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We study the ray optics of generalized lenses (glenses), which are ideal thin lenses generalized to have different
object- and image-sided focal lengths, and the most general light-ray-direction-changing surfaces that stigmati-
cally image any point in object space to a corresponding point in image space. Gabor superlenses [UK patent
541,753 (1940); J. Opt. A 1, 94 (1999)] can be seen as pixelated realizations of glenses. Our analysis is centered on
the nodal point. Whereas the nodal point of a thin lens always resides in the lens plane, that of a glens can reside
anywhere on the optical axis. Utilizing the nodal point, we derive simple equations that describe the mapping
between object and image space and the light-ray-direction change. We demonstrate our findings with the help of
ray-tracing simulations. Glenses allow novel optical instruments to be realized, at least theoretically, and our

results facilitate the design and analysis of such devices.
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1. INTRODUCTION

Thin-lens approximation is an idealized description of ray
optical imaging with lenses. The ideal thin lens is considered
planar and, as the name suggests, of zero thickness, and any two
or more light rays that intersect at a point (the object) before
transmission through the lens (“in object space”) intersect again
at a point (the image) after transmission through the lens (“in
image space”). In each case, the definition of light ray includes
not only the straight-line segment light travels before or after
intersecting the lens but also the straight-line continuation on
either side.

Previously, a generalization of ideal thin lenses was consid-
ered: the most general planar surface that redirects light rays,
without offsetting them, such that any point in object space is
stigmatically imaged into a corresponding point in image space
(and vice versa) is an ideal thin lens with different object- and
image-sided focal lengths [1] [Fig. 1(a)]. Note that there is no
nonplanar surface that can do this [2]; thus, an ideal thin lens
with two focal lengths is the most general surface of any shape
that images in this way.

Thin lenses with different object- and image-sided focal
lengths can be realized experimentally, with certain shortcom-
ings, in the form of Gabor superlenses [3] (Section 2), which
comprise two confocal microlens arrays with different pitch.
Gabor superlenses do not perform stigmatic imaging, in which
the individual rays pass through the object and image position,
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but integral imaging, in which the axes of bundles of light rays
intersect. Gabor superlenses have been experimentally demon-
strated and their imaging properties investigated in [4].

Here, we define an ideal thin lens with two focal lengths as a
glens, which, according to taste, stands for generalized lens or
Gabor superlens. The singular term glens should not be con-
fused with the plural of “glen,” meaning a glacial valley in
Scotland [Fig. 1(b)]. Unlike earlier work, we study the nodal
points of a glens, two of the cardinal points that describe the
characteristics of an imaging system, and show that their posi-
tions coincide in a single nodal point (Section 3). Utilizing
this nodal point, we derive vector expressions for the mapping
between object and image space (Section 4) and for the light-
ray-direction change on transmission (Section 5). We visualize
the view through a few glenses using ray-tracing simulations
(Section 6).

2. PIXELATED REALIZATIONS OF GLENSES

For wave-optical reasons, a glens (or indeed an idealized thin
lens) operating in air cannot be realized such that it correctly
transforms all incident light-ray fields. This follows from con-
siderations of the optical path length [5] or by showing that the
required light-ray-direction change can result in light-ray fields
without wave-optical analog [6]. The latter argument relies on
assuming that a corresponding phase front exists, and then
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Fig. 1. (a) Rays passing through a generalized thin lens (glens). It
can be seen that the focal points, F~ and F™, are located at different
distances from the glens. The glens is indicated by a gray line with
asymmetric triangles on both ends, a modification of the traditional
symmetric triangles at the ends of a thin lens to reflect the asymmetry
between the spaces on either side. The optical axis is shown as a dash—
dotted line. It coincides with the axis of a Cartesian coordinate system,
with corresponding coordinate @, such that the glens lies in the plane
a = 0. We use the same coordinate system for the spaces on both sides
of the glens. The triangles at the ends of the line indicating the glens
are drawn on the side of the glens facing in the positive # direction.
Another way to indicate the sense of the optical axis is to draw next to
the glens a “~” on the side of negative space and a “+” on the side of
positive space. F~ and F* are the focal points in the glens’s positive and
negative space; /= and f are the corresponding # coordinates, the
focal lengths; the focal planes are shown as dotted vertical lines. A
number of rays (solid red lines) are shown, namely, the principal rays
through the positive and negative focal points, the ray through the
glens center, P, where the optical axis intersects the glens, and the un-
deviated ray between the object—image pair Q= and Q ¥, which passes
through the nodal point, N. (b) Glen Clova, one of the Scottish valleys
also known as glens.

