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Bargaining, Conditional Consistency,

and Weighted Lexicographic

Kalai-Smorodinsky Solutions

Bram Driesen∗

November 8, 2015

Abstract

We reconsider the class of weighted Kalai-Smorodinsky solutions of

Dubra (2001), and using methods of Imai (1983), extend their character-

ization to the domain of multilateral bargaining problems. Aside from

standard axioms in the literature, this result involves a new property that

weakens the axiom Bilateral Consistency (Lensberg, 1988), by making the

notion of consistency dependent on how ideal values in a reduced problem

change relative to the original problem.

JEL-Classification: C78, D60, D70

Keywords: Bargaining, conditional consistency, leximin solutions.

1 Introduction

In this article we adopt the view that bargaining problems (Nash, 1950) reflect

actual negotiations, and that bargaining solutions encapsulate all the strategic

interactions that take place between negotiating agents. We further adopt Luce

and Raiffa’s (1957) view that the aspiration levels these agents hold – summa-

rized in their ideal values – make up an important determining factor for the

outcome they ultimately agree on.

Following Harsanyi (1959), Lensberg (1988) introduced an axiom named

Bilateral Consistency (BCON),1 which states that if an agent accepts a certain

∗University of Glasgow, Adam Smith Business School, G12 8QQ Glasgow, UK. Telephone:
+44 141 330 5508. Email address: driesen.bram@gmail.com.

1Lensberg calls this axiom Bilateral Stability.
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outcome, then he also accepts it in any two-person reduced problem that involves

him.

Example. Consider three players – 1, 2 and 3 – facing the problem S,

as depicted in Figure 1, and suppose the compromise they reach is given by

y := (α, α, α) for some α > 0. Suppose next that agent 1 leaves the negotiations

Agent 1

Agent 2

Agent 3

b
y

S

(a) The problem S

Agent 1

Agent 2

Agent 3

T

b
y

(b) The problem T

Figure 1: The problems S and T .

with his payoff y1 = α, and agents 2 and 3 are left to renegotiate their outcome

(i.e., face reduced problem T ). The axiom BCON states that they reach the

same mutual agreement in T as they did in S. ‖

Thomson and Lensberg (1989, p. 100) motivate BCON as follows: “[A] rational

agent i will not accept a tentative agreement for the bargaining problem [S] if

he has reason to believe that he could successfully force or convince some other

agent j to make a concession in his favor. If simultaneous challenges against

more than one agent are not permitted, then i can base his beliefs about j’s

willingness to concede only on principles that would guide them in solving two-

person problems involving just the two of them.”

The underlying assumption is that the situation i faces in the two-person

problem is comparable to the situation he faces in S. However, if a solution

is meant to reflect the outcome of actual negotiations, and ideal points are

pertinent to the outcomes they lead to, this assumption may not always hold.

As the above example shows, the ideal values of two agents – and therefore also

their bargaining attitudes with respect to one another – may be very different

in the two-person reduced problem than in the original situation. As a result,

what agent i can get from j in the reduced problem may not accurately reflect
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j’s willingness to concede in S. For instance, in the above example, agent 2’s

position with respect to agent 3 is weaker in T than in S; then a concession in

his favor in T may not be enough for agent 3 to exclude y as a possible solution

outcome of S. On the other hand, if the operation of problem reduction reduces

both agents’ ideal values in the same proportion, then their relative positions

with respect to one another remain unchanged. What an agent j would then be

willing to concede to i in this reduced problem, is representative of what he is

willing to concede in the original situation.2 Hence, agent i can form accurate

beliefs about what j is entitled to in S, and will reject the tentative agreement

if he believes it gives j too much. We propose an axiom, named Conditional

Consistency (CCON), that captures exactly this idea: it imposes BCON under

the condition that the two agents’ ideal values in the reduced problem change

proportionally with respect to the original problem.

A further implication of our interpretation of the bargaining problem con-

cerns Anonymity (AN). The fact that a problem is the summation of an actual

negotiation, is in line with the Nash program for bargaining; several results in

this literature reveal that asymmetric solutions may arise quite naturally from

asymmetries in the underlying bargaining protocol (see e.g. Laruelle and Va-

lenciano (2008), Britz et al. (2010), and Anbarci and Sun (2013)).3 As such,

Anonymity may be too strong a requirement, and we do not impose it.

Our main result is that CCON, combined with several standard (and uncon-

troversial) properties, characterizes a class of weighted lexicographic extensions

of the Kalai-Smorodinsky solution (Imai, 1983; Kalai and Smorodinsky, 1975).

The Kalai-Smorodinsky – or KS – solution is known to be inefficient in a large

class of problems (Roth, 1979); Imai’s lexicographic maxmin – or leximin – so-

lution is a lexicographic version of the KS solution that yields efficient outcomes

on the full domain. Dubra (2001) defined and characterized a class of weighted

lexicographic KS solutions on the specific domain of two-person problems. The

family of solutions considered in this paper, and the associated characterization,

may be seen as multilateral generalizations of Dubra’s results.

This paper fits into the broader literature on lexicographic solutions. Exam-

ples of this literature, aside from other work on the (symmetric) lexicographic

KS solution (Chang and Liang, 1998; Driesen, 2012), include lexicographic ver-

sions of the egalitarian solution (Chun and Peters, 1989; Thomson and Lensberg,

2This claim is more carefully motivated in Section 2.3.1.
3These papers provide non-cooperative support for the asymmetric Nash solution (Nash,

1950; Harsanyi and Selten, 1972; Kalai, 1977a).

3



1989; Nieto, 1992; Chang and Hwang, 1999; Chen, 2000) and the equal-loss

solution (Chun, 1989; Chun and Peters, 1991). For problems with claims, lex-

icographic extensions of the proportional solution (Chun and Thomson, 1992)

and the extended claims-egalitarian solution (Bossert, 1993) were studied by del

Carmen Marco Gil (1995).

The article proceeds as follows. Section 2 introduces relevant definitions and

notations. Section 3 contains the main result, a characterization of the family

of weighted lexicographic KS solutions described above, and Section 4 discusses

the independence of the axioms. Section 5 concludes.

2 Preliminaries

2.1 The Bargaining Problem

There is an infinite, countable population of agents, indexed by the set of natural

numbers N. The collection of all non-empty, finite subsets N of N, is denoted

N . For each N ∈ N , let |N | be the number of agents contained in N , and let

RN be the Cartesian product of |N | copies of R, indexed by the members of

N . Denoting the zero vector as 0̄, the positive and strictly positive orthant are

given by RN+ := {x ∈ RN | x = 0̄} and RN++ := {x ∈ RN | x > 0̄}.4
Given N ∈ N , a bargaining problem – in short, a problem – is defined by a

subset S of RN , that is non-empty, closed, convex and comprehensive (i.e., for

all x, y ∈ RN , if x ∈ S and x = y, then y ∈ S), contains a point z > 0̄, and is

further such that S ∩ RN+ is bounded.

The interpretation is as follows. An outcome or point x ∈ RN represents a

payoff profile for the agents in N , in the sense that each xi, i ∈ N , specifies the

utility realized by player i. The feasible set S represents all outcomes attainable

by the players in N . The outcome 0̄ – the disagreement point – is the outcome

that obtains if agents fail to find a compromise. Note that normalizing this

point to 0̄ is without loss of generality. The condition that the feasible set holds

outcomes that strictly dominate the disagreement point, represents the notion

that all participating agents have some stake in the negotiations.

For each N ∈ N , let ΣN be the family of all problems for N , and let

Σ :=
⋃
N∈N ΣN be the family of all such problems. A bargaining solution – in

short, a solution – is a real-valued function ϕ defined on Σ, that assigns for each

N ∈ N , and to each S ∈ ΣN , a single outcome ϕ(S) in S. This outcome, also

4Vector inequalities: =, ≥, >.
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called the solution outcome, represents the agreement the agents in N reach in

the problem S.

2.2 Standard Axioms

This section restates a number of standard axioms for bargaining solutions. This

requires some additional notation.

Given N ∈ N , and given S ∈ ΣN , the set of Pareto-optimal points in S

is defined as P (S) := {x ∈ S | y ≥ x implies y /∈ S}. For x, y ∈ RN , xy is

a vector in RN with (xy)i := xiyi for all i ∈ N . If there is a real number

β such that yi = β for all i ∈ N , then xy is also denoted βx. Furthermore,

xS := {xy | y ∈ S}. Given a permutation π of N , and a vector x ∈ RN ,

π(x) is the vector in RN with (π(x))i := xπ(i) for all i ∈ N . Furthermore,

π(S) := {π(x) | x ∈ S}. The ideal point of S is a vector u(S) in RN with

ui(S) := max{xi | x ∈ S ∩ RN+} for each i ∈ N . For Q ∈ N with Q ⊂ N , and

x ∈ RN , the vector y in RQ with yi = xi for all i ∈ Q, is denoted xQ.5 Then

S−i denotes the closure of the set {xN\{i} | x ∈ S and x 5 u(S)}. Finally, if

two points x, y ∈ RN are proportional – i.e., x = βy for some β > 0 – then we

write x ∝ y.

In our statement of the axioms, we omit the phrase ‘For all N ∈ N and

S ∈ ΣN ’.

Strong Individual Rationality (SIR). ϕ(S) > 0̄.

Pareto Optimality (PO). ϕ(S) ∈ P (S).

Homogeneity (HOM). For all real β = 0, ϕ(βS) = βϕ(S).

Scale Invariance (SI). For all a ∈ RN+ , ϕ(aS) = aϕ(S).

Anonymity (AN). For all permutations π of N , ϕ(π(S)) = π(ϕ(S)).

Independence of Irrelevant Alternatives (IIA). For all T ∈ ΣN with

ϕ(S) ∈ T ⊆ S, ϕ(T ) = ϕ(S).

IIA other than Ideal Point (IIIA). For all T ∈ ΣN with ϕ(S) ∈ T ⊆ S

and u(T ) = u(S), ϕ(T ) = ϕ(S).

Restricted IIA (RIIA). For all T ∈ ΣN with ϕ(S) ∈ T ⊆ S and u(T ) ∝
u(S), ϕ(T ) = ϕ(S).

5Inclusion is denoted ⊆, and strict inclusion ⊂.
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Individual Monotonicity (IM). For all T ∈ ΣN with T ⊆ S and S−i = T−i
for some i ∈ N , ϕi(S) = ϕi(T ).

