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1. INTRODUCTION

Transformation optics (TO) [1,2] is the science of using a
material structure to distort light-ray trajectories within the
structure, thereby changing the apparent shape and/or size
of any object inside it. The actual structure is said to be in
physical space; the apparent structure as seen from the outside
is called electromagnetic (EM) space. In the famous invisibility
cloak [2], a physical-space void inside the structure and any-
thing inside the void is made to appear infinitely small when
viewed from outside the cloak (it is infinitely small in EM
space), while any object behind the cloak is seen undistorted.
This idea quickly took off, leading, for example, to different
experimental realizations that use artificial metamaterial struc-
tures [3–7], natural crystals [8–10], and lenses and mirrors
[11,12]. The ideas of TO have even been applied to other
branches of physics, resulting, for example, in transformation
thermodynamics [13,14], acoustic cloaking [15], elastic
cloaking [16], and seismic cloaking [17].

The original suggestion was to realize TO devices using
metamaterials, engineered structures with subwavelength-size
features that allow their optical properties to be controlled,
but it was quickly realized that such structures that work for
all visible light and on macroscopic length scales would be dif-
ficult to realize. The reasons include the immense practical
difficulties of manufacturing macroscopic, three-dimensional,
spatially varying, bespoke nanostructures. There are also

fundamental difficulties: ideal cloak structures have been built,
but only on the scale of a few wavelengths (e.g., [7]), and the
requirements on loss and bandwidth limitations that would
allow significant size increases are daunting [18–20].

These difficulties led researchers to investigate alternative
realizations [8–12] that are much easier to fabricate and that
work for all visible light and at macroscopic length scales,
but at the cost of compromising performance. Approximations
of the material properties have been shown to introduce visible
imperfections [21–26]; a number of the simplified devices work
only for light incident from a limited range of directions, and in
all cases the cloaking is “ray-optical,” which means that these
cloaks alter the phase of transmitted light.

Our own interest in TO stems from our research into light-
ray-direction-changing microstructured sheets, called telescope
windows, that can be combined into approximations to TO
devices. A telescope window [27] comprises pairs of confocal
microlens arrays [28,29] in which pairs of microlenses—one
from each array—form telescopes that act as the “pixels” of
the sheet. It can be shown that the light-ray-direction changes
that can be achieved in this way—pixelated generalized
refraction—could lead to wave-optically forbidden light-ray
fields if the sheets were not pixelated [27,30]. The generalized
laws of refraction that can be achieved in this way, albeit only in
pixelated form, allow very general stigmatic imaging.
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We recently defined a glens to be a planar interface that
changes light-ray direction like an idealized thin lens, but gen-
eralized to have two independent focal lengths on the two sides
of the lens [31]. If a glens is realized, approximately, in the form
of a telescope window, then due to the pixelation the imaging is
not stigmatic, but integral [32], and the approximate glens has
other imperfections, such as the appearance of additional, and
usually unwanted, images [33,34]. These imperfections are the
subject of our current optical engineering efforts. On the plus
side, telescope windows can be manufactured inexpensively on
meter scales [35], and they work for all visible light.

We recently investigated the imaging properties of glenses in
the homogeneous limit [36] and showed that these are so gen-
eral that structures of homogeneous glenses can form omnidi-
rectional TO devices [37,38]. Realizations of such devices in
terms of telescope windows do not preserve the phase of trans-
mitted light and are, therefore, merely ray-optical. As such, they
have all the advantages and disadvantages of the telescope
windows themselves, including integral imaging instead of stig-
matic imaging, a limited field of view, and additional images.
They will benefit significantly from improved optical engineer-
ing of the individual telescope windows. What sets them apart
from other ray-optical TO devices is that they can be built
cheaply, on large length scales. Here, we present an example
of an omnidirectional TO cloak composed of inhomogeneous
glenses and thin lenses.

The structure of this paper is as follows. First, in Section 2,
we review the properties of glenses. In Section 3 we introduce a
physical-space structure formed by glenses, and the corresponding
EM-space structure. It contains a central region whose size differs
in physical and EM space; in the theoretical limit when the size of
the EM-space region is zero, the structure is a ray-optical cloak.