showing that this cannot be the case, as it would have to be
discontinuous at every point.

It is possible to gather these phase discontinuities, concen-
trating them along lines that separate areas where the phase
front is continuous. These areas can be chosen to be so small
that they cannot be resolved, just like the pixels of a computer
monitor. Miniaturizing the pixels increases the effects of diffrac-
tion, but, in certain cases, the combined effect of pixel visibility
and diffraction can be invisibly small [7]. The resulting light
field can then be realized in terms of rays, but, strictly speaking,
it is wave-optically forbidden [8].

The required redirection of small phase-front pieces can be
achieved by transmission through a suitable array of small tele-
scopes, whereby each telescope redirects one phase-front piece
and therefore acts like a pixel of a pixelated glens. The famous
Gabor superlens [3,4] is precisely such an array of telescopes.

As already mentioned in the Introduction, such a pixelated
glens does not produce stigmatic images, in which every light
ray that passes through an object position passes through the
corresponding image position, exactly. Instead, it produces
integral images [4], in which the axes of (thin) bundles of light
rays intersect. Integral imaging is inferior in quality to stigmatic
imaging, but, for the reasons outlined above, is less restricted
and offers additional possibilities.
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The term integral image has its origin in integral photogra-
phy, a technique invented more than a century ago [9] in which
an image of a scene is taken not through a single lens, like in a
normal camera, but through a planar lenslet (or microlens)
array. In the simplest case, the film (or image detector) is posi-
tioned in the focal plane of the lenslet array. A light-field camera
(or plenoptic camera) [10,11] is a modern version of just such a
device, and algorithms have been invented that allow the cap-
tured light fields to be viewed in novel ways [12]. As each lens-
let is in a different position, the resulting inzegral photograph
represents the scene from a range of perspectives and, thus, con-
tains depth information about the scene. If the captured image
is placed in the focal plane of an identical lenslet array and
viewed through this lenslet array, a 3D integral image of the
scene appears.

The same integral image can be obtained without recording
and developing the integral photograph but by directly viewing
the light distribution created by the first lenslet array in its focal
plane with a second, identical, lenslet array that shares this focal
plane, that is, by simply viewing the scene through two iden-
tical lenslet arrays, separated by the sum of their focal lengths
[13]. Such a pair of confocal lenslet arrays can, thus, be seen as
an integral camera (the first lenslet array) and its viewer (the
second lenslet array), with the integral photograph being
formed in the common focal plane but never recorded and
developed and instead viewed directly.

The individual telescopes can be generalized in a number
of ways: for example, by making the focal lengths of the
two lenslet arrays different [14] or by displacing the lenslet
arrays relative to each other such that they remain confocal
but such that the optical axes of the lenslets in one array no
longer align with those of the lenslets in the other [15], result-
ing in generalized confocal lenslet arrays (GCLAs). The map-
ping between object space and (integral) image space can be so
general that homogeneous GCLAs (in which the telescopes are
all identical) can form pixelated transformation-optics (PTO)
devices [16,17].

A Gabor superlens comprises inhomogeneous GCLAs (in
which the telescopes are not identical): the two lenslet arrays
are confocal, but the separation between neighboring lenslets
is different in the two arrays. (Note that they are not rotated
with respect to each other, which would result in a Moiré
magnifier [18].)