Roth (1977) introduced and discussed IIIA. Dubra (2001) introduced the weaker

axiom RIIA. The property IM was introduced by Kalai and Smorodinsky (1975),

but the version presented here is due to Imai (1983). The other properties are

well known, and require no further elaboration.

2.3 Bilateral Consistency and Conditional Consistency

Lensberg (1988) introduced the axiom Bilateral Consistency, discussed in the

introduction. Given Q,N ∈ N with Q ⊂ N , and y ∈ S ∩RN+ , let my
Q(S) be the

slice of S through y, parallel to RQ – i.e., my
Q(S) := {x ∈ RQ | (x, yN\Q) ∈ S}.

Note that my
Q(S) is a well-defined problem in ΣQ. Then Bilateral Consistency

is as follows (again, stated for all N ∈ N and S ∈ ΣN ).

Bilateral Consistency (BCON). If ϕ(S) = 0̄, then for all Q ⊂ N with

|Q| = 2 and for all T ∈ ΣQ with T := m
ϕ(S)
Q (S), ϕ(T ) = (ϕ(S))Q.

We propose Conditional Consistency, an axiom that imposes BCON under the

added condition that the two considered agents’ ideal values change proportion-

ally.

Conditional Consistency (CCON). If ϕ(S) = 0̄, then for all Q ⊂ N with

|Q| = 2 and T ∈ ΣQ with T := m
ϕ(S)
Q (S) and u(T ) ∝ (u(S))Q, ϕ(T ) =

(ϕ(S))Q.

The axiom CCON is weaker than BCON, and thus satisfied by solutions such

as the Nash solution (Nash, 1950), the proportional solutions (Kalai, 1977b),

and the lexicographic egalitarian solution (Thomson and Lensberg, 1989). It is

further satisfied by the KS solution (Kalai and Smorodinsky, 1975). The Raiffa

solution (Raiffa, 1953) violates CCON.6

Lensberg also introduced a stronger version of BCON, that does not restrict

consistency to two-person reduced problems.

6For N ∈ N and S ∈ ΣN , the Nash solution (Nash, 1950) is defined as the unique
maximizer of

∏
i∈N xi on S ∩ RN

+ . A proportional solution is defined as β∗w where w is

some vector in RN
++, and β∗ := max{β | βw ∈ S}. The Kalai-Smorodinsky solution (Kalai

and Smorodinsky, 1975) is defined as K(S) := β∗u(S), where β∗ := max{β | βu(S) ∈ S}.
The Raiffa solution is defined as the (possibly infinite) sum 1

|N|u(S) + 1
|N|u(S − 1

|N|u(S)) +
1
|N|u(S − 1

|N|u(S)− 1
|N|u(S − 1

|N|u(S))) + . . ..
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Agent 3

S

b ϕ(S)

Agent 3

Agent 2

45◦

b ϕ(S)

T
=

m ϕ(S
)Q

(S)

b

ϕ(T ) = (ϕ(S))Q

Agent 1 Agent 2

Figure 2: An illustration of CCON with Q = {2, 3} and N = {1, 2, 3}.

Multilateral Consistency (MCON). If ϕ(S) = 0̄, then for all non-empty

Q ⊂ N and T := m
ϕ(S)
Q (S), ϕ(T ) = (ϕ(S))Q.

In similar fashion, we may also define a stronger version of CCON that applies

to multilateral or single-agent reduced problems. However, such a strengthening

of CCON turns out to be unnecessary for the purpose of this paper.

2.3.1 Discussion

Luce and Raiffa (1957) formulated the well-known criticism on Nash’s (1950) IIA

that it makes solutions too unresponsive to the geometry of the feasible set. The

specific aspect they focused on was the ideal point: since ideal values represent

the utilities agents may aspire to when engaging in the negotiations, they are

an important psychological component to the attitudes these agents hold, and

may therefore have an important influence on the outcome that is ultimately

agreed on. This is illustrated by the example below:7 whatever outcome agents

1 and 2 may ultimately agree on in problem A, if their ideal values matter in

these negotiations, it is plausible that agent 2 will settle for a lower payoff in

problem B.

The intuition that agent 2 will not be able to secure as high a payoff in

problem B as in A is not just driven by the fact that his own ideal point is

lower in the former than in the latter, but also by the fact that for agent 1 the

two problems are identical in this respect. The change in 2’s solution payoff

7See also Luce and Raiffa (1957, p. 133).
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Agent 2

Agent 1

b

1

1

(1/2, 1/2)

(a) Problem A

Agent 2

Agent 1

b

1

1
2

(1/2, 1/2)

(b) Problem B

is not so much driven by the change in his ideal value per se, but rather by

the change in his ideal value relative to that of agent 1. To further illustrate

this point, consider the problems C and D below, and observe that while they

have different ideal points, agents’ relative ideal values in these problems are

the same. Suppose now that agents have come to some agreement in problem

C, and subsequently face the problem D. It is true that the ideal point then

changes, but since agents’ ideal values have decreased in the same proportion,

the ability of both agents to stake out higher claims is curtailed in exactly the

same way. Intuitively, there is then no obvious reason why this should lead

either agent to demand a higher payoff. Both agents would have to hold a more

timid attitude, but since their relative positions have not changed, it is not

unreasonable to assume that what they deem a “fair” compromise in problem C

remains a “fair” compromise in D. Note that this is exactly the reasoning that

underpins RIIA (Dubra, 2001).

Agent 2

Agent 1

b

1

1

(0.6, 0.4)

(a) Problem C

Agent 2

Agent 1

b

0.8

0.8

(0.6, 0.4)

(b) Problem D
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Let us now turn our attention to BCON and its motivation. To this end,

consider again the example given in the introduction. As agent 1 leaves the

negotiations with his solution payoff α, agents 2 and 3 are renegotiating their

payoffs (α, α) in the reduced problem T that results from agent 1’s departure.

The property BCON says that they should then realize the same payoffs (α, α) in

the reduced problem T as they did in the original problem S. The motivation for

this type of robustness against renegotiation lies in the idea that agents evaluate

the worth of tentative agreements on the basis of a particular thought exercise:

when confronted with the potential agreement y, an agent – say, agent 3 –

will consider the hypothetical renegotiation of that agreement with each of his

opponents. If any such renegotiation leads to a higher payoff than α, then agent

3 would conclude that he could do better than α, and that the corresponding

outcome y should thus be rejected. A feasible outcome x can only be sustained

as the solution outcome if no agent has a reason to oppose it on the basis of

such reasoning.

While BCON seems sensible, if we accept Luce and Raiffa’s argument that

ideal points matter for the outcomes negotiations lead to, it becomes problem-

atic. To see this, consider again the example from the introduction, and note

that in the reduced problem T , agent 3 has a higher ideal value relative to agent

2 than in S itself. This means that in T , agent 2 would have a relatively more

modest attitude towards agent 3 than in the original problem. Then does the-

orizing what he could get in T really help agent 3 in deciding whether y is a

good offer in S? Arguably, it does not. Acknowledging that agents’ ideal values

play an important role in the bargaining process leads to the recognition that

in problems S and T , agents 2 and 3 may stake out very different positions with

respect to one another. As a result, the fact that agent 3 can hypothetically

improve on the tentative agreement y by renegotiating it with agent 2, may not

say very much about whether he should find that proposal acceptable in the

current circumstance.

Consider next the example outlined in Figure 2, and note that the ideal

values of agents 2 and 3 in the reduced problem T are proportional to the cor-

responding ideal values in S. In this case, agents 2 and 3 do have a comparable

mutual position with respect to one another in the two problems, and the out-

come agent 3 could secure in T does tell him something about 2’s willingness to

concede in the original problem S. In particular, if agent 3 were able to secure

a higher payoff in T than he is realizing under the proposed outcome in S, it

would now serve as a clear indication that the concession agent 2 is making in

9



S is too low. Agent 3 would then have a legitimate reason to oppose it. This

reasoning is captured in CCON: a feasible outcome x can only be sustained as

the solution outcome if no agent has a legitimate reason to oppose it.

It should be noted that the above discussion is only meant to motivate

CCON, and should not be read as a criticism on BCON. The argument that

BCON might be too strong a requirement hinges crucially on two assumptions

we have made: that bargaining problems represent actual negotiations, and that

in those negotiations, agents’ ideal values play a crucial role. It may however

be a perfectly acceptable property under other interpretations of the bargaining

problem or other assumptions on the psychology of the agents.

2.3.2 The Connection Between CCON and WRGP

Peters et al. (1994) introduced an axiom named the Weak Reduced-Game Prop-

erty (WRGP), that is reminiscent of CCON.8 Specifically, given Q,N ∈ N with

Q ⊂ N and |Q| = 2, S ∈ ΣN , and a point y ∈ S ∩ RN+ with yQ ∈ RQ++, they

define a reduced problem SyQ ∈ ΣQ as the homogeneous transformation of the

projection of S ∩ RN+ onto RQ, that is such that the projection of y onto RQ is

contained in its boundary. More specifically, given y ∈ S ∩RN+ with yQ ∈ RQ++,

SyQ := βSQ

where

SQ := {x ∈ RQ | x 5 zQ for some z ∈ S ∩ RN+}

and

β := min{β′ | yQ ∈ β′SQ}.

Then the axiom is as follows (for all N ∈ N and S ∈ ΣN ).

Weak Reduced-Game Property (WRGP). For Q ∈ N with Q ⊂ N and

|Q| = 2, if (ϕ(S))Q > 0̄ then ϕ(S
ϕ(S)
Q ) = (ϕ(S))Q.

The difference between WRGP and CCON lies in the definition of reduced

problems. In the axiom of Peters et al., the reduced problem SyQ is based on the

projection of the individually rational part of S (and that of the point y) onto

the subspace RQ. In our axiom the reduced problem my
Q(S) is the slice of S,

through the point y and parallel to RQ. The distinction is important: CCON

does not imply WRGP, or vice versa.

8Peters et al. refer to reduced problems as reduced games.
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To see that CCON does not imply WRGP, consider the Nash solution. Lens-

berg (1988) showed that it satisfies BCON; it therefore also satisfies CCON. To

see that it violates WRGP, consider the following example.9

S
y

Q

Agent 3

S

b
N(S) = y

1
1

1

b

N(S
y

Q
)

b

yQ

Agent 1
Agent 2

Figure 3: The Nash solution violates WRGP.

