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Re-constructing nutritional history of Serengeti wildebeest from
stable isotopes in tail hair: seasonal starvation patterns in an
obligate grazer
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RATIONALE: Nutritional bottlenecks often limit the abundance of animal populations and alter individual behaviours;
however, establishing animal condition over extended periods of time using non-invasive techniques has been a major
limitation in population ecology. We test if the sequential measurement of >N values in a continually growing tissue,
such as hair, can be used as a natural bio-logger akin to tree rings or ice cores to provide insights into nutritional stress.
METHODS: Nitrogen stable isotope ratios were measured by continuous-flow isotope-ratio mass spectrometry (IRMS)
from 20 sequential segments along the tail hairs of 15 migratory wildebeest. Generalized Linear Models were used to test
for variation between concurrent segments of hair from the same individual, and to compare the §'°N values of starved and
non-starved animals. Correlations between 3'°N values in the hair and periods of above-average energy demand during
the annual cycle were tested using Generalized Additive Mixed Models.

RESULTS: The time series of nitrogen isotope ratios in the tail hair are comparable between strands from the same
individual. The most likely explanation for the pattern of '°N enrichment between individuals is determined by life phase,
and especially the energetic demands associated with reproduction. The mean 3'°N value of starved animals was greater
than that of non-starved animals, suggesting that higher §"°N values correlate with periods of nutritional stress.
CONCLUSIONS: High "N values in the tail hair of wildebeest are correlated with periods of negative energy balance,
suggesting they may be used as a reliable indicator of the animal’s nutritional history. This technique might be applicable
to other obligate grazers. Most importantly, the sequential isotopic analysis of hair offers a continuous record of the chronic
condition of wildebeest (effectively converting point data into time series) and allows researchers to establish the animal’s
nutritional diary. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

Diet is a highly influential aspect of an animal’s life, affecting
not only nutritional condition, but also morphology,
behaviour and consequently the manner in which an
individual interacts with its environment.!"! Populations of
many animal species are known to be regulated by food
availability (bottom-up regulation), leading to the evolution
of various coping mechanisms, such as decreased activity
levels to conserve energy or increased activity levels to search
for new resources.” ™ Yet, thus far, it has not been possible to
study the continuous dynamics of nutritional stress, as a
longitudinal dataset, over extended periods. Hence, the exact
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life-history trade-offs that have propelled the diversification
of various life-strategies remain unclear. For example,
differentiating the proximate versus ultimate causes that limit
animal populations would enable ecologists to quantify how
animals balance the demands of energetically challenging
life-phases with the risk of starvation.

Currently, most ecological studies of diet and nutritional
condition are limited to direct field observations®®! that are
too complicated to perform with a consistent level of quality,
especially in the case of highly mobile or elusive animals.
Resource selection studies based on observational data, for
example, provide an index of preference for habitats or food
types; however, they do not account for an animal’s condition
over long periods of its life. In order to address the lack of
knowledge regarding the body condition over time,
alternative approaches need to be considered.

Stable isotope analysis allows ecologists to infer the quality
and composition of animals” diet and describe their spatial
distributions.”) Stable isotopes from various body tissues
and faeces ¥ have been used in most chordate classes to
investigate trophic interactions, dietary preferences and
seasonal dietary shifts.®”) However, repeated time-
sequenced analyses of focal animals are not common and
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measurement techniques are often invasive using tissues such
as teeth, bone or muscle."®"] Hair may provide a good
alternative source of information about the physiological
condition of live animals because it can be collected non-
invasively, it grows continuously, and it may retain relevant
metabolites from which the chronic condition of the animal
can be inferred over long periods of time."?! Previous studies
have illustrated that tail hair retains isotopic information and
can be used to understand an animal’s history, such as the
large-scale movement and dietary preferences of Asiatic wild
ass (Equus hemionus) in the Mongolian Gobil*®! or the dietary
overlap of endangered Grevr's zebra (Equus grevyi) with
livestock in Laikipia, Kenya.[14 However, despite its potential,
nitrogen stable isotope analysis of hair tissue has not been fully
exploited as a metric of individual body condition primarily
because it has not been adequately quantified.