We then show that the structure indeed maps between
physical and EM space as intended. Specifically, we show that
any possible combination of surfaces that a ray traversing the
cloak can encounter images every point back to itself. Assuming
that the structure images as intended, we construct, in
Section 4, the cardinal points of these glenses and show that
a few of the glenses are actually lenses. Using the cardinal points
we then show, in Section 5, that the structure indeed images as
intended, and that our earlier assumption is therefore true and
our argument consistent. In Section 6, we confirm these results
using ray-tracing simulations of the cloak. Section 7 is a
concluding discussion of our findings.

2. REVIEW OF GLENSES

Glenses have recently been defined to be planar interfaces that
change the direction of transmitted light rays like ideal thin
lenses that possess different focal lengths on the two sides of
the interface [31]. Like thin lenses, glenses do not offset the
position of transmitted light rays. The generalization from a
thin lens to a glens at first appears rather small, but it is this
small generalization that makes the resulting interfaces the most
general imaging elements of their kind: it can be shown that
glenses are the most general planar light-ray-direction-changing
interfaces that image all of object space into all of image space
and vice versa (it is a bijection) [39]. In fact, as curved light-
ray-direction-changing interfaces can bijectively map object

space into image space only trivially [40], glenses are the most
general nontrivial light-ray-direction-changing interfaces (of any
shape) that image between all of object space and image space.

Like a thin lens, a glens has an optical axis that is
perpendicular to the plane of the glens and on which all the
principal points lie. Unlike a thin lens, the two sides of a glens
are different, which is why it is important to identify the sides.
In Ref. [31] this is done by placing on the optical axis an axis of
a Cartesian coordinate system, with its origin in the glens plane,
and labeling the two sides of the glens by the sign of this co-
ordinate there. The corresponding axial coordinate is called a.
Light rays traveling on the side of the glens where a is positive
are said to be traveling in positive space; those on the other side
are said to be traveling in negative space.

Figure 1 shows a diagrammatic representation of a glens, its
optical axis, its cardinal points, and different principal rays.
Following one of the conventions introduced in Ref. [31],
the positive side of the glens is identified by a “+” on that side
of the line indicating the glens plane, and the negative side is
identified by a “−.” Three types of principal ray are shown: type
1 is parallel to the optical axis in negative space, and passes
through the positive focal point, F�, in positive space; type
2 passes through the negative focal point, F −, in negative space,
and is parallel to the optical axis in positive space; and type 3,
which travels in the direction of the glens’s nodal point, N , and
passes straight through the glens. The two focal points and the
nodal point, together with the principal point, P, which lies at
the intersection between the glens plane and the optical axis, are
the cardinal points of the glens.

A glens is fully characterized by its a axis and the positive
and negative focal lengths, f � and f −, which are defined as the
a coordinates of the corresponding focal points. Using this con-
vention, a thin lens with focal length f is a glens with f − � −f
and f � � f . The a coordinate of the nodal point, N , is de-
fined as the nodal distance, n, which is related to the focal
lengths by the equation [31]

n � f − � f �: (1)

N

F+F–

– +

P
2

1

3

Fig. 1. Cardinal points and principal rays of a glens. The glens is
indicated by the thick cyan vertical line through point P. The dashed–
dotted horizontal line is the optical axis. The positive and negative
sides of the glens are indicated with a “+” and a “−” on the correspond-
ing side of the glens. N is the nodal point, P is the principal point, and
F − and F� are the focal points in negative and positive space, respec-
tively. The rays (red arrows), which pass through the positive (ray 1)
and negative (ray 2) focal points and through the nodal point (ray 3),
are all examples of principal rays.
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The light-ray-direction change in glenses is of a type that can
lead to wave-optically forbidden light-ray fields [30], in which
case it is not physically realizable. But if the light-ray-direction
change is accompanied by a suitable ray offset, it can become
realizable in those cases. If the ray offset is sufficiently small, it
can be invisible. A Gabor superlens [41,42], an example of a
telescope window, can be seen as an approximation to a glens
that introduces such a small ray offset. The individual tele-
scopes change light-ray direction as required, but also offset
the rays on the scale of the aperture size of the individual tele-
scopes. The telescopes can be seen as the pixels of the Gabor
superlens, which is why we refer to it as a pixelated realization
of a glens.