It is important to understand that GCLAs (including Gabor
superlenses) suffer from a number of imperfections in addition
to those associated with pixel visibility and diffraction men-
tioned above. Perhaps the most noticeable of these imperfec-
tions results from light incident from certain directions
entering through the first lens of one telescope and exiting
through the second lens of another telescope. Such light forms
additional images [19]. In principle, it can be absorbed with
baffles separating the individual telescopes but at the price
of reduced transmission. The associated field-of-view limitation
and reduction in transmission coefficient have been quantified
for simple geometries [20]. Other imperfections are related to
the limited imaging quality of the simple lenses used in designs
that can be easily produced, each lens simply consisting of a
(in the simplest case spherical) bump on the surface of a plastic
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sheet. These imperfections are currently the topic of ongoing
optical-engineering efforts [21,22].

3. NODAL POINT

The behavior of a thin lens is fully determined by the positions
of the plane of the lens, its optical axis, and the focal points. As a
thin lens does not offset light rays upon transmission, any light
ray intersecting the thin lens enters the lens and leaves it from
the same position in the lens plane. The optical axis, which is
perpendicular to the lens plane, is the axis of cylindrical sym-
metry of the lens. Using imaging language (before transmission
through the lens, light rays are in object space; afterward they
are in image space), the focal points can be defined as those
points where light rays that are parallel to the optical axis in
object space intersect in image space (at the image-sided focal
point), and where light rays that are parallel to the optical axis
in image space intersect in object space (at the object-sided focal
point). They are located on the optical axis on both sides of
the lens, a distance f* (the focal length) from the lens plane.
The lens center, where the optical axis intersects the lens plane,
has the property that any light ray incident on it passes straight
through it. This property is useful, for example, when drawing
a principal-ray diagram to construct the position of the image of
a given object position.

The behavior of a glens is also fully determined by the
positions of the glens plane, the optical axis, and the focal
points [1]. It is similar to a lens in the following ways:

1. A glens also does not offset light rays upon transmission,
and so any light ray intersecting a glens is incident on, and
leaves from, the same position in the glens plane.

2. A glens also has an optical axis, which is perpendicular
to the glens plane and which is the axis of cylindrical symmetry.

3. A glens also has focal points where light rays that are
parallel to the optical axis in object (image) space intersect
in image (object) space, and these are located on the optical
axis.

A glens also differs from a lens in a number of ways:

1. The focal points are, in general, located at different
distances from the glens, and might even reside on the same
side of the glens.

2. Light rays through the center of a glens in general
change direction.

The ray diagram shown in Fig. 1(a) illustrates a few of these
properties.

Figure 1(a) also introduces a number of conventions for
glenses. First, we place on the optical axis one of the axes of
a Cartesian coordinate system. We call the associated coordi-
nate 4; the origin is chosen such that the glens resides in the
a = 0 plane. This allows us to distinguish between light rays
that approach the glens from negative space, i.e., from the di-
rection of negative # values, from those that approach from
positive space, i.e., from the direction of positive 4. This, in turn,
allows us to distinguish between the focal lengths in negative
space and in positive space, which is required here, as these are,
in general, different (unlike in the case of a lens). The focal
lengths in negative and positive space, £~ and £, are defined
as the @ coordinates of the corresponding focal points, F~ and
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F*. (Throughout this paper, we continue to label positions and
distances that refer to negative space with a superscript “~” and
those that refer to positive space with a superscript “+”.) The
glens plane is indicated by a line with triangles at the ends.
Unlike the triangles at the end of the lines indicating a thin-
lens plane, the triangles indicating a glens are drawn asymmet-
rically, on the positive side of the glens, representing the broken
symmetry between the spaces on either side. The negative and
positive sides of a glens can also be indicated by placing a “-”
and a “+” on the relevant sides of the glens. Note that either
space can be object or image space; for example, if light is
incident from negative space, then negative space is object space
and positive space is image space.

