by x2 trees

White/ pink granite - coarese 

grained (up to 7mm), no foliation, 

plagioclase (40%) quartz (30%) 

orthoclase (20%) mica (10%)   

Sample is slighly tapered .

10.14 2.601

HoF - 11

L3A 

Craigton - 

Main 

Quarry NJ 71102 00530 051 - 67*

SW edge of 

quarry, top of cliff 

face on 

weathered 

surface. *loose 

and broken*

Orangy pink granite - coarse 

grained (up to 5mm), no foliation, 

orthoclase (60%) quartz (30%) 

plagioclase (5%) mica (5%)   

Nothing to note,

9.41 3.072

HoF - 12

L3A 

Craigton - 

Main 

Quarry NJ 71102 00530 340 - 13

0.5m from HoF - 

11 taken 

vertically down

Orangy pink granite - medium 

grained (up to 5mm), no foliation, 

orthoclase (55%) quartz (30%) 

plagioclase (10%) mica (5%)

Nothing to note

8.54 3.256

HoF - 13

L3A 

Craigton - 

Main 

Quarry NJ 71102 00530 253 - 09

Vertical sample 

next to swimming 

spot on S edge of 

quarry

Orangy pink granite - medium 

grained (up to 6mm), no foliation, 

orthoclase (60%) quartz (30%) 

plagioclase (5%) mica (5%)   

Nothing to note.

9.10 3.346

HoF - 14

L3A 

Craigton - 

Main 

Quarry NJ 71102 00530 073 - 89*

Taken from large 

boulder on E of 

quarry edge. 

*lose and 

broken*

Dark orangy pink granite - mesium 

grained (up to 5mm), no foliation, 

orthoclase (60%) quartz (35%) 

plagioclase (5%) 

Nothing to note.

11.01 3.279

HoF - 15

L3B 

Craigton - 

Northern 

Quarry NJ 70885 00628* 261 - 89*

Taken from half 

way up 1.5m high 

cliff. Small plug 

due to petrol 

shortage. *loose 

and broken*

Light pink granite - medium 

grained (up to 5mm), no foliation, 

orthocalse (50%) quartz (25%) 

plagioclase (20%) mica (5%)

Sample is slightly tapered.

7.60 3.071

HoF - 16

L3C 

Craigton - 

Southern 

Quarry NJ 70885 00628 109 - 76*

E side of quarry 

mouth, very hard 

outcrop. *loose 

and broken*

Light pink granite - medium 

grained (up to 5mm), no foliation, 

orthoclase (60%) quartz (25%) 

plagioclase (10%) mica (5%)

Slightly small and irregular 

sample

7.89 2.176

HoF - 17

L3C 

Craigton - 

Southern 

Quarry NJ 70885 00628 115 - 78

0.5m down and S 

of HoF - 16

Pink granite - medium grained (up 

to 4mm), no foliation, orthoclase 

(55%) quartz (25%) plagioclase 

(15%) mica (5%)

Only thin sample could be 

produced 
6.04 3.682

HoF - 18

L3C 

Craigton - 

Southern 

Quarry NJ 70885 00628 263 - 86

W side of quarry 

mouth, 20m W of 

HoF - 16/17, drill 

stopped working 

so plug small

Dark pink granite - medium 

grained (up to 5mm), no foliation, 

orthoclase (60%) quartz (30%) 

plagioclase (5%) mica (5%)

Sample is slightly irregular in 

shape

13.48 3.305
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Appendix 2 – Network Heat Cost Model Input Variables 
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Appendix 3 – Risk Register 

 

 

# Risk Area

Risk = 

Prob * 

Impact

Manage

ability Mitigating actions

When to 

address risk

Risk after 

mitigation

1

There is insufficient water yield at depth to be 

viable, due to insufficient fracture permeability or 

connectivity

subsurface H L

1. Evaluate and make case for stimulation to 

improve flow rates

2. evaluate completing a a closed loop system

3. Evaluate completing as a low flow system

4.Abandon the well and Supply heat to expanded 

DHN from alternate sources, eg biomass, gas

5. consider maintaining welll for research

Post drilling M

3
Rock - water reactions reduce permeability over 

time, reducing well productivity
subsurface M L

Monitor well performance and conduct 

laboratory experiments and modelling based on 

measured rock mass conditions to understand 

and predict rock-water reactions, and on this 

basis design mitigating interventions (eg 

Stimulation) if necessary.