The migration of Western white-bearded wildebeest
(Connochaetes taurinus) in the Serengeti provides a good case-
study to quantify the use of stable isotopes in a highly
synchronous, bottom-up regulated population of terrestrial
migrants. The entire population of approximately 1.3 million
wildebeest seasonally migrates in a circular pattern across a
rainfall and soil fertility gradient in search of fresh grazing.!*!
Starvation is the primary cause of mortality in this population
which is limited by food, 1! especially when the rains fail after
a prolonged period of drought, and intraspecific competition
for resources is intense among wildebeest individuals.!"”!
Although nitrogen isotope ratios (given as §'°N values)
typically indicate switches between different types of forage
and trophic interactions,"®! for obligate grazers such as
wildebeest that do not switch between different types of
food!"”! changes in nitrogen isotope ratios may not be a
consequence of diet shifts. Hobson et al.”® hypothesized an
alternative mechanism of "N enrichment induced by nutritional
stress: in this case, variation in the enrichment of '°N over the
length of the wildebeest tail hair could be related to switches
in the overall availability of food such that free nitrogen in the
body is acquired from the animal’s forage during periods of
plenty whereas it is catabolized from the body’s muscle tissue
and fat stores during periods of paucity. Therefore, "N
enrichment could be a potential indicator of starvation!*!! in this
obligate grazing species. If the 3'°N value is indeed a reliable
indicator of the seasonal energy demands and starvation, 5'°N
values should vary between individuals in different life-history
stages and within the same individuals over time.

This study investigates if the enrichment of "N in the tail
hair of Serengeti wildebeest provides information about an
animal’s nutritional condition, which could enable ecologists
to re-construct the starvation history of an animal over time.
Specifically, we ask two questions:

(1) Is there temporal variation in the 5'°N value along the
length of the tail hair and is it consistent between
contemporaneous tail hairs from the same individual
(i.e. the approach is repeatable if there is little intra-
individual variation)? A similar sequence of §'°N values
from different strands of hair from the same animal would
suggest that the growth of tail hair is uniform and that
isotopic enrichment is consistent across all hairs.

(2) Are values of 3'°N in the tail hair an accurate proxy for
starvation? If a high 3'°N value is correlated with episodes
of chronic starvation, we expect (a) the hair segments that

are grown during periods of high energy output (such as
reproduction or lactation when animals may begin to
catabolise their muscle tissue) to have higher 5'°N values
than when animals are not nutritionally stressed.
Furthermore, (b) we expect the most recent 5'°N values
to be higher in animals that have died of starvation than
in animals that have died of other causes, and (c) we expect
the annual cycle of 85N values to differ between males
and females because of the extreme energy demands of
reproduction on females. However, if the 515N value
simply reflects the isotopic value of the forage that is
available, we expect both males and females to have
similar annual patterns of 8'°N variation because they feed
in the same areas as they migrate.

EXPERIMENTAL

Sample collection

Wildebeest tail hair was collected from the Serengeti Mara
ecosystem, East Africa (1°15” to 3°30’S, 34° to 36°E) between
2012 and 2014. We sampled the tail hair from 15 wildebeest
individuals in total; 14 females and 1 male. Tail hair was
collected either from carcasses of animals that had died of
natural causes (10 females and 1 male) or from live animals
that were temporarily immobilized while deploying GPS
radio collars (4 females). The current maternal status was
recorded for the live females (with or without calf), and the
cause of death was determined for all carcasses (starved
versus non-starved) by classifying the state of the bone
marrow in the femur. Mammals mobilize the fat stores in
the bone marrow during the final stages of starvation and
hence its colour and consistency can be used as a reliable
indicator of the body condition preceding death (bone
marrow liquefies and transitions from creamy-white to
opaque as starvation proceeds®?l). The combination of
samples allowed us to test our hypotheses regarding animal
condition and energy expenditure by dividing the individuals
into the following five groups: (i) females that died of
starvation (n individuals = 4; n samples = 83), (ii) females
that died of other causes (nindividuals =4;nsamples=_84),
(iii) females with a dependent calf (n individuals = 3; n samples
= 63), (iv) females without a calf (n individuals = 3; n samples =
63; note that 2 of the 3 samples were sub-adult females and
hence reproductively inactive for their entire lives), and (v) a
single male (n individuals = 1; n samples = 19) as an outgroup
for comparative purposes. Fresh hair samples were washed in
water in the field before being stored in paper envelopes and
transferred to the lab.