3. CLOAK STRUCTURE

Figure 2 sketches a two-dimensional structure of glenses. (We
will generalize this structure to three dimensions in due course.)
It consists of four outer glenses, located on the sides of an outer
square of side length L, four inner glenses, located on the sides
of an inner square of side length aL that shares its center and
orientation with the outer square, and four diagonal glenses
linking corresponding corners of the outer and inner squares.

The glenses divide physical space into polygonal regions,
called R0 (the outside of the device), R1 to R4, and R5 (the
inside of the inner square). Each glens separates two of these
regions; the glens separating regions Ri and Rj is labeled Gij.
The vertices of the polygonal regions, where three or more
regions (Ri; Rj; Rk;…) meet, are labeled V ijk….

Figure 2 also sketches the structure of the corresponding
EM space. The EM-space equivalent of the outer square coin-
cides with its physical-space counterpart; the EM-space equiv-
alent of the inner square is a smaller square of side length a 0L
whose center and orientation coincide with those of the other
squares. The vertices of the EM-space polygons are labeled such
that vertex V 0

ijk… is the point where the EM-space counterparts
of regions Ri; Rj; Rk;…, meet.

The two-dimensional structure can be generalized to three
dimensions by replacing the glenses on the sides of concentric
inner and outer squares with glenses on the faces of concentric
inner and outer cubes, and by replacing the diagonal glenses
that link corresponding corners of the inner and outer squares
with glenses that link corresponding edges of the inner and
outer cubes. There are 12 glenses that cover cube faces, and
12 that link corresponding edges. This glens structure now
divides physical space into eight polygonal regions, namely,
the outside, the inside of the inner cube, and six regions, each
of which is sandwiched between corresponding faces of the in-
ner and outer cubes. The EM-space equivalent of the outer
cube coincides with its physical-space counterpart, and the
EM-space counterpart of the inner cube has side length a 0L
and shares its orientation and center with the other cubes.

4. CONSTRUCTION OF THE CARDINAL POINTS

We now construct the cardinal points of all glenses in the cloak
structure described in the previous section.

First we analyze the outer glenses. For simplicity, we choose
them all to be the same, giving the cloak cubic symmetry. It is
therefore enough to analyze one of these glenses, namely, the
left glens, G01. It images the point V 145 to V 0

145, and V 125 to
V 0

125. Its nodal point must therefore lie at the intersection of
the straight lines V 145V 0

145 and V 125V 0
125, which is the center

of the cloak, marked N in Fig. 3(a). By symmetry, N is there-
fore the nodal point of all outer glenses, and as a glens’s nodal
point always lies on the glens’s optical axis, the optical axes of all
outer glenses pass through N.

We can calculate the other cardinal points as follows.
Figure 3(a) shows two rays, marked 1 and 2, which are incident
from the left in the direction of point V 0

145. The left glens, G01,
redirects them such that they travel in the direction of V 145.
Ray 1 is chosen such that it is initially parallel to the optical
axis (which is perpendicular to the glens plane and passes
through N ), which means it (or its straight-line continuation)
passes through the positive focal point, F�

01, after redirection.
F�
01 also lies on the optical axis, which fully determines its po-

sition. Ray 2 is chosen such that it is parallel to the optical axis
after redirection, which means that, before redirection, it (or its
straight-line continuation) must have passed through the neg-
ative focal point, F −

01. Like F�
01, F

−
01 lies on the optical axis,

which again fully determines its position.
Next, we analyze the left inner glens, G15, which is repre-

sentative of all inner glenses. We consider a light ray incident
on the left outer glens along a straight line throughN . Light ray
3 in Fig. 3(b) is such a ray. Because N is the nodal point of the
left outer glens, the ray passes straight through, intersecting the
left inner glens at I 1. On the other side, after transmission
through the right outer glens G03, it must continue along
the same straight-line trajectory. But this passes through the
nodal point of that glens also, so the ray must have passed
straight through it, which means it must have intersected
the right inner glens G35 at I 2. Between the inner glenses,
the ray must have traveled from I 1 to I2, which means that
it must have traveled along its original straight-line trajectory
there. Thus, the inner glenses have not deflected that ray, so it
must pass through the nodal point of both inner glenses.