Example. ConsiderN := {1, 2, 3} and S ∈ ΣN with S := cch{(1, 1, 0), (0, 1, 1)},
and note that N(S) = (0.5, 1, 0.5). Let y := N(S) and note that for Q := {1, 2},
SyQ = cch{(1, 1)}. Then N(SyQ) = (1, 1) 6= (0.5, 1) = yQ, a violation of WRGP. ‖

To see that WRGP does not imply CCON, consider a solution F that for

all N ∈ N and S ∈ ΣN yields K(S) whenever |N | < 3, and 1
2K(S) otherwise.

Observation 2.1 F satisfies WRGP.

Proof. Let S ∈ ΣN with |N | = 3, and without loss of generality, assume

ui(S) = uj(S) for all i, j ∈ N . The KS solution outcome is then the maximal

point in S with all entries equal. Therefore, y := F (S) is a point in RN with all

entries equal. Take any Q ⊂ N with |Q| = 2. By definition of the reduced prob-

lem SyQ, yQ is the maximal point in SyQ with both entries equal. Furthermore,

ui(S
y
Q) = uj(S

y
Q) for i, j ∈ Q. It follows that F (SyQ) = K(SyQ) = yQ.

The following example shows that F violates CCON.

9Given N ∈ N and V ⊂ RN , cch V denotes the convex comprehensive hull of (the points
in) V . It is defined as the intersection of all convex and comprehensive sets in RN that contain
(the points in) V .
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Example. LetN := {1, 2, 3} and S ∈ ΣN with S := cch{(6, 0, 0), (0, 6, 0), (0, 0, 6)},
and note that F (S) = (1, 1, 1). Let y := F (S) and Q := {1, 2}, and observe that

T := my
Q(S) = cch{(4, 0), (0, 4)}. Then F (T ) = (2, 2) 6= (1, 1) = yQ, a violation

of CCON. ‖

2.4 A Family of Weighted Lexicographic KS Solutions

To formally define our solutions of interest, it is useful to first introduce the

‘lexicographic maxmin ordering’.

Definition. Given N ∈ N and x ∈ RN , let N̄ := {1, . . . , |N |}, and let µ(x) be

the vector in RN̄ , that is obtained by relabeling the coordinates of x such that

µ1(x) 5 . . . 5 µ|N |(x). The lexicographic maxmin ordering for N , denoted �N ,

is defined as follows: For x, y ∈ RN , x �N y if and only if there is a j ∈ N̄ such

that µj(x) > µj(y), and µi(x) = µi(y) for all i ∈ N̄ with i < j. Furthermore,

x ∼N y if and only if x = y. Let �:= {�N | N ∈ N}.

It is further useful to introduce the lexicographic egalitarian solution (Thom-

son and Lensberg, 1989). It is a well-defined solution by Lemmas 3 and 4 of

Imai (1983, p. 395).

Definition. For S ∈ Σ, the lexicographic egalitarian solution ξ is defined as

the unique maximum in S with respect to �. That is, ξ(S) := {y ∈ S | y �
x for all x ∈ S}.

Definition. For x ∈ RN++, define x−1 := (1/xi)i∈N . Then, given w ∈ RN
++,

N ∈ N , and S ∈ ΣN , the weighted lexicographic KS solution Lw is defined as

Lw(S) := bξ(b−1S), (1)

where b = wNu(S). The family of all such solutions is denoted by L, i.e.,

L := {Lw | w ∈ RN
++}.

Consider N ∈ N and S ∈ ΣN with ui(S) = 1 for all i ∈ N . Given w ∈ RN
++,

Lw(S) is obtained by the following procedure. Starting from the disagreement

point 0̄, increase the utilities of all the agents in N(≡ Q1) simultaneously in the

direction wQ1 , until the boundary of S is reached, say in the point x1. There is a

number of agents for whom a further improvement would result in an infeasible

alternative. Fix the payoffs of these agents at their x1-levels, and continue

12



Agent 1
Agent 2

Agent 3

b

b

b

x1
x2

x3 = Lw(S)

S

1
1

1

Figure 4: An illustration of Lw (with w1 > w2 > w3).

increasing the utilities of the remaining agents (call this set of remaining agents

Q2) in the direction wQ2 . This leads again to a point – say x2 – from which

further increase of utilities means stepping out of S. Since the total number of

agents in N is finite, and since at each iteration at least one is excluded from

further improvement, this procedure terminates in a finite number of steps. The

resulting outcome corresponds with Lw(S).

The lexicographic KS solution L (Imai, 1983) is the unique symmetric solu-

tion in L.

Theorem 2.2 (Imai, 1983) A solution ϕ satisfies PO, SI, AN, IM and IIIA,

if and only if ϕ = L.

Dubra (2001) defined a class K of weighted Kalai-Smorodinsky solutions, for

the specific domain of two-person problems (i.e., problems for N with |N | = 2).

Except for the two corner solutions where one player’s weight is zero, the class

of solutions L is a multilateral generalization of K.

Theorem 2.3 (Dubra, 2001) A solution ϕ :
⋃
N∈N :|N |=2 →

⋃
N∈N :|N |=2 RN

satisfies PO, SI, IM and RIIA if and only if ϕ ∈ K.

3 Main Result

The aim of this section is to obtain a characterization result for the above-defined

solution class.
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Theorem 3.1 A solution ϕ satisfies SIR, PO, SI, IM, IIIA and CCON if and

only if ϕ ∈ L.

Note the connection with the previously mentioned results. Imai’s (1983) axiom

set does not include SIR, since it is implied by the combination of PO, AN, IM,

and IIIA. Dubra’s (2001) axiom set contains RIIA, rather than IIIA. If the set

of agents exceeds two – as is the case in our framework – then RIIA is implied

by the other axioms of Theorem 3.1. Theorem 2.3 does not involve SIR. Aside

from the restriction to two-player problems, K is somewhat broader than L. In

particular, it allows for a specific type of lexicographic dictatorial solution.10

We first prove that solutions ϕ ∈ L satisfy the properties of Theorem 3.1.

To this end, the following Lemma is useful.

Lemma 3.2 The lexicographic egalitarian solution satisfies SIR, PO, IIA, HOM

and BCON.

Proof. It is obvious from its definition that the lexicographic egalitarian

solution satisfies SIR, PO, IIA, and HOM. Proposition 9.1 of Thomson and

Lensberg (1989, p. 132–133) shows that it satisfies MCON, and therefore also

BCON.

Proposition 3.3 If ϕ ∈ L, then it satisfies SIR, PO, SI, IM, IIIA and CCON.

Proof. Consider Lw ∈ L. It follows directly from the definition that this

solution satisfies SI. It further follows from Lemma 3.2 that it satisfies SIR,

PO and IIIA. By the same reasoning as in Proposition 1 of Imai (1983, p.

397), it satisfies IM.11 To establish CCON, let N ∈ N and S ∈ ΣN , and

assume that u(S) = w−1
N , such that Lw(S) = ξ(S). This is without loss of

generality by SI. Let Q ⊂ N with |Q| = 2, let T := my
Q(S) where y := ξ(S),

and assume u(T ) ∝ (u(S))Q. The latter means there exists a strictly positive

real number β such that u(T ) = βw−1
Q . Then since ξ satisfies HOM and BCON,

Lw(T ) = βξ
(

1
βT
)

= ξ(T ) = yQ.

The next step is to demonstrate that solutions in L are the only solutions

satisfying the properties of Theorem 3.1.

Proposition 3.4 If ϕ satisfies SIR, PO, SI, IM, IIIA and CCON, then ϕ ∈ L.

10See the solution D, defined in Section 4.1.
11This proof is included in the Appendix.
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To establish this result, it must be demonstrated that for any solution ϕ ∈
Σ satisfying the axioms of Theorem 3.1, there exists, up to a multiplicative

constant, a unique weights vector w ∈ RN
++ such that ϕ = Lw. More specifically,

fixing a set of players N ∈ N and a problem S ∈ ΣN , it must be shown that

there exists a weights vector w ∈ RN
++ – unique up to its restriction to the

coordinates in N and a multiplicative constant – such that ϕ(S) = Lw(S). The

argument is similar to Proposition 2 of Imai (1983), and it is thus useful to

recall some of his notations.

• For N ∈ N , for x, y ∈ RN , let x · y denote the inner product
∑
i∈N xiyi. For

p ∈ RN and β ∈ R, let H(p, β) :=
{
x ∈ RN | p · x 5 β

}
.

• Given N ∈ N , let ei be the vector in RN for which entry i is 1, and all others

0. For non-empty Q ⊆ N , we write
∑
i∈Q e

i as e(Q).

• Given Q,N ∈ N with Q ⊆ N , a problem S ∈ ΣN is Q-symmetric if for any

permutation π of N with π(i) = i for all i ∈ N \Q, π(S) = S.

• For N ∈ N , S ⊂ RN and y ∈ S, let Q(S, y) := {i ∈ N | y + εei ∈
S for some ε > 0}. For y ∈ S with Q(S, y) 6= ∅, define

z(S, y) := y + a(S, y) e(Q(S, y))

where

a(S, y) := max {a ∈ R | y + a e(Q(S, y)) ∈ S} .

For y ∈ S with Q(S, y) = ∅, a(S, y) := 0 and z(S, y) := y, by convention. For

S ∈ ΣN , let z0 := 0̄ and zj := z(S, zj−1) for j = 1. Let k be the smallest

integer such that zj = zj+1. Then for j = 1, . . . , k, define

Qj := Q(S, zj−1), and aj := a(S, zj−1).

The sequences {zj}kj=1, {Qj}kj=1 and {aj}kj=1 are referred to as the defining

sequences of ξ(S).

Imai further proved the following lemma.12

Lemma 3.5 (Imai, 1983) For N ∈ N and S ∈ ΣN ,

i) and for defining sequence {zj}kj=1 of ξ(S), ξ(S) = zk;

12Parts i) and ii) of Lemma 3.5 respectively correspond with lemmas 3 and 8 of Imai (1983,
p. 395, 397).
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ii) and for T := S ∩ H(p, β) with p > 0̄ and β > 0 such that u(S) = u(T ),

S−i = T−i for all i ∈ N .

Before going into the details of the proof of Proposition 3.4, it is useful to

present the argument in a more informal manner. First, the relevant weights

vector – i.e., the vector wN ∈ RN++ – is determined. It is obtained as the solution

outcome of a generic problem S0 in ΣN .

b

Agent 1 Agent 2

Agent 3

11

1 S0

ϕ(S0) = wN

Figure 5: Weights are determined by the solution in a generic problem.