Sample preparation and stable isotope analysis

Sample preparation and stable isotope analyses were
conducted at the Natural Environment Research Council’s
Life Sciences Mass Spectrometry Facility (East Kilbride, UK).
Prior to any processing, hair samples were cleaned from any
impurities, urea and lipids using a methanol bath and wipe.
We adopted the protocol of Mekota et al.,'**! but instead of a
2:3 mixture of methanol and chloroform we used a pure
methanol solution since our samples did not contain any flesh
or blood residue.
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To test the hypothesis of intra-individual variation in
nitrogen isotopic values, we created three bundles of tail hair
from the same individual (bundles A, B and C) consisting of
three hair strands each, from two non-starved females. All
bundles were aligned by the roots to a maximum length of
32 cm, representing approximately 18 months of an animal’s
life (growth rate approximation derived from repeated hair
measurements of recaptured wildebeest individuals and
measurements of tail hair length from multiple carcasses of
known ages from birth to adulthood [0 to 3 years old],
unpublished data). We clipped each bundle into 40 segments,
each 8 mm long, which corresponded to approximately 2 weeks
of the animal’s life. Every second segment was minced with
surgical scissors and 0.70 mg (+0.05 mg) of the sample was
packaged into tin capsules for isotopic analysis. Each 8-mm hair
segment was treated as a separate observation, such that each of
the 3 bundles from the 2 individuals had 19 consecutive
samples, giving a total of 57 samples per wildebeest.

To test the hypothesis regarding the temporal sequence of
starvation, approximately 200 strands of cleaned tail hair from
each individual were aligned by the roots and secured into a
bundle by embedding the roots into a plug of epoxy glue.
The bundles were clipped into 8-mm long segments. Every
second 8-mm segment of hair was homogenized by placing
it into a 1.5-mL round-bottomed Eppendorf vial with two
Retsch cone balls (3 mm), snap frozen in liquid nitrogen for
2 min, and homogenized using a Retsch MM 301 mixing mill
(Retsch UK Ltd, Hope Valley, UK) at 25 oscillations/s for
9 min. A sample of ground hair weighing 0.70 mg (+0.05 mg)
was packaged into a tin capsule for isotope analysis.

All samples were analysed using an ECS 4010 elemental
analyser (Costech International S.p.A., Milan, Italy) coupled
to a Delta V Plus isotope ratio mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany). Laboratory standards,
Fluka gelatine, Sigma alanine and Sigma glycine, (Sigma-
Aldrich Company Ltd, Gillingham, UK) were repeated with
every 10 samples and were used to correct for linearity and
instrument drift over a 16-h analytical run. The isotope ratios
for lab standards are determined relative to a range of
International standards (Table 1) from IAEA (Vienna, Austria)
and USGS (Reston, VA, USA). The analytical precision for
nitrogen isotopes was better than 0.3 %o.

The isotopic ratios are expressed in the 5 (delta) notation in
parts per million (%o):

X = [(RSample/ Rstandard)_l}

where X = '°N and R = the ratio of "N /'*N isotopes in a given
sample compared with AIR.