G
15

V125

V'125

G 34

G45

V'145

R1 R3R5R0

G
01

G
35

G
03

R4G
14

G04

V145

R2G 12
G

23

G25

G02

L

aL

a'L

Fig. 2. Structure of a two-dimensional square cloak in physical space
(solid cyan lines) and EM space (dotted black lines). Physical space is
divided into six polygon-shaped regions, R0 to R5. Region R0 is the
outside of the cloak, in which physical space and EM space are iden-
tical; region R5 is the inside of the cloak. Each straight line dividing
two regions represents a glens; the glens separating regions Ri and Rj is
calledGij. A few of the vertices of the regions are also marked. Three or
more regions meet there; the vertex where regions Ri; Rj; Rk;…meet is
labeled V ijk….
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Repeating this argument for other rays through N leads to the
result that N is the nodal point of all inner glenses also. This
means that the optical axes of all inner glenses pass through N .

Ray 4 in Fig. 3(b) allows construction of the object-sided
focal point F�

15 of glens G15. The ray is constructed such that
it travels initially parallel to the optical axis shared by the left
and right inner and outer glenses before passing first through
the left outer and inner glenses, then through the right inner
and outer glenses. By symmetry, between the inner glenses it
also travels parallel to the optical axis. When the ray hits the left
outer glens, G01, arriving from the negative side and traveling
parallel to the optical axis, it gets redirected such that it sub-
sequently passes through the positive focal point F�

01. It then
hits the left inner glens, G15, from the negative side, which
redirects it such that it is afterward parallel to the optical axis.

This means that it must have come from the direction of the
negative focal point, F −

15. Considering rays of this type that
initially travel at different distances from the optical axis leads
to the result that the position of the negative focal point F −

15 of
G15 coincides with that of the positive focal point F�

01 of G01.
The location of the positive focal point F�

15 can be constructed
using the locations of F −

15, N , and the relationship between the
focal distances and the nodal distance [Eq. (1)]. The cardinal
points of the glenses on the other inner glenses can be found by
symmetry.

Before we proceed further, we notice a useful property of a
system of glenses that will be used extensively below. In par-
ticular, to find the imaging properties of a particular glens,
we may use rays that do not actually pass through that glens
but that would do so if the glens were extended beyond its ac-
tual size. This follows from the fact that the image of a given
point created by the glens is determined uniquely by any por-
tion of that glens, and does not change if the glens is extended.

We can now apply this principle to analyze glensG14, which
is representative of the diagonal glenses. To do that, we extend
glenses G14 and G04; the relevant extensions are shown as
dashed lines in Fig. 3(c). This way, ray 5 now intersects all three
glenses G01, G14, and G04. As this ray passes throughN , which
is the nodal point of glenses G01 and G04, it passes through
them undeviated. However, for the ray to continue along its
original straight-line trajectory after transmission through all
three glenses, it has to be undeviated by G14 also, so the nodal
point of G14 must lie somewhere along the ray. The same argu-
ment applies if we rotate ray 5 slightly aroundN , which implies
that N is the nodal point of G14. This way we see that N is the
nodal point of all glenses of the cloak. Further, N lies on (the
continuation of) G14, and so G14 and the other diagonal
glenses G12, G23, and G34 are actually lenses.