By SI, we may without loss of generality assume that the considered problem

S is normalized, in the sense that u(S) = e(N). Given the defining sequence

{zj}kj=1 of ξ(w−1
N S), the sequence {xj}kj=0 is constructed, where x0 := wN , and

xj := wNz
j for each j = 1. By part i) of Lemma 3.5 and the definition of Lw,

it then follows that Lw(S) = xk. Hence, it is sufficient to show that ϕ(S) = xk.

As in Imai’s proof, this is established by induction. In particular, a set of

auxiliary problems is constructed for each j = 1, . . . , k, and it is subsequently

shown that xj is the common solution outcome of all stage-j auxiliary problems.

This implies that xk is the common solution outcome of the final-stage auxiliary

problems. The observation that xk is efficient in S is then sufficient to conclude

that ϕ(S) = xk, the desired result.

The main difference between the present argument and that of Imai, lies

in the induction step. By combining AN with (Q-)symmetry of the auxiliary

problems, Imai asserts that agents’ utilities are always updated in an egalitarian

direction. Since AN is not in the axiom set of Theorem 3.1, this approach is not

available to us. Instead we rely on the property CCON. Consider two-person

problems H and T as in Figure 6.
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Agent 2

Agent 1

1

1

T

b
φ(T )

Agent 2

Agent 1

1

1

b
φ(H)H

Figure 6: If ϕ(T ) < (1, 1), ϕ(T ) is proportional to ϕ(H).

Using the axioms of Theorem 3.1, we show that the solution outcomes of H

and T are proportional. More specifically, we show that if the solution outcome

of T is strictly dominated by the ideal point (1, 1), then it is proportional to

the solution outcome of H. The usefulness of this observation is illustrated in

Figure 7. The three-person problem S
1

is {1, 2}-symmetric, so CCON may be

applied whatever the solution outcome may be. Thus, by CCON and the above

reasoning, the solution payoffs of agents 1 and 2 must be proportional to their

initial weights (w1, w2), regardless of the exact position of the solution outcome.

b

Agent 3

S
1

ϕ(S
1
) 11

1

Agent 1 Agent 2

b

Agent 3

S
0

wN

11

1

Agent 1 Agent 2

Figure 7: If (ϕ1(S
1
), ϕ2(S

1
)) < (1, 1), it is proportional to (w1, w2).

Agents 1 and 2 were chosen without loss of generality; repeating this analysis

for any other pair, establishes that ϕ(S
1
) is proportional to wN . By PO, this

pins down the solution outcome of S
1
.

Lemma 3.6 Let ϕ satisfy the properties of Theorem 3.1. For N := {1, 2} and
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for H,T ∈ ΣN defined as

H := {x ∈ RN | x1 + x2 5 1}, and

T := {x ∈ RN | x1 + x2 5 1 and x 5 (β, β)}, (β > 1/2),

if ϕ(T ) < (β, β), then ϕ(H) = ϕ(T ).

Proof. If β = 1, then by SIR, ϕ(H) ∈ T ⊂ H. β = 1 further implies

u(T ) = u(H) = (1, 1). Then ϕ(H) = ϕ(T ) follows immediately from IIIA.

Thus, assume β < 1. We first prove the following result.

If ϕ(H) ∈ T , then ϕ(T ) = ϕ(H). (2)

Assume that ϕ(H) ∈ T , and define H̃ := {x ∈ RN | x1 +x2 5 1 and x 5 (1, 1)}.
By PO and a two-fold application of IM, ϕ(H̃) = ϕ(H). Let k ∈ N \N , define

Q := {1, 2, k}, and for x ∈ RQ, represent the utility of agent k by the third

coordinate (i.e., x = (x1, x2, xk)). Let H ′, T ′ ∈ ΣQ with

H ′ := cch {(1, 0, 1), (0, 1, 1)} and

T ′ := cch {(β, 1− β, 1), (1− β, β, 1), (1, 0, 0), (0, 1, 0)}.

Then H ′ is the convex comprehensive hull of all (x, 1) ∈ RQ with x ∈ H̃.

Similarly, T ′ is the convex comprehensive hull of all (x, 0), (y, 1) ∈ RQ with

x ∈ H̃ and y ∈ T . By PO and CCON, ϕ(H ′) = (ϕ(H̃), 1). Since ϕ(H̃) ∈ T ,

ϕ(H ′) ∈ T ′. Moreover, u(H ′) = u(T ′) = e(Q), so by IIIA, ϕ(T ′) = ϕ(H ′).

Then ϕ(T ) = ϕ(H̃) by CCON. This establishes (2).

Now assume ϕ(T ) < (β, β). If ϕ(H) 5 (β, β), then ϕ(H) ∈ T , which by

(2) implies ϕ(H) = ϕ(T ). Thus, assume there is an agent i ∈ N such that

ϕi(H) > β, and without loss of generality, say i = 2. Let γ := ϕ2(H), and

define

T̄ := {x ∈ RN | x1 + x2 5 1 and x 5 (γ, γ)}, and

T̂ :=
β

γ
T̄ .

By similar reasoning as above, ϕ(T̄ ) = ϕ(H), that is, ϕ(T̄ ) = (1− γ, γ). By SI,

ϕ(T̂ ) = (βγ (1 − γ), β). Observe that T̂−i = T−i for i = 1, 2 and T̂ ⊂ T . Thus,

by a two-fold application of IM, ϕ(T ) = ϕ(T̂ ) = (βγ (1 − γ), β). Then by PO,
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Agent 2

Agent 1

H̃

1

1

b
φ(H̃) = φ(H)

(a) The problem H̃

Agent 2

Agent 1

T

1

1

β

β

b
φ(H)

(d) The problem T

Agent 1

Agent 2

Agent k

H
′

1

1

1

H̃

H̃
b

ϕ(H ′)

(b) The problem H ′

Agent 1

Agent 2

Agent k

H̃

T

T
′

β

β

1

1

1

b

ϕ(T ′)

(c) The problem T ′

Figure 8: If ϕ(H) ∈ T , then ϕ(T ) = ϕ(H).

ϕ(T ) = (1− β, β), contradicting the initial assumption that ϕ(T ) < (β, β).

Consider again the problem S
1
, introduced above. It is clear that Lemma 3.6

only has bite whenever (ϕ1(S
1
), ϕ2(S

1
)) < (1, 1). Since ϕ(S

1
) is not known,

the possibility that this condition is violated cannot be excluded. Therefore, it

is necessary to approximate this solution outcome. In particular, we construct

intermediate problems for which the condition is satisfied, and show that the

solution outcomes of these problems converge to the desired outcome.

Proof of Proposition 3.4. Let ϕ be a solution satisfying SIR, PO, SI,

IM, IIIA and CCON. Fix some N ∈ N , consider the problem S0 ∈ ΣN defined

as S0 := H(e(N), 1), and define wN := ϕ(S0). By SIR and PO, wN > 0̄ and
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Agent 2

Agent 1

1

1

H

γ

γ

T̄

β

β

T

T̂ = β
γ
T̄

b
φ(H) = φ(T̄ )

b
φ(T ) = φ(T̂ )

b
φ(T̂ )

Figure 9: If ϕ2(H) > β, then ϕ2(T ) = β.

∑
i∈N wi = 1.

Consider a problem S ∈ ΣN with u(S) = e(N) and S = S∩(e(N)−RN+ ). By

SIR, SI and IIIA, this choice is without loss of generality. Let {zj}kj=1, {Qj}kj=1

and {aj}kj=1 be the defining sequences of ξ(w−1
N S). Then define {xj}kj=0 by

x0 := wN and xj := wNz
j for each j = 1, . . . , k. Furthermore, define {αj}kj=1

by αj :=
∑
i∈N x

j for each j. By part i) of Lemma 3.5 and the definition of

Lw, it is sufficient to show ϕ(S) = xk. This is achieved by induction on a set of

auxiliary problems.

Let p1 := 0̄ and for j = 2, . . . , k, let pj := e(N \Qj). Then

S
j

:= H(e(N), αj) ∩

 j⋂
j′=1

H(pj
′
, pj

′ · xj′)

 ∩ (e(N)− RN+ ) j = 1, . . . , k;

Sj := S
j ∩H(pj+1, pj+1 · xj+1) j = 1, . . . , k − 1;

Sj := H(e(N), αj) ∩ S j = 1, . . . , k;

S′j := S
j ∩ S j = 1, . . . , k.
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These problems are exactly as in Proposition 2 of Imai. Consider the problem

S
j
. The set H(e(N), αj) = {x ∈ RN | e(N) · x 5 αj} is a halfspace, and

since αj =
∑
i∈N x

j
i = e(N) · xj , it has xj in its boundary. Furthermore, since

ξ(w−1
N S) 5 w−1

N , xj = wNξ(w
−1
N S) 5 e(N); therefore, xj is a Pareto optimal

point in the set H(e(N), αj)∩ (e(N)−RN+ ). Take some 1 5 j′ 5 j, and observe

that

H(pj
′
, pj

′ · xj) = {x ∈ RN | pj′ · x 5 pj
′ · xj′}

= {x ∈ RN | e(N \Qj′) · x 5 e(N \Qj′) · xj′}
= {x ∈ RN |∑i∈N\Qj′ xi 5

∑
i∈N\Qj′ x

j′

i }.

It is a N \Qj′-symmetric half-space through the point xj
′

that does not restrict

the utilities of agents in Qj
′
. Since Qj ⊆ Qj

′
, it thus also leaves the utilities

of agents in Qj free. Furthermore, since xj
′

N\Qj′ = xj
N\Qj′ , it has xj in its

boundary. Thus, S
j

is a problem in ΣN that is Qj \ Qj−1-symmetric, Qj−1 \
Qj−2-symmetric, etc., and furthermore, such that xj ∈ P (S

j
). The problem

Sj (with j = 1) is the intersection of S
j

with a half-space that now puts a

restriction on the utilities of agents in Qj \Qj+1. The problems Sj and S′j are

clear. Further illustration of these auxiliary problems by means of an example,

can be found in the Appendix.

The following claim says that these auxiliary problems are all normalized in

the sense that their ideal points are equal to the unit vector. The argument is

similar to Imai’s, and thus relegated to the Appendix.

Claim 1 u(S
j
) = u(Sj) = u(Sj) = u(S′j) = e(N) for each j = 1, . . . , k.