We stress that our definition of the focal lengths is different
from the standard definition; if the focal lengths according to
the standard definition are /" on the positive side and g on the
negative side, then f = f and f~ = -g. The reason behind
this redefinition is that it uses the same coordinate system on
both sides of the glens, which is convenient for our purposes in
that any distance, which simultaneously refers to negative space
and positive space, can be defined unambiguously. We will see
below that the nodal distance, the # coordinate of the nodal
point, is an example of such a distance.

All rays shown in Fig. 1(a) are involved in the imaging
between two conjugate positions, Q™ and Q™. As a glens im-
ages, by definition, each object-space point into a correspond-
ing image-space position, any light ray that intersects the object
position in object space intersects the image position in image
space. To construct the image position, it is sufficient to con-
struct the intersection of two such rays, and in Fig. 1(a) this was
done with the ray that passes through the object-sided focal
point and the ray that is incident parallel to the optical axis
and which passes through the image-sided focal point. The
trajectories of additional rays involved in the imaging between
Q™ and Q7 can be constructed as two straight-line segments,
one from Q" to any point in the glens plane, the second from
the same point in the glens plane to Q*. A glance at the figure
reveals that the ray through the glens center, P, does not pass
through the glens undeviated, reducing the usefulness of P in
ray diagrams. But Fig. 1(a) also shows that there exists another
ray that passes through both Q™ and Q™ and which passes
through the glens plane undeviated, but this ray does not pass

Fig.2. Location of the nodal point of a glens. Two parallel light rays
are incident on the glens with direction d, one (marked “17) through
the negative focal point, F~, and intersecting the glens at position S,
the other (marked “27) through the point I where the first light ray
intersects the image-sided focal plane and intersecting the optical axis
at N, the nodal point. The triangles F~SP and NIFt are congruent.
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through the glens center but, instead, intersects the optical axis
at a different position, N.

With the help of Fig. 2, we can demonstrate that any light
ray incident on N—from any direction—passes through the
glens undeviated. For reasons that will become clear, we call
N the nodal point of the glens. (It is, of course, also possible
to demonstrate the existence of the nodal point from the map-
ping equations derived in [1].) Consider a light ray, marked “1,”
incident from negative space with an arbitrary direction d
through the focal point F~. After transmission through the
glens, its direction is parallel to the optical axis. We call the
point where it intersects the positive focal plane I. Now con-
sider a second light ray, marked “2,” incident with the same
direction d and aiming at the point I. As the two rays are par-
allel in negative space, they intersect in a point in the positive-
space focal plane. This point is I, and the second light ray is
already intersecting it in negative space, i.e., before transmission
through the glens. In order to intersect it also after transmission
through the glens, its direction therefore cannot be altered by
transmission through the glens.

It can easily be seen that the second, undeviated, ray always
intersects the optical axis at the same position, N, which is, as
the name choice suggests, the position of the nodal point.
Because of the congruence of the triangles F~SP and NIF*,
N resides a distance f~ from FT, and a distance

n=ft+f (1)

from the glens center, P. We call 7 the nodal distance of the glens.
In the special case of a thin lens, for which f~ = - £, the nodal
distance is 7 = 0, and so the nodal point, N, coincides with the
lens center. Equation (1) shows that the position of N is inde-
pendent of the direction d of the incident rays, which justifies
our earlier assertion that #ny ray incident on N with any direction
d passes through the glens undeviated.

Finally, we put our results in the context of the standard
theory of ideal imaging systems, which allows the behavior
of an ideal imaging system to be determined by the locations
of a number of cardinal points [23].

First, above we reviewed the property of a glens in that it
does not offset light rays upon transmission; thus, any light ray
passing through the glens leaves it from the same point it is
incident on. This is specifically the case for any light ray parallel
to the optical axis, which means [23] that the glens plane is a
principal plane. There are actually two principal planes, each
corresponding to light rays incident from one side of the
imaging system (here the glens), and it is immediately clear that
both those principal planes coincide in the glens plane. The
principal points, which are defined as the points the two prin-
cipal planes intersect the optical axis, coincide with the glens
center, which is therefore the glens’s principal point, which
we had presciently named P.