We also employ ray 6 that is normally incident on G14 at
position I from the direction of F�

01. That means that it must
have been normally incident on G01. After transmission
through the cloak, it must continue along its original
straight-line trajectory. For symmetry reasons, between G14

and G34 the ray must therefore have the same direction with
which it was incident on G01 [horizontal in Fig. 3(c)].
However, as the ray was normally incident on G14, it must pass
through image-sided focal point F�

14 after transmission through
it. Point F�

14 can therefore be constructed as the intersection
between this ray and the optical axis of lens G14, shown as
the dashed–dotted line in Fig. 3(c). As G14 is a lens, the other
focal point, F −

14, is located the same distance from N , but on
the opposite side, on the optical axis.

We note that the negative focal plane of G14, shown in
Fig. 3(c) as a dotted line through F −

14 and parallel toG14, passes
through point F�

01 (and therefore also F −
15). This is the case

because G14 is a lens, and so F −
14 is located on the optical axis

of G14 and the same distance from it as F�
14, but on the

opposite side.

5. PROOF OF IMAGING OF ALL POINTS BACK
TO THEMSELVES

Having found the parameters of all the glenses of the cloak, we
also have to show that any spatial point will be imaged to itself
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Fig. 3. Construction of the cardinal points of the glenses that form
the cloak shown in Fig. 2. (a) Outer glenses, (b) inner glenses, and
(c) diagonal glenses.
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by the cloak, no matter which possible combination of surfaces
it may encounter upon traversing the cloak. We do this in two
steps. First, we show that any combination of glenses that a ray
may encounter images every point. Second, we show that the
image of every point coincides with the point itself.

The first step is easy: a glens images any point in object space
into a corresponding point in image space [39]. Transmission
through any other glenses simply re-images the image from the
previous glens(es). As all surfaces in the cloak are glenses, any
combination of these automatically images any point.

The second step is more complicated. We use the result
from the first step, namely, that any point is being imaged.
This implies that all light rays that intersect at a point Q
(the object) before transmission through the cloak again inter-
sect at a point Q 0 (the image) after transmission. To find where
this image position is, we need only to find the intersection of
any two of these rays; all others then automatically intersect
there, also. We pick each of the rays such that it is a member
of a family of light rays that is sufficiently general so that the
object position becomes completely arbitrary, and we do this
separately for any combination of glenses that may be en-
countered.

Figure 4(a) investigates transmission through the left and
right inner and outer glenses, i.e., for the glens combination

(G01, G15, G35, G03). We choose the first ray, marked 1 in
Fig. 4(a), to pass through N , which is the nodal point of all
glenses in the cloak and which, therefore, passes through the
cloak undeviated. The four glenses under consideration have
a common optical axis, and it is advantageous to choose the
second ray [ray 2 in Fig. 4(a)] as being initially parallel to this
optical axis. This ray is redirected by G01 such that it passes
through F�

01, whose position is identical to that of F −
15 (see

Section 4), and so it becomes parallel again to the optical axis
of G15 after passing through G15. The same happens in reverse
when the ray continues through glensesG35 andG03. This way,
beyond the cloak, both rays 1 and 2 continue along their origi-
nal straight-line trajectories, which means that image Q 0 of
their intersection point Q coincides with Q itself. Moreover,
ray 1 can be rotated around N while ray 2 can be shifted side-
ways, to move their intersection Q arbitrarily. We thus see that
the combination of these four glenses images as required.

Figure 4(b) deals with the glens combination (G01, G14,
G34, G03). As before, we pick a ray, namely, ray 3, that passes
through the common nodal point N , so it is undeviated. We
choose ray 4 to be initially parallel to the optical axis of glens
G01, but, unlike ray 6 in Fig. 3(c), its height can be chosen
arbitrarily. As ray 4 is incident parallel to the optical axis of glens
G01 from the negative side, it will be redirected onto a straight
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Fig. 4. Imaging properties of the glens combinations encountered along different types of ray trajectories through the cloak.
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line through F�
01. However, at the end of the previous section

we observed that F�
01 lies in the negative-sided focal plane of

lens G14, which means that G14 redirects ray 4 such that it is
parallel to the straight line connecting F�

01 and N , which in
Fig. 4(b) is a horizontal line. It gets redirected symmetrically
by the two glenses on the right, which means that it will even-
tually travel along its initial straight-line trajectory. The rest of
the argument goes the same way as in the previous case.