Observe that ϕ(S0) = x0. Thus, assume ϕ(Sj−1) = xj−1. The aim is to show

that this implies ϕ(S
j
) = xj . To this end it is useful to define the class of

intermediate problems between Sj−1 and S
j
:

Definition. For α ∈ [αj−1, αj ], let Tα := S
j ∩H(e(N), α).

Note that for all α ∈ [αj−1, αj ], Tα is Qj-symmetric and u(Tα) = e(N).

Claim 2 If j > 1, then for all α ∈ [αj−1, αj ], (ϕ(Tα))N\Qj = xjN\Qj .

Proof. Since ϕ(Sj−1) = xj−1 by assumption, and xj−1
N\Qj = xjN\Qj , the

claim is trivially true when α = αj−1. Thus, take α ∈ (αj−1, αj ]. Since
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H(e(N), αj−1) ⊂ H(e(N), α),

Sj−1 = Tα ∩H(e(N), αj−1).

By part ii) of Lemma 3.5 this implies Sj−1
−i = Tα−i for all i ∈ N . Hence, by

an |N |-fold application of IM, ϕ(Tα) = xj−1. By the definition, if for some x,

xj−1 5 x ∈ Sj , then xi = xj−1
i for all i ∈ N \ Qj . Since xj−1 5 ϕ(Tα) ∈ Sj

and xj−1
N\Qj = xjN\Qj , the claim follows.

Claim 3 There exists an ᾱ ∈ (αj−1, αj ] such that

• (ϕ(Tα))Qj < xjQj for all α ∈ [αj−1, ᾱ);

• (ϕ(Tα))Qj 6< xjQj for all α ∈ [ᾱ, αj ].

Proof. Define h : [αj−1, αj ] → RQj as h(α) := (ϕ(Tα))Qj . By an |N |-fold

application of IM, PO, and part ii) of Lemma 3.5, h is continuous and mono-

tonically increasing. Furthermore, h(αj−1) = xj−1
Qj and h(αj) = (ϕ(S

j
))Qj .

• Since xj−1
Qj < xjQj , continuity of h implies that there exists an α ∈

(αj−1, αj ] such that h(α) < xjQj .

• By PO, ϕ(S
j
) ∈ P (S

j
). Then either ϕ(S

j
) = xj , or there exists an i ∈ N

– and thus by Claim 2, an i ∈ Qj – such that ϕi(S
j
) > xji . Hence, there

exists an α ∈ (αj−1, αj ] such that h(α) 6< xjQj .

By continuity and monotonicity of h, these observations imply that ᾱ := sup{α |
h(α) < xjQj} is well-defined, and ᾱ ∈ (αj−1, αj ].

If |Qj | = 1, then Claim 2 is sufficient to conclude that ϕ(S
j
) = xj , since ϕ

satisfies PO. Thus, assume |Qj | = 2. Take Q ⊆ Qj with |Q| = 2, and without

loss of generality, assume Q = {1, 2}. Furthermore, fix some α ∈ [αj−1, ᾱ).

Claim 4 Let y ∈ RQ with y := (ϕ(Tα))Q, and define problems H,T ∈ ΣQ by

H :=
1

w1 + w2
mwN
Q (S0) and T :=

1

y1 + y2
m
ϕ(Tα)
Q (Tα).

Then

H = {x ∈ RQ | x1 + x2 5 1}, and (3)

T = {x ∈ RQ | x1 + x2 5 1 and x 5 (β, β)}, (4)
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where β := 1/(y1 + y2).

Proof. Since
∑
i∈N wi = 1, w1 + w2 = 1−∑i∈N\Q wi. Hence,

mwN
Q (S0) = {x ∈ RQ | x1 + x2 5 1−∑i∈N\Q wi}

= {x ∈ RQ | x1 + x2 5 w1 + w2}

This establishes (3). To prove (4), note first that

Tα = H(e(N), α) ∩

 j⋂
j′=1

H(pj
′
, pj

′ · xj′)

 ∩ (e(N)− RN+ )

Since ϕ(Tα) ∈ P (Tα) ⊂ P (H(e(N), α)),
∑
i∈N ϕi(T

α) = α. Thus, y1 + y2 =

α−∑i∈N\Q ϕi(T
α). Then similar to the above,

m
ϕ(Tα)
Q (H(e(N), α)) = {x ∈ RQ | x1 + x2 5 α−∑i∈N\Q ϕi(T

α)}
= {x ∈ RQ | x1 + x2 5 y1 + y2}.

Furthermore,

m
ϕ(Tα)
Q (e(N)− RN+ ) = {x ∈ RQ | (x, (ϕ(Tα))N\Q) 5 e(N)}

= {x ∈ RQ | x 5 (1, 1)}.

Finally, the set
⋂j
j′=1H(pj

′
, pj

′ ·xj′) does not restrict the utilities of the agents

in Q, and may thus be ignored. Combining these three observations, we obtain

m
ϕ(Tα)
Q (Tα) = {x ∈ RQ | x1 + x2 5 y1 + y2 and x 5 (1, 1)}.

This establishes (4).

Claim 5 Outcomes y and xjQ are proportional.

Proof. By SI and CCON,

ϕ(H) =

(
w1

w1 + w2
,

w2

w1 + w2

)
and ϕ(T ) =

(
y1

y1 + y2
,

y2

y1 + y2

)
.

Moreover, by the choice of α, y < xjQ 5 (1, 1), and thus ϕ(T ) < (β, β). Then

by Claim 4 and Lemma 3.6, ϕ(T ) = ϕ(H). Since xjQj = ajwQj , this implies

y1/y2 = w1/w2 = xj1/x
j
2, as desired.
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Claim 6 ϕ(S
j
) = xj.

Proof. We may repeat Claims 4 and 5 for all pairs of agents in Qj . This

leads to the conclusion that (ϕ(Tα))Qj and xjQj are proportional. By continuity

of h, this implies that there exists a γ > 0 such that

h(ᾱ) = lim
α→ᾱ

h(α) = γxjQj .

By definition of ᾱ, γxjQj 6< xjQj . Hence, there must be an i ∈ Qj such that

γxji = xji . Since xji > 0, this implies γ = 1. Thus, assume γ > 1. Since then

h(ᾱ) > xjQj , it follows by continuity of h that there exists an α < ᾱ such that

h(α) > xjQj . This contradicts the definition of ᾱ. Thus, γ = 1.

Hence, h(ᾱ) = xjQj . Since αj = ᾱ, this implies h(αj) = xjQj . Then by Claim

2, ϕ(S
j
) = xj . Since xj ∈ P (S

j
), this implies ϕ(S

j
) = xj .

The rest of the proof is similar to Proposition 2 of Imai, and thus relegated to

the Appendix.

Remark. Without CCON, the axioms of Dubra (2001) (i.e., Theorem 2.3)

do not characterize a family of single-valued solutions. They pin down the first

iteration of the lexicographic optimization procedure, but have no bite when

this procedure does not terminate in one step. For instance, they admit for

any solution Fw, w ∈ RN
++, of the following type: for N ∈ N and S ∈ ΣN ,

Fw picks a unique outcome from the set P (S) ∩ {x | x = α∗wNu(S)}, where

α∗ = max{α ∈ R | αwNu(S) ∈ S}.
Further weakening RIIA to IIIA admits solutions, akin to lexicographic

monotone path solutions (Chun and Peters, 1989). Let Λ be the class of all

continuous, strictly increasing functions λ : [0, 1] → RN
+ with λi(0) = 0 and

λi(1) = 1 for all i ∈ N. Then for N ∈ N , S ∈ ΣN and λ ∈ Λ, a solution Gλ is ad-

mitted that picks a unique outcome from the set P (S)∩{x | x = (λ(α∗))Nu(S)},
where α∗ = max{α ∈ [0, 1] | (λ(α))Nu(S) ∈ S}. Adding AN, we obtain the ax-

iom set of Imai (i.e., Theorem 2.2), and thus the lexicographic KS solution

L. ‖

4 Independence of the Axioms

The purpose of this Section is to investigate the independence of the axioms of

Theorem 3.1.
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4.1 Strong Individual Rationality

To show that SIR is not implied by the other axioms of Theorem 3.1, consider

the following solution.

Definition. For N ∈ N and x, y ∈ RN , x �∗ y if and only if there is a

j ∈ N such that xj > yj and xi = yi for all i ∈ N with i < j. Furthermore,

x ∼∗ y if and only if x = y. For S ∈ ΣN define D(S) as the outcome that

picks the unique maximum from S ∩ RN+ with respect to the ordering �∗, i.e.,

D(S) := {y ∈ S ∩ RN+ | y �∗ x for all x ∈ S ∩ RN+}.

It is immediately clear that D violates SIR. For instance, if N := {1, 2} and

S := cch{e1, e2}, then D(S) = (1, 0). We next show that D satisfies all other

axioms of Theorem 3.1.

Observation 4.1 D satisfies PO, SI, IM, IIIA, and CCON.

Proof. Consider N ∈ N and S ∈ ΣN , and define y := D(S). To see that D

satisfies PO, assume y /∈ P (S). Then there is an i ∈ N and a z ∈ S ∩ RN+ such

that zj = yj for all j ∈ N \ i, and zi > yi. But then z �∗ y, in contradiction

with the definition of D.

To see that D satisfies IM, let T ∈ ΣN with T ⊆ S and T−i = S−i for some

i ∈ N . By Lemma A.1, Q(T, y) = Q(S, y) for any y ∈ T with i ∈ Q(T, y).

Hence, Di(S) = Di(T ).

To see that D satisfies IIIA, let T ∈ ΣN such that y ∈ T ⊆ S. Since y �∗ x
for all x ∈ S ∩RN+ and T ⊆ S, also y �∗ x for all x ∈ T ∩RN+ . Since y ∈ T ∩RN+
and y �∗ x for all x ∈ T ∩RN+ , D(T ) = y. Hence, D satisfies IIA, and thus also

IIIA.

To see that D satisfies CCON, we prove that D satisfies MCON. Assume

|N | = 3, and let Q ∈ N with Q ⊂ N . Without loss of generality, assume

Q := {1, 2, . . . , k}. Define T := my
Q(S) and z := D(T ). Since y �∗ (z, yN\Q),

we must have y1 = z1. Suppose that y1 > z1. Since yQ ∈ T , this would imply

yQ �∗ z, contradicting z = D(T ). Hence, z1 = y1. Let k′ ∈ {1, . . . , k − 1}, and

suppose zk′′ = yk′′ for all k′′ 5 k′. Then y �∗ (z, yN\Q) implies yk′+1 = zk′+1.