Second, the nodal points of an ideal imaging system are de-
fined as the two points on the optical axis with the property that
any light ray incident on one emerges from the optical system
through the other, with the same light-ray direction. In the case
of a glens, the two nodal points coincide in the point N; thus, it
is indeed the glens’s nodal point.
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4. MAPPING BETWEEN OBJECT AND IMAGE
SPACE

We now use the properties of the nodal point to derive a simple
equation for the mapping between object and image space.
Figure 3 shows the geometry. It shows two light rays involved
in the imaging between a pair of conjugate points, Q (object
space) and Q" (image space). Using standard notation, we write
quantities that refer to object space as unprimed, those that
refer to image space as primed. Both light rays pass through
Q and Q’; additionally, light ray 1 passes through the nodal
point, N, and light ray 2 passes through the object-sided focal
point, F.

To construct the mapping between Q and Q’, we first con-
sider light ray 1 whose trajectory, by virtue of passing through
N, is a straight line. The vector (Q’ - Q), where Q' and Q are
the position vectors that correspond to the points Q' and Q,
respectively, is then proportional to the vector (Q - N), where
N is the position vector corresponding to N.

The ratio of the lengths of these vectors can be found by
considering light ray 2. The two shaded triangles shown in
Fig. 3 are similar, and their relative size is that of the two vec-
tors. Expressed in terms of the length of the bottom sides of
these triangles, this ratio is 2/(f - 4), and so

Q-Q Q-N
a _f—a’ @
and so
Q =Q++—(Q-N). (3)

f-a

It is instructive to write the mapping described in Eq. (3) in
terms of Cartesian components. We have already defined the #
coordinate, and make this one of the coordinates of a Cartesian
coordinate system, the others being & and ¢. For an object
position Q = (4, b,¢)7, Eq. (3) returns the image position
Q = (4, b,c)7, where

1
(@, 6, =

[a(n- f), -bf, —cf], (4)

a-f

or, using n = f + f7,

Fig. 3. Glens mapping. Here shown for light rays incident from

negative space.
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We observe the following:

(@, b, =

(af's=bf,~cf)T. (5)

1. Reassuringly, the glens plane and the focal planes are
being mapped as expected. Any point in the glens plane,
i.e., any point with 2 = 0, is mapped to itself. Any point at
a = %oo is imaged to 2’ = f, i.e., into the image-sided focal
plane. Similarly, any point in the object-sided focal plane
(a = f) is imaged to |a'| = 0.

2. The a component of the equation,

r df,
=77 ©)

is easily transformed into the form

a

]—[ + ]i, =1 (7)
a a

In analogy to its lens equivalent, we call this equation the
glens equation. Note that it has retained the form of the third
equation in Eqgs. (10) in [1], despite the fact that we have re-
defined the sign of the 2 component of negative space positions
(as in the term referring to negative space both numerator and
denominator change sign).

3. When the change in the definition of the 2 components
is taken into account, the & and ¢ components of the equation
are the same as the first two equations in Egs. (10) in [1].

4. The transverse (perpendicular to the axial direction)
magnification of the mapping is

o0 f
MT—E——ﬂ_f.

(The same result is obtained by calculating dc’/dc.) There is
only one plane that is imaged with M = 1, namely, the plane
of the glens itself, the plane 2 = 0.

5. The longitudinal (in the axial direction) magnification
of the mapping is

Mdeiz—f(n f?:— ffzz_iM”Z[‘ (9)

Oa (a-f) (a-f) f
In the lens case (f' = -f), M| = M%

6. From the 4 component of Eq. (4), it is immediately
clear that any object in the plane with 2 = 7 is imaged again
into the same plane. We call this plane the nodal plane. The
point where the nodal plane intersects the optical axis is, of
course, the nodal point N. Substitution of # = into
Egs. (8) and (9) reveal that points in the nodal plane are imaged
with the same transverse and longitudinal magnification,
namely,

@)