Post drilling L

4
Produced Water quality impacts on equipment 

costs and maintenance
subsurface M M

1. Sample Water in test bore to design 

metallurgy appropriately

2. Test water in production well and develop 

maintenance strategy

Test Bore or 

Post Drilling
L

5

Microgranites may be present at depth 

complicating heat profile and so well performance 

prediction

subsurface L L None L

6
Over-reliance on a single geological model leads to 

well missing target
subsurface H H

Be aware of model risk when defining well 

location
Next stage L

7 Well flows at lower temperature than expected subsurface M L

1. Measure downhole temperature in test bore

2. Evaluate options to deepen the well for higher 

temperature

3. Assess District heating network alternatives 

for lower temperature input

Next Stage 

& Test Bore
M

8 Thermal breakthrough from injection well subsurface M L
Cease injection, sidetrack injector?  No pre-drill 

mitigation
Post drilling M

9 Drilling costs exceed plan due to drilling challenges Well M M
Given lack of offset wells consider test bore to 

evaluate tophole conditions

Next Stage 

& Test Bore
M

10 Difficulty obtaining wayleaves for heat pipeline Well to DHN M H
Work with landowners to optimise pipeline 

route 
Next stage L

11
Difficulty obtaining planning permission for 

pipeline and well surface infrastructure
Well to DHN L H

Work with landowners and Planning Authority to 

optimise pipeline route 
Next stage L

12
Difficulty obtainng landowner permission for a 

drilling pad
Well L H Work with landowners Next stage L

13
New public sector buildings not compatible with 

District Heating Network, eg delivery temperatures
DHN M M

Engage with Aberdeenshore Council early to 

influence design
Next stage L

14
District Heating Network return temperature too 

high
DHN H M

Evaluate alternatives, eg heat pumps, higher 

well temperatures through deeper well
Next stage M

15

Private sector housing not interested in District 

Heating Network, especially retrofit in Banchory 

centre

DHN M M
Engage with local stakeholders to demonstrate 

the economic value, carbon savings etc, 
Next stage L

16 No Government Grant for well capex Finance M M
Seek alternatives: private sector; well insurance 

scheme, etc
Next stage M

17
Can't compete with current cost of gas to 

Aberdeenshire Council at 2.5p/kwh
Finance M M

Structure pricing to compete long term, offer 

CO2 reduction, be prepaed to reduce price for 

large user

Next stage L

18 No Government funding for Stage 2 of project Finance M M
Lobby for continued funding to reach investment 

decision
Next stage M

19 RHI abolished or cut back Finance H L Lobby Next stage M

20 Cost of retrofit to existing properties too high Finance M M
Optimise retrofit design and costs, seek funding 

for energy efficiency investments
Next stage M

21

Scottish Government imposes a moratorium on 

reservoir development for geothermal due to 

wider concerns about fraccing

Stakeholders H M Lobby Next stage M

22 Lacking general public support locally Stakeholders L M
Manage all local stakeholders with long term 

engagement plan
Next stage L

23 Other Geothermal heat projects fail, with knock on Stakeholders M L
Demonstrate why our project is different? (if it 

is!)
Next stage M
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Appendix 4 – Heat Production Data for the Hill of Fare Granite  

 

Location Grid 

Square 

North South K 

(wt%) 

U 

(ppm) 

Th 

(ppm) 

Heat 

Production 

(uW/m^3) 

Corrected 

Heat 

Production 

(uW/m^3) 

Notes 

Raemoir 

Quarries 

NJ 70174 00374 5.48 8.15 28.37 4.643919 3.813437135 On face of quarry 

at initial step down 

to ledges leading 

down to the water 

5.07 10.76 25.4 5.080239 4.50908787 

5.32 8.66 28.21 4.751136 4.018818045 

Raemoir 

Quarries 

NJ 70161 00354 5.37 7.92 36.52 5.145417 4.311801955 Same as above but 

on a different face 
5.59 8.46 32.1 4.997349 4.022910644 

Craigton 

Quarries 

NJ 71029 00438 6.15 13.53 48.31 7.516044 5.49954439 This is 

overestimated due 

to granite boulders 

at base of vertical 

exposure 

6.23 13.12 44.41 7.142445 5.159069422 

Craigton 

Quarries 

NJ 70914 00627 5.55 8.41 30.09 4.839372 3.923815135 Smaller northern 

most quarry of the 

Craigton quarries. 

Probably the most 

accessible quarry 

face at Craigton 

5.46 10 32.67 5.428404 4.473959341 

5.37 9.03 32.92 5.183406 4.343636313 

Hill of 

Fare 

NJ 70225 01369 4.17 3.67 24.03 3.042144 - Isolated exposure 

in the middle of 

heather moorland. 

Granite looks very 

eroded as blocks 

are very rounded.  