Statistics and data analysis

Generalized Linear Models (GLM) in R version 3.1.21%%! were
used to determine if there was a significant difference in the
time-series of 3'°N values between the three bundles of hair
from the same individual (i.e. the test of intra-individual
variation). Specifically, the GLM tested if the variation in
515N values between concurrent segments of hair (section 1,
3,5 ...19) was a function of the bundle identification — A, B
or C (2 individuals, n = 59 and 60 each; sample size per
group = 19 and 20). The premise that the §"°N value is
consistent between collateral tail hairs would be supported

Table 1. 3'°N values of the tryptophan (lab standard) and
USGS40 (international standard): mean and standard
deviation for each day

Tryptophan USGS40
mean sd mean sd
-2.71 0.07 -4.83 0.13
-2.07 0.03 -4.09 0.07
-2.23 0.05 —4.21 0.24
-2.07 0.03 -4.23 0.25
2.1 0.08 -4.23 0.27
-2.02 0.08 -4.06 0.06
-2.11 0.06 -4.16 0.14
-2.07 0.03 -4.23 0.25
-2.07 0.03 -4.09 0.07
-1.98 0.17 -3.93 0.17
-2.58 0.13 -4.58 0.04
-2.64 0.1 -4.71 0.14
-2.23 0.05 -4.21 0.24
2.1 0.08 -4.23 0.27
n = 4 for both the standards for each day.
Measurements are independent of any correction
calculations.

if the bundle identification failed to account for the difference
in the 8'°N values for each concurrent hair segment between
bundles.

The difference between the 5'°N values from individuals
that died of starvation as opposed to those that had died of
other causes was evaluated by selecting the hair segments
from the last month of an animal’s life (sections 1 and 3 from
the root end), as it is unlikely that a wildebeest can survive
on stored body fat for more than a month. If >N enrichment
is correlated with starvation episodes, the 8'°N values should
be greater in starved animals than in non-starved animals. The
variation in 8'°N values in relation to the cause of death was
tested using Generalized Linear Models, where the 515N value
was a function of whether the animal starved to death or not
(n = 32; sample size per group = 16). We also performed a
power analysis on the dataset to calculate the minimum
difference in 3'°N values between the groups given the
available sample size at a 5% significance level with 95%
confidence and 80% power.

The energy demands of wildebeest are likely to behave non-
linearly over time; therefore, Generalized Additive Mixed
Models (GAMMs) were used to test if periods of greatest
energy demand during the annual cycle of wildebeest were
correlated with '°N enrichment in the tail hair. Previous
research has shown an inverse relationship between body fat
(measured in kidneys and bone marrow) and lactation (weight
of the mammary glands) in wildebeest, suggesting that
nursing is the most energetically demanding time for female
wildebeest.**! Furthermore, wildebeest in the Serengeti are
highly synchronous breeders; therefore, the entire population
of reproductively active females consistently reaches peak
lactation in March to May every year.!**

GAMMs were implemented in R version 3.1. using the
package mgcv.”®! The GAMM framework allows for
multivariate modelling where the response to any particular
covariate (or combination of covariates) can be smoothed to

2[23]
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account for non-monotonic patterns in the data. A GAMM
fitted to the annual cycle of §'°N values in the tail hair of
lactating female wildebeest (n = 63) was used to quantify the
explanatory power of the following predictor variables: Julian
day (JD), implemented using a cyclic spline from day 1 to day
366 for each year of the study; age, estimated from tooth wear
(with no smoothing function applied); and individual as a
random effect. The existence of residual temporal autocorrelation
was also tested by embedding into the GAMM an AR1 model (an
autoregressive model of order one) for the data from each
individual, separated by Days (form = ~DAYS|INDIVIDUAL).
If the 8N value is correlated with periods of high energy
demand, the partial residuals of Julian day on the 35N value
should be greater than zero during the months of peak lactation
(March to May) and less than zero when the animals stop
lactating (September) for all lactating females.