MTZMLZ—%. (10)
7. From the 2 component of Eq. (4), it can be seen that
exchanging the order of two parallel glenses, one immediately
behind the other and sharing an optical axis, changes the map-
ping of the combination, unless both have the same nodal dis-
tance. If the object-sided focal lengths of the first and second
glens are f| and [, and their nodal distances are 7; and 7,,
then the combination images an object position with longi-
tudinal coordinate # to an image position with longitudinal
coordinate
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" a(fy-m)(f5-m) (11)
fifa-alfy+ fo) +an

a

Exchanging the order of the glenses leaves the numerator
and the first two terms of the denominator unchanged, but
the third term of the denominator changes from an; to an,.
If n; = ny, this does not actually change the third term of
the denominator. A calculation of the transverse coordinates
of the image reveals that, provided 7; = #,, reversing the order
of the glenses leaves all coordinates of the image unchanged.

It is also instructive to investigate the mapping in the limit
when glenses become homogeneous, the imaging sheets studied
in [24]. This can be visualized as picking a point on the surface
of a glens and then isotropically and infinitely magnifying
the glens with the point on the surface as the center of the
magnification. The focal lengths then become infinite, and
the nodal point N becomes infinitely distant. In this limit,
f-a— fand Q-N — -N, and so the mapping equation,
Eq. (3), becomes

N
’: —-—ad—. 12
Q=Q 7 (12)

Comparison with Eq. (11) in [24] reveals that

1)
N X
—= o, | (13)
f <l—yr]>

where 6, 5y, and 7 are parameters describing the imaging sheet.

Finally, we point out that Eq. (5) is in the form of a colli-
neation (also known as a projective transform), the most gen-
eral bijective (i.e., one-to-one and onto) transformation that
takes lines to lines and planes to planes [25]. It is, of course,
necessary that this transformation takes lines to lines as all
object positions on any incident light ray must be imaged
to corresponding image positions on the corresponding out-
going light ray, and the trajectories of both the incident and
outgoing rays are straight lines.

Translating two of the properties of glenses into the lan-
guage of collineations allows us to identify the mapping more
precisely. The first of these properties is that light rays exit a
glens from the same positions where they entered it but on the
other side. This means that any point in the plane of the glens is
imaged to itself and, therefore, a fixed point of the collineation.
In 2D, the straight line on which the fixed points reside would
be called the axis of the collineation. The second of these prop-
erties is the existence of the nodal point, which resides on the
straight line through any pair of object and image positions. In
the language of collineations, the nodal point would be called
the center of the collineation, and, by virtue of possessing a
center, the glens mapping is a central collineation [26]. The
relationship between the axis and the center of the collineation
defines the subclasses of collineations [27] that describe the
mapping due to thin lenses and glenses: In thin lenses, the
center resides on the axis of collineation, which makes the map-
ping an elation. In glenses, the center does not in general reside
on the axis of collineation, which makes the mapping a

homology.
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5. LIGHT-RAY-DIRECTION CHANGE UPON
TRANSMISSION THROUGH A GLENS AND ITS
IMPLEMENTATION IN DR TIM

We now derive equations describing the light-ray-direction
change upon transmission through a glens. We write these
equations in vector form to facilitate implementation in our
ray-tracing software, Dr TIM [28].

Figure 4 sketches the trajectory of a light ray that is incident,
with nonzero but otherwise arbitrary direction d, on an arbi-
trary point S on a glens. As before, we refer to the space from
which the ray is incident as object space (unprimed), the other
space as image space (primed).

The direction d’ of the light ray after transmission through
the glens can be constructed using the fact that parallel incident
light rays, after transmission through the glens, intersect in the
image-sided focal plane. The direction of the redirected light
ray is, then,

d «I-8, (14)

where I is the position vector corresponding to the point where
the light ray intersects the image-sided focal plane, I, and S is
the position vector that corresponds to the position S. If F' re-
sides on the object-space side, then the vectors I -S and d’
point in opposite directions. This happens when f' and ,,,
where

d,=d-a (15)

is the component of d in the direction of the optical axis, have
opposite signs. Multiplying by the ratio of 4, and f reverses
the ray when this is the case, so we find

4,
f’
(Note that /7 # 0 in all physically meaningful cases.)