Figure 4(c) treats the glens combination (G01, G14, G04).
Ray 5 passes through N again and is hence undeviated. We
choose ray 6 to be initially parallel with the optical axis of
G14, shown as a dashed–dotted diagonal line. To find its di-
rection beyond G01, we use the fact that two initially parallel
rays incident upon a glens continue beyond it such that their
prolongations pass through a common point, I , in the image-
sided focal plane. This image-sided focal plane is parallel to G01

and contains focal point F�
01, and is shown as a vertical dashed

line in Fig. 4(c). Point I can be found as the intersection of this
image-sided focal plane with the straight line with the initial
direction of ray 6 and passing through N , namely, the optical
axis ofG14. To find out where on the optical axis ofG14 point I
lies, we consider the triangle with vertices I and F�

01 and angles
45° at these vertices [the lower shaded triangle in Fig. 4(c)]. Its
third vertex with angle 90° then coincides with the focal point
F −
14 of glens G14, which follows from the fact that F�

01 lies in
the negative focal plane of G14. Next we note that this triangle
is congruent with the triangle with the same angles and with
vertices F −

14 and N (the second shaded triangle in the figure; in
3D, both triangles lie in the plane containing the optical axes of
G01,G14, and G04), so the distance of point I from nodal point
N of lens G14 is twice the focal length of G14. Consequently,
point I will be imaged by lens G14 to a point I 0 on its optical
axis a distance of two focal lengths behind N (4f imaging).
This ensures that the ray trajectory is mirror symmetric with
respect to the plane of G14, and as the ray was incident along
a normal to G14, it leaves along the same normal.

Finally, we use a very similar argument to demonstrate the
equivalence of transmission through lens G14 and through the
combination of glenses G15 and G45. We will investigate two
particular types of ray that can be made to intersect anywhere
and show that diagonal lens G14 changes both rays in the same
way as the combination of G15 and G45. It will then follow that
they image any point to the same position, which will, in turn,
show that they redirect any ray in the same way. Figure 4(d)
shows the geometry. As usual, we pick a ray, here ray 7, to pass
through the common nodal point N , so it passes through un-
deviated. As the other ray, here ray 8, we pick a ray that ap-
proaches from point I defined above that is located two
focal lengths in front of lens G14. Lens G14 will simply redirect
it such that it passes through point I 0, as has been shown above.
As for glens G15, the ray approaches it from the direction of
point I in its negative focal plane, and it therefore is redirected
into the same direction as any other ray that approaches G15

from I . Taking this other ray as the one passing through N , we
see that G15 will redirect ray 2 to become parallel to the optical
axis of G14, shown as the dashed–dotted diagonal. By sym-
metry, the ray is then redirected by glens G45 toward I 0.

This completes the proof of equivalence of lens G14 and the
pair of glenses G15 and G45.

We see that any spatial point is imaged to itself by any
possible combination of glenses that a ray can penetrate when
passing through the cloak. This shows that the device indeed
works as a cloaking device. The arguments above have been
formulated such that they apply not only to the two-
dimensional structure shown in Fig. 2, but also its three-
dimensional generalization.

6. RAY-TRACING SIMULATIONS

To test and demonstrate our findings, we have programmed the
cloak outlined above into our custom ray-tracer Dr TIM
[43,44]. The ability to simulate light-ray transmission through
glenses, and the ability to map between positive and negative
space, is already part of Dr TIM [31]. This enabled us to
visualize the view through the cloak.

Our simulations represent a number of physical effects
incorrectly. First of all, the calculation of shadows is greatly sim-
plified: surfaces are either shadow-throwing or not, and if there
is a shadow-throwing surface in the straight line between a
point on another surface and one of the point light sources,
then that shadow-throwing surface casts a shadow on that point
on the other surface. This simple treatment does not correctly
represent the effect of surfaces that change the direction of
transmitted light rays. Transmission through the glenses ne-
glects absorption [34] and diffraction effects associated with
the realization in the form of a Gabor superlens.