The mean monthly N enrichment between lactating
females and the one male was compared using standard
boxplots. If the 3"°N value is correlated with the varying
energy demands of the animal, the §'°N value in males should
be highest during the rut when male competition for females is
at its peak (July). Previous research indicates that males often
forego grazing during the rut,”””! resulting in decreased kidney
and bone marrow fat.?®! However, if "°N enrichment is a
function of the local quality of the forage rather than the
energy expenditure of the individual, (a) the annual pattern
of 3"°N values of the male and the females should be the same
because they have similar migratory patterns and (b) their
8N values should be identical in July because both sexes
occupy the same location during the rut.

RESULTS

Intra-individual variation

The GLM analyses comparing the variation of 3'°N values
within each segment of hair across three replicate bundles of
hair from the same individual failed to include bundle
identification in the model, suggesting low intra-individual
variation. Figure 1 shows several small discrepancies between
bundles for both individuals, but every bundle tends to follow
the same annual pattern. Statistically there was no significant
difference between bundles: p-values comparing bundle A
versus B and A versus C were 0.694 and 0.657, respectively,
for the first individual (Fig. 1(a); residual deviance = 64.219
on 56 degrees of freedom) and 0.512 and 0.359 for the second
individual (Fig. 1(b); residual deviance = 48.674 on 57 degrees
of freedom).

Starved versus non-starved animals

The variation in 8'°N values from the tail hair of dead
individuals is partially explained by the cause of death
(starved versus non-starved; residual deviance = 23.389, 14
degrees of freedom, p <0.05). Figure 2 demonstrates the
differences between the 5'°N values of the starved and non-
starved groups, showing substantially higher 515N values for
the starved animals. The results from the power analysis
suggest that given our sample size the minimum difference
in the means between the two groups needs to be at least
0.97 8N %o for it to be significant (standard deviation=0.5,
p=0.05). The actual difference in mean 3'°N values between
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Figure 1. Comparison of 3'°N values extracted from the
concurrent segments of tail hair from the same individual
(bundles A, B and C) plotted against time (expressed in
fortnight intervals from an animal’s day of death). Each line
represents a hair bundle consisting of three hairs strands each:
(a) individual 30 and (b) individual 59.

the starved (8.5 8'°N %o) and non-starved (6.9 §'°N %o) groups
is 1.6 8'°N %o, which is above the recommended minimum
value suggesting there is no reason to be concerned about
the sample size (Fig. 2).

Starvation and energy expenditure

The GAMM model investigating variation in the annual cycle

of 3'°N values in the tail hair revealed that ‘Julian day’ was the

only significant predictor (r* = 0.301, n = 63, p <0.001). The age

of the animal was borderline in explaining the variance of 3'°N
- n=16 n=16

o _
-

o

315N (%o)
8

non-starved starved
Cause of death

Figure 2. Boxplot of 3'°N values relevant to the last month of
animals’ lives preceding death. Animals that died of starvation
(in blue, n = 8) exhibit proportionally higher 3'°N values than
individuals that died as result of a non-starvation event (inred,
n=8).
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values in lactating females (p = 0.065). Furthermore, the cyclic
smooth term on “Julian day’ was significant (p <0.001). An
independent model was preferred over a model with temporal
autocorrelation (AIC values = 182.98 for the independent model
and 184.98 for the autocorrelation model) and the redundancy of
autoregressive structure was further supported (¢ = O,
suggesting that the 3'°N value at time t is independent from t-1).

The partial residuals of Julian day on the 315N values of
lactating females illustrate the strong annual cycle across the
length of the hair (Fig. 3). The §"°N value rapidly increases
above zero by the 50" Julian day (February), reaching its peak
by the 75T Julian day (mid-March). The trend then becomes
negative, and the trajectory drops below zero by the 150t
Julian day (the end of May) and continues to decline until it
reaches the lowest point by the 300" Julian day (October).
After this point the 3'°N values of lactating wildebeest females
start to increase again through November and December.