To calculate I, we consider a principal ray that intersects N

(position vector N) and that is parallel to the incident ray. We
can then write I in the form

d=%271-s). (16)

Fig. 4. Lightray-direction change upon transmission through a
glens. A light ray (solid red line) is incident from object space, with
direction d, at position S. If the light ray is incident from positive
(negative) space, then object space is positive (negative) space and im-
age space is negative (positive) space. The auxiliary light ray (dotted red
line) that passes through the nodal point N with the same direction
intersects the image-sided focal plane at the same position, I, as the
refracted light ray.
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d
I=N+ 7 T (17)
Substitution into Eq. (16) gives

o Lt
d'=-5d+ 7

6. RAYTRACING SIMULATIONS

We have used the equation describing the change of light-ray
direction upon transmission through a glens, Eq. (18), to add
the capability to simulate transmission through a glens to our
custom raytracer Dr TIM [28]. (More precisely, we have used
Egs. (A3) and (A4) (see Appendix A), which are versions of
Eq. (18) that also work in the case of infinite focal lengths
and nodal distance.) We have used this new capability to simulate
the view through glenses, concentrating on phenomena associated
with pseudoscopic imaging and the location of the nodal point
outside of the plane of the glens, which do not occur for lenses.

Figure 5 simulates the view through a glens of objects in the
glens’s nodal plane. Frames (b) and (d) in Fig. 5 show a col-
lection of objects located close to the nodal plane of a glens,
seen through that glens from different directions. The objects
touch the nodal plane from behind; the vertex of the cone is at
the nodal point. Comparison with frames (a) and (c), which
show the same scene without the glens, confirms that the nodal
point is seen in the same position irrespective of the presence of
the glens, which is consistent with the glens imaging its nodal
point to itself. In all cases, the virtual camera is focused to the
nodal plane, and the fact that the objects remain in focus when
seen through the glens is consistent with the nodal plane being
imaged into itself. Finally, it can be seen that the nodal plane
appears magnified by a factor M 7 = 2, which is expected from

(N -8S). (18)

Fig. 5. Ray-tracing simulations of objects located near the nodal
plane of a glens (b), (d) seen through that glens and (a), (c) for com-
parison without the glens. (a) and (b) have been calculated for one
position of the virtual camera, (c) and (d) for another. The sphere,
the cone, and the cylinder touch the nodal plane from behind; the
vertex of the cone is located at the nodal point, N. The glens present
in (b) and (d) is located a distance 2 (in units of floor-tile widths) in
front of the nodal plane, with its # axis pointing away from the camera
in (b). Its focal lengths are /= = -2 and f* = 4. In all frames, the

virtual camera is focused on the nodal plane.
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Fig. 6. Ray-tracing simulation of the view through a glens taken
with a camera located at its nodal point. (a) Scene without glens (pin-
hole camera); (b) with glens (pinhole camera); (c) with glens, focused
on the plane touching the closest parts of the object; (d) with glens,
focused on the image of this plane (which is located in a plane behind
the camera).

Eq. (10) and the choice of focal lengths, f = 4 and /' = -2,
for which the figure was calculated.

Figure 6 demonstrates what happens when the camera is
located at the nodal point. If the camera is a pinhole camera,
every light ray recorded by the camera is a light ray through the
glens’s nodal point, and such light rays do not change direction
when passing through the glens. This is why the view in frame
(a), which shows a scene with the glens absent, looks the same
as that in frame (b), in which the glens is present. Each image
produced by the glens is, therefore, seen in the same direction
as the corresponding object. Frames (c) and (d) illustrate that
these images are formed at distances different from those of the
objects. In frame (c), in which the virtual camera is focused on
the (front of the) objects in the scene, the objects are therefore
blurred, but in frame (d), in which the camera is focused on the
plane into which the (front of the) objects are being imaged by
the glens according to the glens equation [Eq. (7)], they are
in focus.