4.39 4.11 22.29 3.056022 - 

Hill of 

Fare 

NJ 70225 01369 4.27 5.11 24.31 3.448386 - On different face 

of exposure to 

previous 

measurement 

4.25 4.36 24.76 3.281661 - 

Hill of 

Fare 

NJ 69623 01330 4.27 5.45 22.66 3.421602 - Photo 0013 likely 

underestimate 
4.51 5.08 24.37 3.467421 - 

Hill of 

Fare 

NJ 69210 02209 5.35 6.54 21.32 3.715065 - Small quarry. 

Plane seems like a 

fault striking N-S 4.53 6.28 19.11 3.414339 - 

Crathes 

Pluton 

NO 72896 97348 3.57 1.92 19.22 2.189457 - Highly 

fracture/faulted 

area with possible 

uranium 

mobilisation 

3.3 3.73 15.15 2.352267 - 
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Crathes 

Pluton 

NO 72896 97348 2.58 3.96 15.19 2.347272 - Same location as 

above but 

different plane 3.82 2.84 16.17 2.23992 - 

Crathes 

Pluton 

NO 72781 97992 3.08 3.08 12.95 2.006802 - Underestimate 

3.07 4.04 10.11 2.057913 - 

Craigrath 

on HoF 

NJ 68812 01891 4.1 5.43 23.09 3.430485 - Just North of 

Craigrath summit 
4.4 4.41 20.55 3.013389 - 

4.08 4.38 23.38 3.173958 - 

Craigrath 

on HoF 

NJ 68779 01720 4.44 5.43 22.16 3.397329 - Similar to above. 

All outcrops on 

The Skair and 

Craigrath are very 

eroded with 

rounded edges to 

all blocks. 

4.43 5.57 23.08 3.497634 - 

The 

Skairs 

NJ 68918 01443 4.28 4.11 22.46 3.057561 - Underestimate 

due to topography 
3.52 3.87 24.28 3.050649 - 

The 

Skairs 

NJ 68937 01424 4.6 5.4 25.43 3.634146 -   

5 5.72 23.43 3.615354 - 

The 

Skairs 

NJ 68960 01416 4.23 3.84 18.97 2.737125 -   

4.11 5.23 17.4 2.979612 - 

4.03 4.61 18.94 2.917782 - 

The 

Skairs 

NJ 68844 01389 4.79 6.71 25.91 4.028886 - Underestimate 

due to topography 
4.75 4.86 28.44 3.718197 - 

4.48 6.19 28.28 4.029777 - 

The 

Skairs 

NJ 68898 01335 4.37 14.74 27.72 6.219315 -   

4.27 13.3 26.55 5.750595 - 

The 

Skairs 

NJ 69070 01301 4.53 5.45 28.38 3.847716 -   

4.32 5.26 28.11 3.759156 - 

Raemoir 

Quarries 

NJ 70093 00506 4.29 4.87 22.49 3.259656 - On "flat" surface 

exposure next to 

quarry 4.24 5.19 20.95 3.230631 - 

Raemoir 

Quarries 

NJ 70093 00506 4.86 14.47 31.98 6.493959 6.012925 On quarry exposed 

surface next to 

above 5.54 13.74 29.76 6.211188 5.045188809 
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Raemoir 

Quarries 

NJ 70093 00506 5.42 14.58 29 6.366492 5.285832841 On quarry exposed 

surface next to 

above 5.28 14.09 32.58 6.476247 5.519528693 

Raemoir 

Quarries 

NJ 70170 00350 7.14 11.24 45.09 6.783804 4.275506723 Main Raemoir 

quarry. 
7.35 10.27 41.77 6.316542 3.867270612 

Raemoir 

Quarries 

NJ 70170 00350 4.25 2.69 27.86 3.061908 - On flat surface at 

top of Raemoir 

quarry 3.74 4.69 24.44 3.297429 - 

Craigton 

Quarries 

NJ 71083 00598 4.97 13.82 28.72 6.105267 5.527907746 On West side of 

Main Craigton 

quarry. Possible 

fault surface. 