The monthly mean §'°N values for all reproductively active
females show peaks in February to May when the variance
also tends to be greatest (Fig. 4(a)). The 3'°N value was lowest
from September to November. The monthly mean §'°N value
for the male was different from that of the reproductively
active females; the male’s annual cycle of 5'°N values reached
its maximum in July (Fig. 4(c)) whereas the female §'°N value
was declining during this time period.

DISCUSSION

The results suggest that the sequential analysis of stable
isotopes in hair may be a useful non-invasive method for
determining the physiological condition and nutritional history
of individuals over long periods of time and could help expand
our current understanding of the population dynamics of wild
animals. For instance, these techniques could provide deeper
insights into observed patterns of habitat use and seasonal
modes of population regulation by identifying critical
bottlenecks in the annual chronosequence of animal nutrition.

The main findings from this study are that (a) the
longitudinal variation in 8N values is consistent among
individual hair strands from the same animal suggesting that
hair growth is synchronous and that the approach is
repeatable (Fig. 1); (b) enrichment of 5N is correlated with
periods of starvation (Fig. 2); and (c) the annual cyclic
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Figure 3. The estimated residuals from the GAMM of Julian
day on 3N values, suggesting that the 3'°N value follows a
predictable annual cycle. Each time sample point is indicated
by a tick mark at the bottom of the graph.
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Figure 4. The average monthly §°N values for (a)
reproductively active females (n = 3), (b) reproductively
inactive female yearlings (n = 3), (c) reproductively inactive
females in their third year of life (n = 2), and (d) a male (n = 1)
shows different annual cycles.

variation of "N enrichment is similar among individuals with
the same life-histories (Figs. 3 and 4). Combined, these results
suggest that "’N enrichment in the tail hair of obligate grazers
is closely correlated with periods of negative energy balance
when the animal is forced to mobilize internal reserves (fat
and muscle tissues) and that it could be used as a reliable
bio-indicator of the animal’s nutritional history. We also tested
for temporal autocorrelation in 3'°N values between
consecutive segments of the wildebeest tail hair. Although
there was marginal support for temporal autocorrelation in
our analysis, if we sampled more frequently (i.e. used every
14-day section rather than every second 14-day section
[sections 1,2,3...40 rather than 1,3,5, ... 39] or reduced the
length of each section so that it was equivalent to a week
[4 mm rather than 8 mm)]) it is likely that there would be
significant temporal autocorrelation.
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The hypothesis that °N enrichment in the tail hair of
wildebeest is correlated with periods of negative energy
balance in the body is supported by multiple lines of evidence.
First, the comparison of 515N values between animals that died
of starvation and those that died of other causes (as
differentiated by the colour and consistency of the bone
marrow) suggests that the greatest '°N enrichment in tail hair
is seen in animals that were starving in the month preceding
death (Fig. 2). Second, highest '°N enrichment in the annual
cycle of reproductively active females coincides with periods
of peak lactation in March when nursing females experience
the most intense energy expenditure, while the lowest 55N
values occur from September to October once calves are
weaned.””! The large variance in monthly mean N
enrichment around peak lactation in March (Fig. 4(a)) is
probably caused by differences in calf survival. Previous
research suggests that up to 40% of calves die within the first
3 months of life depending on the grazing conditions;?*”!
therefore, females who lose their calf may actually gain weight
during this time as opposed to losing weight through milk
production, thus resulting in increased variation in the 3'°N
response. Information on the breeding status of
reproductively active females was certain only at the time of
sampling (by direct observation of the calf) and could not be
confirmed for sections of the hair that had grown in previous
years. It is possible that some of the sampled females had lost
their calves or even failed to breed in the preceding year giving
a wide range of 3'°N values in February, March and April.
These conclusions agree with our original hypothesis that
the tail hair tends to become ’N-enriched during times when
herbivores supplement their diet by metabolising their
internal fat stores and muscle tissue.