However, if yk′+1 > zk′+1, then yQ �∗ z, contradicting z = D(T ). Hence,

z = yQ, that is, D satisfies MCON.

Finally, to see that D satisfies SI, consider v, w ∈ RN , and assume that

v �∗ w. Then there is a j ∈ N such that vj > wj , and vi = wi for all i ∈ N
with i < j. Then for a ∈ RN++, also ajvj > ajwj and aivi = aiwi for i ∈ N with
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i < j. In other words, av �∗ aw. Hence, for S ∈ ΣN , a point v is maximal in

S∩RN+ with respect to the ordering �∗, if and only if av is maximal in a(S∩RN+ )

with respect to �∗. Since a(S ∩ RN+ ) = aS ∩ RN+ , this implies D(aS) = aD(S).

Consider next an a ∈ RN+ , and let Q ⊂ N be the set of agents i ∈ N for

whom ai > 0. Since the utilities of agents in N \Q cannot be increased within

aS ∩ RN+ from their zero level, (D(aS))N\Q = aN\QyN\Q = 0̄N\Q. Define T :=

my
Q(S), and observe that D(T ) = yQ by MCON. Furthermore, observe that

aT = may
Q (aS). Since (D(aS))N\Q = (ay)N\Q, this implies aT = m

D(aS)
Q (aS),

and thus, since D satisfies MCON, D(aT ) = (D(aS))Q. Then by the above,

(D(aS))Q = D(aT ) = aD(T ) = ayQ. In conclusion, D(aS) = aD(S).

4.2 Pareto Optimality

Roth (1979) showed that the Kalai-Smorodinsky solution K violates PO. On

the other hand, it is immediate that K satisfies SIR and SI. K further satisfies

IM, IIIA, and CCON.

Observation 4.2 K satisfies IM, IIIA, and CCON.

Proof. Let N ∈ N and S ∈ ΣN , and let β∗ be such that K(S) = β∗u(S).

To see that K satisfies IM, consider T ⊆ S with T−i = S−i for some i ∈ N ,

and define β̂ := max{β | βu(T ) ∈ S}. Since uj(T ) = uj(S) for all j ∈ N \ i
and ui(T ) 5 ui(S), β̂ = β∗, and thus β̂uj(T ) = Kj(S) for all j ∈ N \ i. Since

β̂u(T ) and K(S) are weakly Pareto optimal in S, β̂ui(T ) 5 Ki(S). Finally,

since T ⊆ S, K(T ) 5 β̂u(T ). Hence, Ki(T ) 5 Ki(S).

To see that K satisfies IIIA, consider T ∈ ΣN with K(S) ∈ T ⊆ S and

u(T ) = u(S). Then K(T ) = βu(S) for some β. If β < β∗, then K(S) /∈ T , and

if β > β∗, then T 6⊆ S. Hence, β = β∗.

To see that K satisfies CCON, let |N | = 3, and assume without loss of

generality that u(S) = e(N); then K(S) is the maximal feasible point in egal-

itarian direction. Let Q ⊂ N with |Q| = 2, let T ∈ ΣQ with T := my
Q(S) and

y := K(S), and assume that u(T ) ∝ (u(S))Q. Note that yQ is the maximal

point in T that lies in egalitarian direction. Since u(T ) ∝ (u(S))Q, this implies

yQ = K(T ).

4.3 Scale Invariance

Consider the lexicographic egalitarian solution ξ, and note that by Lemma 3.2,

it satisfies SIR, PO, IIIA, and CCON. By Lemma A.1 it further satisfies IM. To

26



see that it violates SI, consider N := {1, 2} and the problems S := cch{e1, e2}
and T := cch{e1, 2e2}. Then ξ(S) = (1/2, 1/2) 6= (2/3, 2/3) = ξ(T ).

4.4 Individual Monotonicity

Consider the Nash solution, here denoted by ϕN . It is obvious that it satisfies

SIR. Lensberg (1988) showed that it further satisfies PO, SI, IIIA, and CCON.

To see that it violates IM, consider N := {1, 2} and S, T ∈ ΣN with S :=

cch{(1/2, 1), (1, 1/2)} and T := {(1/2, 1), (1, 0)}. Then T ⊆ S and T−2 = S−2,

but ϕN2 (T ) = 1 > 3/4 = ϕN2 (S).

4.5 Conditional Consistency

Consider the solution that for any N ∈ N is equal to Lw ∈ L, with w such that

the lowest-index agent inN has weight |N |, and all others weight 1. Since CCON

is the only axiom that involves problem reduction it follows from Proposition

3.3 that this solution satisfies SIR, PO, SI, IM, and IIIA. To see that it violates

CCON, consider N := {1, 2, 3} and Q := {2, 3}, and problems S ∈ ΣN and

T ∈ ΣQ with S := cch{ei | i ∈ N} and T := my
Q(S) where y is the solution

outcome of S. Then y = (3/5, 1/5, 1/5) and T = cch{(2/5, 0), (0, 2/5)}. Note

that u(T ) is proportional to (u(S))Q. However, the solution outcome of T is

(4/15, 2/15) 6= yQ.

4.6 IIA other than the Ideal Point

Whether IIIA is logically independent from the other axioms of Theorem 3.1 is

an open question. Imai (1983, p. 392) described a solution that would satisfy

SIR, PO, SI, IM, and AN, but not IIIA. In particular, this solution would obtain

by updating agents’ utilities in the direction of the utopia point until xk−1 is

reached, and from there on updating utilities of the agents of Qk in the direction

of their global utopia values. While such a solution would indeed violate IIIA,

it would also violate CCON.

In the rest of this section, we provide an alternative characterization of L,

that makes use of slightly weaker axioms than Theorem 3.1. We then demon-

strate that for these weaker axioms, logical independence is unproblematic.

4.6.1 An Alternative Characterization of L

Imai (1983) introduced the following axiom:
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Combined Individual Monotonicity (CIM). For N ∈ N and S, T ∈ ΣN

with T ⊆ S and S−i = T−i for all i ∈ N , ϕ(S) = ϕ(T ).

CIM is directly implied by IM, and its interpretation is analogous: no individual

agent benefits from a contraction of the feasible set, that leaves unaltered the

maximally attainable alternatives of all agents.

We further introduce the following weaker version of CCON.13

Individually Rational CCON (iCCON). If ϕ(S) = 0̄ and S = cch (S ∩
RN+ ), then for all T ∈ ΣQ with T := m

ϕ(S)
Q (S) and u(T ) ∝ (u(S))Q,

ϕ(T ) = (ϕ(S))Q.

Compared to CCON, the premise of iCCON includes the additional requirement

that S = cch (S ∩ RN+ ). Note that Lensberg’s (1988) version of BCON was

only defined for individually rational bargaining problems. Under this domain

restriction, the condition S = cch (S∩RN+ ) – as well as the condition that ϕ(S) =
0̄ – is trivially satisfied.14 In other words, on the domain of individually rational

problems, CCON and iCCON coincide. We obtain the following characterization

result.

Theorem 4.3 ϕ ∈ L iff it satisfies SIR, PO, SI, CIM, IIIA and iCCON.

Proof. Note first that CCON implies iCCON, and that IM implies CIM.

Careful examination of the proof of Proposition 3.4 reveals that the argument

also holds if CIM is imposed, rather than IM. In view of Theorem 3.1, it is

thus sufficient to show that SIR, PO, SI, CIM, IIIA, and iCCON together imply

CCON.

Let ϕ be a solution that satisfies SIR, PO, SI, CIM, IIIA, and iCCON. Let

N ∈ N with |N | = 3 and Q ⊂ N with |Q| = 2, let S ∈ ΣN , and let T ∈ ΣQ

with T := m
ϕ(S)
Q (S) and u(T ) ∝ (u(S))Q. To show is that ϕ(T ) = (ϕ(S))Q. To

this end, define

S′ := cch (S ∩ RN+ ) and T ′ := m
ϕ(S′)
Q (S′).

By SIR and IIIA, ϕ(S′) = ϕ(S) =: y. Using this, we now demonstrate that

T ′ = cch (T ∩ RQ+). Fix some xQ ∈ RQ.

13For all Q,N ∈ N with Q ⊂ N and |Q| = 2, and for all S ∈ ΣN .
14It is not known in general whether Imai’s (1983) lexicographic Kalai-Smorodinsky so-

lution – and by extension, the weighted generalizations considered in this paper – can be
characterized on this smaller domain.
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1. Suppose xQ ∈ cch (T ∩ RQ+). Then there are zQ ∈ (T ∩ RQ+) such that

zQ = xQ. Then (zQ, yN\Q) = (xQ, yN\Q). Hence, there are z ∈ (S ∩ RN+ )

such that z = (xQ, yN\Q). That is, (xQ, yN\Q) ∈ cch (S ∩ RN+ ) = S′.

2. Suppose (xQ, yN\Q) ∈ S′. Then there are z ∈ (S ∩ RN+ ) such that

(zQ, zN\Q) = (xQ, yN\Q). Take such a z, and construct z′ = (zQ, yN\Q) ∈
(S ∩ RN+ ). By zN\Q = yN\Q and comprehensiveness it follows that z′ =
(xQ, yN\Q). Thus there are zQ ∈ (T ∩ RQ+) such that zQ = xQ. In other

words, xQ ∈ cch (T ∩ RQ+).

Hence, (xQ, yN\Q) ∈ S′ if and only if xQ ∈ cch (T ∩ RQ+). Then

T ′ = {x ∈ RQ | (x, yN\Q) ∈ S′} = cch (T ∩ RQ+).

Since u(T ) = u(T ′), it follows by SIR and IIIA that ϕ(T ) = ϕ(T ′). Furthermore,

it implies u(T ′) ∝ (u(S′))Q, and thus by iCCON, ϕ(T ′) = (ϕ(S′))Q. Since

ϕ(S′) = ϕ(S), this implies ϕ(T ) = (ϕ(S))Q, as desired.

4.6.2 Independence of the Axioms of Theorem 4.3

Since iCCON and CIM are weaker than CCON and IM, the same examples

given above demonstrate that none of the axioms SIR, PO, SI, CIM, or iCCON

is implied by the other axioms of Theorem 4.3. We next show a similar result

for IIIA. To this end, consider the following solution.