The cloak was programmed by defining the (physical-space)
positions of the vertices of all surfaces that form the cloak, and
also their EM-space counterparts. We then derived imaging re-
quirements from the vertex positions in the two spaces; for ex-
ample, glens G01 must image vertex position V 0

145 in negative
space to position V 145 in positive space [see Fig. 3(a)]. Using
the procedure described in Appendix A, Dr TIM then deter-
mines the glens parameters from these imaging requirements.

Figure 5 shows that, within the limitations of our simula-
tion, the cloak design works: the inner cube, and the sphere
placed inside it, appear at reduced size, while any object behind
the cloak is seen in the same direction as it would be without
the cloak (but slightly dimmer, as all glens surfaces were made
to be slightly absorbing in order to become visible in the sim-
ulations). Figure 6 shows the cloak working from a different
virtual camera position, consistent with the cloak’s omnidirec-
tionality. Figure 6(a) differs from Fig. 5(b) only in the camera
direction; in Fig. 6(b) the camera direction is the same as in
Fig. 6(a), but the cloak is different in that the inner cube is
smaller in EM space, so the inner cube and the sphere inside
it appear reduced to a different apparent size, demonstrating
that the reduction factor can, in principle, be chosen arbitrarily.

7. DISCUSSION AND CONCLUSIONS

Glenses are defined as idealized interfaces that change light-ray
direction precisely as required, without offsetting light rays or
introducing loss. This paper is about an omnidirectional cloak
made from glenses (of which a few are lenses); if the glenses
work as defined, then the cloak is perfect, as demonstrated
by the simulations in the previous section.
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However, Gabor superlenses—the only experimental reali-
zation of pixelated glenses to date—suffer from imperfections,
which would affect the functioning of any cloak built from
them. One imperfection is the Gabor superlenses’ limited field
of view, which translates into a limited field of view of the cloak,
which is therefore not omnidirectional. Another imperfection is
that not all transmitted light changes direction as required.
Such light either leads to additional images (if it is allowed
to pass through the cloak) or a reduced transmission coefficient
(if it is absorbed). Note that the fraction of light that passes
through such a cloak as desired gets smaller as the factor by
which the central square (cube) appears shrunk increases, just

like in the cloak made from homogeneous glenses [38]. A third
imperfection is the limited quality of the image formed by
Gabor superlenses, which is due to a combination of funda-
mental effects (diffraction, pixel visibility) and practical effects
(aberrations of the simple lens design, dispersion, etc.). This
optical quality of the image formed by individual Gabor super-
lenses will need to improve significantly before imaging
through combinations of such devices becomes visually palat-
able. Our current optical engineering efforts are aimed at mak-
ing those and other improvements, and ultimately at building
pixelated TO devices as a direct test of practical realizability.

In Section 2 it was pointed out that glenses perform light-
ray-direction changes that, unless accompanied by an offset,
can result in wave-optically forbidden light-ray fields, which
is why practical realizations of glenses need to offset the rays.
This can be seen as a violation of Liouville’s theorem: any bun-
dle of parallel rays incident on the cloak’s inner cube in EM
space will be altered by the cloak such that, inside the inner
cube (in physical space), the rays have the same direction

Fig. 5. Simulation of the cubic glens cloak. (a) A cylinder frame
indicates the structure of the cloak. Wherever two or more glenses
meet, a red cylinder is placed. The effect of the glenses is not simu-
lated, which is why the sphere placed inside the central cube can be
seen at its actual size. (b) When the effect of the glenses is simulated
(and the cylinder frame removed), the effect of the cloak can be seen.
The sphere inside the cloak is seen at a fraction of its actual size. The
head behind the cloak is partially seen through the cloak, but appears
in its actual position and at its actual size. The glenses have been made
slightly absorbing so that the cloak can just be seen. The figure was
calculated for L � 2 (in units of the floor-tile side length), a � 0.8,
and a 0 � 0.4, which means the central cube appears to be half (a 0∕a)
of its actual size. The simulation was performed with an extended
version of Dr TIM [43,44].