5.05 12.82 32.23 6.097329 5.433263465 

Corfieldy 

Quarry 

NJ 67193 001150 4.74 3.2 22.16 2.841642 -   

4.46 5.17 21.97 3.317787 - 

4.63 4.77 21.38 3.187674 - 

Corfieldy 

Quarry 

NJ 67314 01216 7.04 8.39 25.48 4.651317 2.973142969 Possible quarry 

face, or joint 

hackles causing 

what looks like 

faults, 

overestimated as 

surrounded by 

rock 

6.39 7.02 25.13 4.206519 2.962337324 

6.66 6.79 30.33 4.536837 3.065430405 

Corfieldy 

Quarry 

NJ 67350 01277 4.41 5.16 22.37 3.338523 - Small quarry uphill 

from the main 

flooded quarry 4.43 3.96 21.04 2.932767 - 

4.36 3.46 21.15 2.802924 - 

Corfieldy 

Quarry 

NJ 67310 01147 5.93 10.34 23.7 4.932171 3.742794182 Quarry Face in the 

main flooded 

quarry 6.44 8.06 26.12 4.553118 3.181526553 

6.16 9.24 26.33 4.850442 3.54334237 

Corfieldy 

Quarry 

NJ 67317 01171 4.01 4.41 16.1 2.664144 - Weathered 

naturally exposed 

face 4.22 3.23 18.24 2.525175 - 

Corfieldy 

Quarry 

NJ 67101 00952 5.28 8.83 24.6 4.538457 - Friable pebble 

quarry, granite 

pale as it seems 

feldspar is 

preferentially 

eroded 

5.28 8.68 22.35 4.341222 - 

Blairhead NJ 66070 01896 5.69 4.19 19.68 3.016602 - Friable pebble 
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Farm 5.68 2.91 22.25 2.860839 - quarry, 

microgranite 
5.6 4.08 20.57 3.041766 - 

Blairhead 

Farm 

NJ 1672 66292 5.43 2.01 17.06 2.237166 - Quarry, lots of 

vegetation cover 
5.33 1.41 14.35 1.880334 - 

Crathes 

Castle 

NO 73230 96711 4.05 0.54 12.06 1.370763 -  

3.48 2.1 10.87 1.641924 - 

Crathes 

Castle 

NO 73149 96739 3.56 2.94 13.71 2.068848 -  

3.77 3.11 16.66 2.340306 - 

Crathes 

Castle 

NO 73066 96721 3.68 3.86 15.05 2.415204 -   

3.63 3.12 19.79 2.549421 - 

3.78 4.4 16.68 2.680506 - 

Hill of 

Fare 

NJ 68624 02710 3.53 6.59 12.71 2.951748 - Underestimated 

due to topography 
3.52 4.42 15.52 2.579742 - 

3.84 3.24 14.75 2.246886 - 

4.01 4.96 15.09 2.737287 - 

Hill of 

Fare 

NJ 69107 03113 3.66 5.52 16.97 2.982852 - Underestimated, 

small outcrop in 

road. 3.81 5.9 18.6 3.210975 - 

Hill of 

Fare 

NJ 70262 03299 4.32 5.57 26.94 3.758211 - Reading from a 

boulder 
4.23 4.72 25.53 3.428109 - 

Hill of 

Fare 

NJ 70976 03695 4.4 7.02 27.97 4.217832 -   

3.99 8.05 24.95 4.23684 - 

4.4 7.07 29.29 4.323591 - 

Hill of 

Fare 

NJ 72257 02588 3.78 9.03 25.55 4.515777 - On top of Meikle 

Tap. Poor 

exposure with 

bedrock just 

poking through 

path 

3.69 8.47 25.76 4.37535 - 

Hill of 

Fare 

NJ 72270 02575 4.39 8.73 26.82 4.584006 - Meikle Tap 

orthogonal joint 

set of N-S and W-E 4.1 11.19 24.59 5.044329 - 

4.22 7.36 30.24 4.449222 - 

4.35 8.64 23.89 4.350969 - 
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Hill of 

Fare 

NJ 72214 02621 5.6 9.71 29.44 5.138937 - N-S and w-E 

trending joints 
5.07 9.54 26.54 4.840749 - 

5.22 11.01 30.25 5.500359 - 

5.42 11.54 26.93 5.425002 - 

Hill of 

Fare 

NJ 71543 02979 3.51 5.36 22.29 3.300237 - Underestimated 

due to topography 
4.27 6.5 26.65 3.976695 - 

4.31 6.14 22.75 3.612411 - 

Hill of 

Fare 

NJ 67894 01716 3.78 7.33 22.56 3.860649 - Underestimated 

due to topography 
3.83 5.85 26.17 3.731184 - 

3.89 6.64 22.7 3.700161 - 

Hill of 

Fare 

NJ 69864 02769 4.52 5.32 18.28 3.103704 - Microgranite, 

medium sized 

boulder 

underestimated 

<2pi 

4.63 4.44 17.44 2.824659 - 

Hill of 

Fare 

NJ 69862 02772 4.54 6.39 16.64 3.270699 - Microgranite, 

partial exposure 

poking through the 

4x4 track 

4.54 5.72 17.34 3.144366 - 

4.29 6.62 18.02 3.404187 - 

 

 