Definition. For N ∈ N and i ∈ N , define ui(S) := u(S)ei. For S ∈ ΣN ,

define G(S) := Lw(S), where

wi =

2 if |N | = 2 and S−i = cch{uj(S) | j ∈ N \ i},
1 otherwise

for i ∈ N .

Observation 4.4 G does not satisfy IIIA.

Proof. Let N := {1, 2, 3}, and consider S := H(e(N), 3/2) ∩ (e(N) − RN+ )

and T := {x ∈ S | x1 + x2 5 1}. Since there is no i ∈ N such that S−i =

cch {uj(S) | j ∈ N \ i}, G(S) = L(S). Then G(S) ∈ T ⊆ S and u(T ) = u(S),

i.e. the premise of IIIA is satisfied. However, since T−3 = cch {u1(T ), u2(T )},
G(T ) = Lw(T ) with wN = (1, 1, 2). Hence, G(T ) 6= G(S).
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Figure 10: G violates IIIA.

Proposition 4.5 G satisfies SIR, PO, SI, CIM and iCCON.

Proof. It is immediate that G satisfies SIR, PO and SI. Let N ∈ N with

|N | = 2 and S ∈ ΣN be given. To see that G satisfies CIM, consider T ∈ ΣN

with T ⊆ S and T−i = S−i for all i ∈ N . To show is that G(S) = G(T ). Since

T−i = S−i for all i ∈ N , the same weights vector w (up to its restriction to N)

is used in S and T . Since Lw satisfies CIM, G(S) = Lw(S) = Lw(T ) = G(T ).

To see that G satisfies iCCON, assume that S = cch (S ∩ RN+ ). If |N | = 2,

then the condition S−i = cch {uj(S) | j ∈ N \ {i}} is trivially satisfied for

both i ∈ N , such that G coincides with L. Suppose |N | > 2, let Q ⊂ N with

|Q| = 2, and consider T ∈ ΣQ with T := my
Q(S) and y := G(S). Without loss

of generality, assume Q := {1, 2}. We distinguish between two cases.

• G(S) = Lw(S) where w1 = w2:

Note that Lw satisfies iCCON. Hence, if u(T ) ∝ (u(S))Q, then Lw(T ) =

(Lw(S))Q = yQ. Since w1 = w2, Lw(T ) = L(T ), and thus, since G

coincides with L in two-person problems, Lw(T ) = G(T ). Hence, G(T ) =

yQ.

• G(S) = Lw(S) where w1 6= w2:

Since G satisfies SI, we may assume without loss of generality that u(S) =

e(N). Define γ := 1 −∑k∈N\Q yk. Since y ∈ S it follows by convexity

and comprehensiveness of S that (γ, 0, yN\Q) and (0, γ, yN\Q) are both in

S. This implies ui(T ) = γ for i ∈ Q.
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Assume without loss of generality that w1 = 1 and w2 = 2. The latter

means that S−2 = cch {ej | j ∈ N \ 2}. But then for all (xQ, yN\Q) ∈ S,

x1 5 γ. Hence, u1(T ) = γ.

That w1 = 1 implies cch {ej | j ∈ N \ 1} ⊂ S−1. By convexity of S it

follows that for any v in cch {ej | j ∈ N \ 1}∩RN\1++ there is an ε > 0 such

that v + εe(N \ 1) ∈ S−1. This implies u2(T ) > γ.

That u2(T ) > u1(T ) implies u(T ) 6∝ e(Q) = (u(S))Q, meaning iCCON is

vacuously satisfied.

Agent 2

Agent 1

1

1

1

b
G(S)

T

u1(T )

u2(T )

Figure 11: If w1 6= w2, the premise of iCCON is violated.

5 Concluding Remarks

The framework in this article assumed an infinite population of agents. All

results continue to hold in a finite-population environment, provided that this

population counts at least three agents. If there are only two agents in the pop-

ulation, then there exist other solutions that satisfy the properties of Theorem

3.1. Dubra (2001) defines such a solution: For N := {1, 2} and S ∈ ΣN ,

F (S) := {x ∈ P (S) | x = (β∗, u2(S)/2)},

where β∗ := max{β | (β, u2(S)/2) ∈ S}.
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We further made the assumption that problems are comprehensive. Other

than making the domain closed under the operation of problem reduction, this

restriction does not play any role in our result. To see this, consider solutions

ϕ defined on the domain that extends Σ to the non-comprehensive problems.

It is easily verified that any such solution, that further satisfies IIIA, yields the

same outcome on a problem S as it does on the convex comprehensive hull of

S.

Finally, since a lexicographic version of the proportional solutions (Kalai,

1977b) would satisfy both BCON and IIA, the characterization of L presented

in this article, can be extended to this solution class. Note that such solutions

would violate SI, a property used in the proofs of Lemma 3.6 and Claim 5;

however, in both instances, SI may be replaced by HOM.
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A Appendix

This Appendix elaborates on several results of Imai (1983). In particular, Sec-

tion A.1 corresponds with Imai’s Lemmas 6 and 7, and part of his Proposition

1 (p. 396–397). Section A.2 is a visual illustration of Imai’s auxiliary problems.

Section A.3 is a modification of Imai’s Lemma 5, and part of his Proposition 2

(p. 396, 398). Section A.4 repeats the final part of that same Proposition 2.

A.1 Solutions ϕ ∈ L satisfy IM

Consider some solution Lw ∈ L with w ∈ RN
++. Let N ∈ N , and let S and T be

problems in ΣN with T ⊆ S and T−i = S−i for some i ∈ N . Since Lw satisfies

SI, we may assume without loss of generality that u(S) = w−1
N , where wN is the

restriction of w to the agents in N . Then

Lw(S) = ξ(S). (5)

Define u := u(S)u(T )−1, and observe that

Lw(T ) = u−1ξ(uT ). (6)

By Equations (5) and (6) it is sufficient to show that ξi(S) = 1
ui
ξi(uT ). This is

done in two steps. First it is established that ξi(S) = ξi(T ), and subsequently,

that ξi(T ) = 1
ui
ξi(uT ).

Lemma A.1 Let y ∈ T with i ∈ Q(T, y). Then Q(T, y) = Q(S, y).

Proof. Suppose there is some i′ ∈ Q(S, y) \Q(T, y). Define x := x(S, y) and

x′ := x(T, y). Since S−i = T−i and x ∈ S, there is a z ∈ T such that zj = xj

for all j ∈ N \ {i}. By convexity of T it follows that λx′ + (1− λ)z ∈ T for all

λ ∈ [0, 1]. We have x, x′ = y, zj = xj for all j ∈ N \ {i}, and x′i > yi (since

i ∈ Q(T, y)). Hence, there exists a λ ∈ (0, 1) such that z∗ := λx′ + (1− λ)z = y

and z∗ ∈ T . Since i′ ∈ Q(S, y) \Q(T, y), xi′ > yi′ = x′i′ . Then z∗i′ = λx′i′ + (1−
λ)xi′ > yi′ . This implies i′ ∈ Q(T, y), a contradiction.

In essence, as long as the i-th coordinate can be further increased in problem

T , it can be further increased in S as well. It follows that ξi(S) = ξi(T ).
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To show that ξi(T ) = 1
ui
ξi(uT ), define the following:

x := ξ(T ) y := uξ(T )

x′ := u−1ξ(uT ) y′ := ξ(uT )

The aim is to show that xi = x′i.

Observation A.2 x �N x′ and y′ �N y (or x = x′ and y = y′).

Proof. Observe that ξ(T ) ∈ T , implying uξ(T ) ∈ uT . Since ξ(uT ) �N z for

all z ∈ uT with z 6= ξ(uT ), ξ(uT ) �N uξ(T ) (or ξ(uT ) = uξ(T )). In other

words, y′ �N y (or y′ = y). Similarly, observe that ξ(uT ) ∈ uT , and thus

u−1ξ(uT ) ∈ T . Since ξ(T ) �N z for all z ∈ T with z 6= ξ(T ), this implies

ξ(T ) �N u−1ξ(uT ) (or ξ(T ) = u−1ξ(uT )). In other words, x �N x′ (or x = x′).

Since x = x′ if and only if y = y′, the observation follows.

Lemma A.3 xi = x′i.

Proof. Clearly, if x = x′ and y = y′, then the inequality holds trivially, and

we are done. Hence, assume x �N x′ and y′ �N y. Since y′ �N y, there is an

index m 5 |N | such that the first m − 1 elements of µ(y) and µ(y′) are equal,

and µm(y′) > µm(y). Assume first that x′i = µm(y′). Since x′ and y′ only differ

in the i-th coordinate, x′i = µm(y′) implies that the first m elements of µ(x′)

and µ(y′) coincide. Then the first m−1 elements of µ(x′) coincide with the first

m− 1 elements of µ(y). Observe that x and y only differ in the i-th coordinate

and yi > xi, so there are two possibilities:

1. there is some k 5 m − 1 such that the first k − 1 elements of µ(y) and

µ(x) coincide, and µk(y) > µk(x). Then the first k − 1 elements of µ(x′)

and µ(x) coincide and µk(x′) > µk(x). Then x′ �N x, a contradiction.

2. the first m elements of µ(y) and µ(x) coincide. Since the first m − 1

elements of µ(x′) and µ(y) coincide, this implies that the first m − 1

elements of µ(x) and µ(x′) coincide. However, the m-th element of µ(x′)

coincides with the m-th element of µ(y′). Since µm(y′) > µm(y) this

implies µm(x′) > µm(y). Since µm(x) = µm(y) this implies µm(x′) >

µm(x), and thus x′ �N x. This is a contradiction.

It follows from the above that x′i < µm(y′). Hence, x′i = µm′(x′) for some

m′ ∈ {1, . . . ,m−1}, and take the lowest m′ in case of ties. Similarly, xi = µk(x)

36



for some k ∈ {1, . . . , n}, and take the highest possible k in case of ties. There

are two possibilities: k = m′ or k < m′.

1. If k < m′, then µk(x′) = µk(y′) (they only differ in the i-th coordinate;

since µm′(x′) = xi, k < m′ implies that µk′(x
′) = µk′(y

′) for all k′ =

1, . . . , k). Since the first m − 1 elements of µ(y) and µ(y′) coincide, and

k < m′ 5 m − 1, the first k elements of µ(y) and µ(y′) coincide. Since

x and y only differ in the i-th coordinate and xi = µk(x), the first k − 1

elements of µ(x) and µ(y) coincide. This in turn implies that the first

k− 1 elements of µ(x) and µ(x′) coincide. Since yi > xi and by the choice

of k (it was chosen such that µk+1(x) > µk(x)), µk(y) > µk(x). Since the

first k elements of µ(y) coincide with the first k elements of µ(x′), this

implies µk(x′) > µk(x). Hence, x′ �N x, a contradiction.