Wildebeest migrate around the Serengeti-Mara ecosystem
in a predictable pattern. Therefore, it is conceivable that the
N enrichment observed in the hair is a product of the animals
sequentially moving between different grazing patches each
with its own distinctive value (i.e. an exogenous origin of
3N variation rather than endogenously related to
starvation). The evidence suggests that this is unlikely: both
males and females travel along the same migratory route,
but the pattern of annual isotopic variability in the tail hair is
not similar between the sexes (Figs. 4(a) and 4(d)) nor between
individuals in different phases of their life-histories (Figs. 4(a),
4(b) and 4(c)). Furthermore, during the rutting season (early to
mid-June) both males and females aggregate at exactly the
same locations to mate; however, the §°N values during June
differ both between the sexes and between reproductive and
non-reproductive females, suggesting that the signature is
not spatially dependent. Interestingly, behavioural
observations””! show that males rarely eat during the rut
and focus almost entirely on protecting their harem from other
males, resulting in a loss of body condition.®! This is
corroborated by our observations of enrichment in '°N in the
male during the rut (June and July in Fig. 4(d)), which further
supports the premise that a high §'°N value is indicative of
negative energy balance rather than being spatially dependent
on the nitrogen isotope signature of the forage. Sampling
multiple males would be critical to further validate these
results. Furthermore, a large-scale sampling regime of the
vegetation across this entire ecosystem would establish if there
are distinct spatial isoclines of 3'°N in the grass and further
elucidate the role of forage in the 5'°N signature of the hair.

Alternatively, a comparison between hair samples from
migratory and non-migratory wildebeest populations would
allow us to differentiate whether patterns of 3'°N variability
are physiologically or geographically determined®. In species
described as drought-tolerant, the seasonal 5N enrichment
in body tissues is hypothesized to be a result of water rather
than food limitations, due to isotopic processes occurring
during amino acid metabolism associated with water
conservation.®”! Ambrose and DeNiro®!! suggested that
African herbivores physiologically adapted to extended
periods with no access to water have higher nitrogen isotope
ratios than water-dependent species. Wildebeest, however,
are defined as obligate drinkers™® and require free water at
least every second or third day; therefore, an increase in
3'°N values caused by adaptations to water stress is
unlikely. This is directly supported by our findings, which
show an increase in 5'°N values in times when wildebeest
were not water-challenged (i.e. the wet season).

The results complement and expand previous findings
using inert biological material such as hair, feathers, claws
and scales to ascertain information about animal histories,
and diet in particular. For example, Cerling et al.*?!
determined the stable isotope ratios of nitrogen and carbon
from hair samples of African elephant (Loxodonta africana) in
northern Kenya and found that elephants switch between C3
browse and C4 grasses depending on the rains. Similar studies
on species such as koala (Phascolarctos cinereus),®®! north-
eastern Pacific white shark (Carcharodon carcharias)®* and king
penguin (Aptenodytes patagonicus)”! also correlate changes in
isotope ratios with diet and the spatial distribution of animals.
However, the novelty of using tail hair is that we are able to
turn this information into a time-line that can differentiate
between distinct phases of the animal’s life over the preceding
2 years. The use of hair as a natural bio-logger of seasonal
energy expenditure and forage quality enables ecologists to
gather large amounts of life-history information from many
animals in the population thus expanding critical datasets.
Evidently, the strength of the results demonstrated here may
be partially limited by the modest sample size of individuals
in the study. Increasing the size of our dataset for each
category would be the most natural extension to the current
work. Furthermore, the expansion of the GAMM framework
to include individuals in other life-history phases in addition
to reproductively active females would provide additional
insights.