Fig. 7. Glens telescope comprising a pair of glenses that share a
common focal point, namely, the first glens’s positive-space focal point,
F{, and the second glens’s negative-space focal point, F;, and a
common nodal point, N. The trajectories of a bundle of initially par-
allel rays (red lines) is shown. As it passes through the telescope from
left to right, the ray bundle gets expanded without reducing its angle
with the optical axis.
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Fig. 8. Simulated view through the glens telescope shown in Fig. 7,
which multiplies the distance of any light ray from N by a factor
M = 3 without altering the ray’s direction. The camera is positioned
at the glenses’ common nodal point, N. In (a), the camera is focused
on the plane where the objects actually are (here, z = 10). In (b), it is
focused on a plane M times further away (z = 30). In both frames, the
central, circular, part of the view is seen through both glenses, which

provide a sharp image in (b).

Finally, we simulate the view through a telescope formed by
glenses that share a common focal point (the positive focal
point of the first glens coincides with the negative focal point
of the second) and a common nodal point (Fig. 7). Such a tele-
scope changes the beam size without changing its propagation
direction. This is forbidden by Liouville’s theorem as phase-
space volume is not preserved, reflecting the fact that glenses
are wave-optically forbidden. (Note that, conversely, a single
homogeneous glens with f~, fT — oo such that f~/f+ =
const. [24] changes the beam angle without changing its size.)
The mapping between object and image space created by such a
telescope is an isotropic stretching by a factor M, centered on
N. When seen from N, any object is seen in the “true” direc-
tion, but a factor M further away. This is demonstrated
in Fig. 8.

7. CONCLUSIONS

In this paper, we have defined glenses as idealized thin lenses,
generalized such that the focal lengths on both sides can be
different. Glenses can be approximately realized in the form
of Gabor superlenses. We have shown that a glens possesses
a nodal point that can be located anywhere on the optical axis.
When formulated in terms of this nodal point, the equations
describing the mapping between object and image space and
the light-ray-direction change on transmission through a glens
become particularly simple.

We intend to apply our findings to the construction of novel
optical instruments, starting with a generalization of the pixel-
lated transformation-optics devices described in [17].

APPENDIX A: REPRESENTATION OF GLENS
PARAMETERS IN DR TIM

It can happen that both focal lengths become infinite, namely,
in the limit of homogeneous glenses [24], in which case the
equations for the mapping, Eq. (3), and for the light-ray-direc-
tion change, Eq. (18), do not work. It would be possible to
switch to alternative equations, but we took a different ap-
proach when programming glenses into Dr TIM, namely, to
formulate the glenses in terms of parameters that work irrespec-
tive of whether or not the focal lengths are finite or infinite.
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The solution is to divide the quantities that go to oo by a
length, g, such that they become finite, and describe the glens
in terms of those dimensionless parameters, namely, (f/g),
(f'/g), and (N/g). The length g itself can become infinite.
In the case of glenses with finite focal lengths, we simply choose
¢ = 1 (Dr TIM uses dimensionless units). In the case of glenses
with infinite focal lengths, we choose g = 7, the nodal distance.

Formulated in terms of g, the mapping equation, Eq. (3),

becomes
- (9 - 5). (A1)
flg-alg\g ¢
In the limit ¢ — o0, 2/¢g — 0 for any finite value of 2 and
Q/g — 0 for any finite object position Q, and so
a N

r=Q-—— 7, A2
¢=Q flegg (A2)

The equation describing the light-ray-direction change,
Eq. (18), can also be formulated in terms of g. It becomes

d, (N
d’=—f,/gd+ o <—-§>. (A3)
f'le flle\g ¢
For a finite intersection point S, this simplifies to
flg 4, 4 N
d=-"~d+-~-—
f'le flge

Q=Q+

(A4)
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