2. Let k = m′. Observe that the first m′ − 1 elements of µ(x′) and µ(y′)

coincide (this is so because they only differ in the i-th coordinate and

µm′(x′) = x′i). From before, we know that the first m−1 elements of µ(y)

and µ(y′) coincide, which implies that their first m′ elements coincide

as well. Hence, the first m′ − 1 elements of µ(x′) coincide with the first

m′−1 elements of µ(y). Since x and y only differ in the i-th coordinate and

xi = µk(x), the firstm′ elements of µ(x) coincide with the firstm′ elements

of µ(y). Hence, the first m′ − 1 elements of µ(x) and µ(x′) coincide. If

µm′(x′) > µm′(x), then x′ �N x, and we obtain a contradiction. Hence,

µm′(x′) 5 µm′(x). But then x′i = µm′(x′) 5 µm′(x) 5 µk(x) = xi, as

desired.
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A.2 The Auxiliary Problems of Proposition 3.4

This section presents a worked out example of the auxiliary problems used in the

proof of Proposition 3.4, for some weights vector w. Suppose that the problem

and the solution outcome of a problem S are as in Figure 12. Then Lw(S) is

reached in two iterations, i.e., Lw(S) = x2.

Agent 1

Agent 2

Agent 3

S

b

b

x1

x2

Figure 12: The problem S and the solution outcome Lw(S) = x2.

Recall that S0 = H(e(N), 1). This problem is depicted in Figure 13(a). From

S0 one can construct the problem S
1
: it is given by H(e(N), α1)∩ (e(N)−RN+ ).

Thus, the half-space that determines S0 slides upwards, and is intersected by a

set that limits utilities to 1.

x0

S0

b

(a) The problem S0

S1

b
x1

(b) The problem S
1

Figure 13: The problems S0 and S
1
.

The problem S1 is the intersection of S with the half-space H(e(N), α1). Simi-
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larly, S′1 is the intersection of the problem S and the problem S
1
, depicted in

Figure 13(b). Note that these two problems coincide. For the first iteration this

is always the case.

S1

b

x1

(a) The problem S1

S ′1

b

x1

(b) The problem S′1

Figure 14: The problems S1 and S′1.

To determine the auxiliary problems for the second iteration, one must deter-

mine S1. It is equal to S
1
, intersected by H(p2, p2 ·x2), a half-space that leaves

the utilities of agent 3 free, but restricts those of agents 1 and 2 in a {1, 2}-
symmetric fashion. The problem S

2
is given by H(e(N), α2), intersected by

that same half-space H(p2, p2 · x2), and the set (e(N) − RN+ ) that limits the

utilities of all agents to 1.

S1

b
x1

H(p2, p2 · x2)

(a) The problem S1

S2 H(p2, p2 · x2)

b

b

x1

x2

(b) The problem S
2

Figure 15: The problems S1 and S
2
.

The problem S′2 is the intersection of S
2
, as depicted in Figure 15(b), and the

original problem S. The end result is depicted in Figure 16(a). The problem
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S2 is given by the intersection of the original problem S and the half-space

H(e(N), α2).

S ′2

b

b

x1

x2

(a) The problem S′2

S2

b

b

x1

x2

(b) The problem S2

Figure 16: The problems S′2 and S2.

A.3 Proof of Claim 1

In order to show that u(S
j
) = u(Sj) = u(Sj) = u(S′j) = e(N) for all j =

1, . . . , k, it is sufficient to show that ei is in S
j
, Sj , Sj and S′j for each j and i.

This follows from four observations.

(a) ei ∈ H(pj , pj · xj) for each i and j;

(b) ei ∈ H(e(N), αj) for each i and j;

(c) ei ∈ S for all i;

(d) ei ∈ (e(N)− RN+ ) for all i.

Note that (a), (b) and (d) together imply ei ∈ Sj for each i and j. Then by (c),

ei ∈ S′j for each i and j; for j < k, it is implied by (a) that each ei is in Sj .

Finally, (b) and (c) together imply ei ∈ Sj for each i and j.

Observation (d) is trivial. Observation (c) follows from comprehensiveness

of S and the assumption that u(S) = e(N). We now show (a) and (b). Denote

N \Q2 by Q, Q2 by Q′, and for i ∈ Q, denote Q′ ∪{i} by Qi. Let w̄ := (w̄i)i∈N
where w̄i := wi/

∑
i′∈Q wi′ for all i ∈ N . Note that

∑
i∈Q w̄i = 1.

By the supporting hyperplane theorem and the definition of x1, there is a

p ∈ RN+ with pi = 0 for all i ∈ Q′, such that p · z 5 p · x1 for all z ∈ S. By
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observation (c), p·ei 5 p·x1 for all i ∈ Q. Since pi = 0 for all i ∈ Q′, this implies

p · e(Qi) = p · ei 5 p · x1 for all i ∈ Q. It follows that p ·∑i∈Q w̄ie(Qi) 5 p · x1.

Note that
∑
i∈Q w̄ie(Qi) = w̄+ (e(Q′)− w̄e(Q′)). Since pi = 0 for all i ∈ Q′, we

obtain p · w̄ 5 p ·x1. Note that x1 = α1wN = [α1
∑
i∈Q wi]w̄. Then p · w̄ 5 p ·x1

is equivalent to α1
∑
i∈Q wi = 1. Hence, x1 = α1wN = wN∑

i∈Q wi
= w̄.

Since p1 · ei = 0 for all i ∈ N , each ei is trivially in H(p1, p1 · x1). Consider

some j ∈ {2, . . . , k}. Note that pji = 0 for all i ∈ Qj . Hence,

pj · w̄ =
∑

i∈N\Qj
w̄i =

∑
i∈N\Qj wi∑
i∈N\Q2 wi

=
∑
i∈N\Q2 wi∑
i∈N\Q2 wi

= 1.

The inequality follows from the observation that N \Q2 is a subset of N \Qj .
By the above, xj = x1 = w̄. Hence, pj ·xj = pj ·x1 = pj · w̄ = 1. Since pj ·ei 5 1

for all i ∈ N , we obtain pj ·xj = pj ·ei for all i ∈ N . This establishes observation

(a).

Since x1 = w̄ and
∑
i∈N w̄i =

∑
i∈Q w̄i = 1, e(N) · ei = 1 5 e(N) · w̄ 5

e(N) · x1 = α1 for all i ∈ N . Hence, ei ∈ H(e(N), α1) for all i ∈ N . Since

H(e(N), α1) ⊂ H(e(N), αj) for each 1 < j 5 k, observation (b) follows.

A.4 Proof of Proposition 3.4 (Continued)

The proof of Proposition 3.4 is concluded by the following three claims.

Claim 7 ϕ(S
1
) = ϕ(S1) = ϕ(S1) = ϕ(S′1) = x1.

Proof. Since ϕ(S0) = x0, ϕ(S
1
) = x1 by Claim 6. Since x1 ∈ S1

and x1 ∈ S,

x1 ∈ S′1. Then x1 = ϕ(S
1
) ∈ S′1 ⊆ S

1
, and by Claim 1, u(S′1) = u(S

1
).

Thus by IIIA, ϕ(S′1) = ϕ(S
1
) = x1. For all i ∈ N \ Q2, x1

i = x2
i , implying

p2 · x1 = p2 · x2. Hence, x1 ∈ H(p2, p2 · x2). Then x1 = ϕ(S
1
) ∈ S1 ⊆ S

1
;

by Claim 1, u(S1) = u(S
1
). Then by IIIA, ϕ(S1) = ϕ(S

1
) = x1. To see

that ϕ(S1) = x1, observe first that S′1 = S1 ∩ (e(N) − RN+ ). Since ϕ(S1) 5
u(S1) = e(N), ϕ(S1) ∈ (e(N) − RN+ ). Hence, ϕ(S1) ∈ S′1 ⊆ S1, and by Claim

1, u(S′1) = u(S1). Thus, ϕ(S1) = ϕ(S′1) = x1 by IIIA.

Claim 8 ϕ(S
j
) = ϕ(Sj) = ϕ(Sj) = ϕ(S′j) = xj for each j = 1, . . . , k (or

j = 1, . . . , k − 1 for ϕ(Sj)).

Proof. Consider j ∈ {2, . . . , k}, and assume ϕ(S
j−1

) = ϕ(Sj−1) = ϕ(Sj−1) =

ϕ(S′j−1) = xj−1. By Claim 6, ϕ(S
j
) = xj . Then ϕ(S′j) = xj follows as in Claim
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7. Furthermore, if j < k, then also ϕ(Sj) = xj follows as in Claim 7. What is

left to show is that ϕ(Sj) = xj . To this end, it is first argued that ϕ(Sj) is an

element of S
j
.

1. Since Sj ⊆ H(e(N), αj), ϕ(Sj) ∈ H(e(N), αj).

2. Since ϕ(Sj) 5 u(Sj) = e(N), ϕ(Sj) ∈ (e(N)− RN+ ).

3. By part ii) of Lemma 3.5, Sj−1
−i = Sj−i for all i ∈ N . Furthermore, Sj−1 ⊆

Sj . Thus by an |N |-fold application of IM, ϕ(Sj) = ϕ(Sj−1) = xj−1.

As in Claim 3, this implies ϕi(S
j) = xji for all i ∈ N \ Qj . From this

it follows that for all j′ ∈ {1, . . . , j}, ϕ(Sj) ∈ H(pj
′
, pj

′ · xj′). Thus,

ϕ(Sj) ∈ ⋂jj′=1H(pj
′
, pj

′ · xj′).

It follows that ϕ(Sj) ∈ Sj . Since Sj ⊆ S, we further have ϕ(Sj) ∈ S. Thus,

ϕ(Sj) ∈ S′j ⊆ Sj , and by Claim 1, u(Sj) = u(S′j). Then by IIIA, ϕ(Sj) =

ϕ(S′j) = xj .

Claim 9 ϕ(S) = xk.

Proof. Since Sk = S ∩H(e(N), αk), ϕ(S) = ϕ(Sk) by an |N |-fold application

of IM and part ii) of Lemma 3.5. Then by Claim 8, ϕ(S) = xk. The claim

follows from the observation that xk ∈ P (S).
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