FUTURE DIRECTIONS

Inherently, there are ways in which this technique could be
further elaborated and improved. First, simultaneous
hormone assays (such as progesterone) on each section of hair
would minimize the uncertainty about the animal’s breeding
status (i.e. pregnant or not) and could potentially allow
researchers to follow the reproductive history of females with
greater accuracy. Simultaneous progesterone assays would

I ——
“Note there are four small sub-populations of resident
wildebeest in the Serengeti-Mara ecosystem that do not
migrate, but whose home rangesare sympatric with the much
larger migrant population.*
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also shed light on the relationship between reproductive status
and starvation, such as whether starvation acts to limit
reproduction or whether reproductive status leads to an
increase risk of starvation."®® Previous research suggests that
progesterone can be detected during early pregnancy in hair
samples from cattle.*®! However, it still remains unclear if
steroid hormones can be detected in wildebeest hair, and
indeed whether this could be used to re-create a clear
chronological profile of the animal’s reproductive history.

The second improvement would be to determine stable
isotope ratios for several other elements from the same
sequence of samples, thereby broadening the forensic
information available regarding the animal’s physiology and
ecology. For example, the isotopic analysis of carbon could
allow inference about dietary preferences (i.e. the '*C signature
of C3 versus C4 plants), or the timing of dietary overlap in
sympatric species (such as wildebeest, plains zebras (Equus
quagga) and African buffalo (Syncerus caffer)).””! Furthermore,
the unique signature of oxygen and hydrogen isotopes from
different water sources could provide a natural bio-marker of
geographic location®?#! and systematic variation in 8°H and
3'%0 values over the length of the hair might provide valuable
insight into the pattern and timing of wildebeest migration. In
addition, strontium gradients in the bedrock (*Sr/*°Sr) might
provide further information about the seasonal movement of
local fauna across the landscape.?*”! The sequential analysis
of tail hair for strontium, hydrogen and oxygen isotope ratios
requires further investigation.

A further development of interest would be to assess
endogenous versus exogenous sources of 5'°N values by
analysing specific amino acids from the keratin of the hair.!*"!
The carbon skeleton of certain amino acids such as alanine is
dispensable (i.e. alanine undergoes de novo synthesis from
pyruvic acid; its carbon skeleton largely reflects the dietary
carbohydrate), while others such as lysine must be ingested
as part of the diet of the animal (i.e. indispensable amino
acids).*?! Compound-specific 5'°N analyses of non-essential
amino acids in tail hair could differentiate between periods
in the animal’s life when a smaller proportion of core resources
(such as the nitrogen building-blocks used in making the
amino acids) are accessed from their immediate food supply
as opposed to being mobilised via the breakdown of protein.
By sequentially analysing certain indispensable amino acids,
the 3'°N values of the food supply could be differentiated from
the values generated through internal processes. The
fractionation and sequential isotopic analysis of essential
and non-essential amino acids over the length of the tail hair
would unequivocally resolve if the patterns of "N enrichment
that we observed are indeed a true reflection of the balance
between amino acid supply and the demands on the animal
over time (Tom Preston, University of Glasgow; personal
communication).

CONCLUSIONS

The results suggest that nitrogen isotope ratios in
longitudinally analysed tail hair are consistent between
strands and that the '°N values can be used to re-construct
the nutritional condition in obligate grazers over long periods
of time. The data from isotopic analysis of sequentially
sampled tail hair could offer a continuous record that allows

inference about the chronic physiological condition of an
animal over time and greatly expands our insights into animal
physiology and ecology. The novelty of this approach is that it
could allow ecologists to forensically establish the sequence of
events prior to the observation (such as the condition of the
animal in the months preceding death), thereby expanding
point observations into time-series data. This technique could
be used to investigate a wide range of ecological questions
such as the relative physiological costs and benefits of
migratory and non-migratory behavioural strategies, or the
energy expenditure and nutritional bottle-necks of competing
sympatric species. Moreover, it could also be employed in
wildlife forensics to inform about the role of nutritional stress
during epidemics or the duration of malnutrition in mistreated
animals. The full realisation of any tool, however, relies on its
ability to be utilised in future research and management.
Expanding this technique to simultaneously include other
isotopes and metabolites could assist researchers to meet the
challenges in describing and understanding complex systems.
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