Fig. 6. Cubic glens cloak. (a) The same as the cloak shown in
Fig. 5(a), but seen from a different direction. (b) Like (a), but with
the parameters chosen such that the EM-space size of the inner cube
is one-tenth of its physical-space size, so it appears to be a tenth of its
actual size (a 0 � 0.08; like before, a � 0.8). The simulation was
performed with an extended version of Dr TIM [43,44].
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but their distance has been stretched. In direction space, each
ray is unchanged, but in position space the volume of the beam
has been magnified, resulting in a change in phase-space vol-
ume. Upon transmission through the remainder of the cloak,
the phase-space volume gets restored to its original size. Such a
light beam would, in the simplest case, enter the inner cube by
passing first through the glens at a face of the outer cube and
then the glens at the corresponding face of the inner cube, but
the combination of these two glenses, which share a nodal
point, is precisely the glens telescope discussed in Ref. [31],
where it is pointed out that such a device violates Liouville’s
theorem.

One of the macroscopic cloaks listed in Section 1 [12] com-
prises a simple series of lenses. These lenses image any object
seen through all four lenses back to its original position, so such
an object is seen undistorted. The cloak has been labeled “para-
xial” as it only works for rays that travel close to the optical axis
of the lenses. An interesting exercise would be to add glenses
around these lenses such that the cloak becomes omnidirec-
tional. It is not clear whether or not this is possible.

More desirable still would be to design TO devices made
purely from lenses. Such a device would avoid the difficulties
in manufacturing glenses, or even metamaterials; it would also
avoid the limitations of glenses (such as diffraction and loss)
and metamaterials (limited wavelength range, loss, etc.). It
would also be intellectually satisfying by realizing the exotic
concept of TO—developed in the context of metamaterials—
with components as familiar as lenses. Our result constitutes a
step in this direction.

APPENDIX A: CALCULATING GLENS
PARAMETERS FROM TWO PAIRS OF
CONJUGATE POINTS

We used our custom ray-tracer Dr TIM [44] to simulate the
view through the cloak described in this paper. The parameters
of the glenses that form the cloak have not been programmed
into Dr TIM, but instead a procedure by which these param-
eters are being calculated from the cloak’s imaging properties.
This requires finding the parameters of a glens, given the glens
plane and two conjugate pairs of points, Q− and Q�, and
R− and R� (see Fig. 7). The glens plane is given in terms of

a position in the glens plane, and the normalized normal to
the plane, â, which is also the direction of the optical axis.
We use the geometry functionality already built into Dr TIM,
which includes the capability to calculate the positions where
straight lines intersect and the orthographic projection of posi-
tions into planes, to achieve this, as follows.

We first calculate the position of the nodal point, N , which
is the position where the straight lines through Q− and Q� and
through R− and R� intersect. If these lines do not intersect,
then the required glens does not exist. In Dr TIM’s implemen-
tation, a Java exception is thrown in this case.

Once the nodal point has been found, the principal point P
can be calculated: it is simply the orthographic projection of N
into the glens plane.

Next, we can calculate the positive focal length, f �, which
is the a coordinate of the positive focal point, F�. F� can be
constructed as the point where the optical axis intersects the
straight line between Q� and PQ− , the orthographic projection
into the glens plane of Q−. As before, if no such intersection
exists, a Java exception is thrown. The corresponding focal
length is then

f � � �F� − P� · â; (A1)

where F� and P are the position vectors that correspond to F�

and P. The negative focal length, f −, can be calculated similarly
by calculating F − as the intersection of the straight line through
PQ� and Q− with the optical axis, and then calculating the a
coordinate of F −.

Finally, Dr TIM checks that the glens with the calculated
parameters indeed images both object–image pairs as required.

This procedure is implemented in the set
ParametersUsingTwoConjugatePairs method of
the GlensHologram class in the optics.raytrace.
surfaces package. The complete source code of Dr
TIM is available online [45].
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