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Abstract: Scale-Adaptive Simulations of flow in clean transonic cavities with and
without doors are presented in this paper. Results were also compared with Detached-
Eddy Simulations for cavities with length-to-depth ratios of 5 and 7. The Mach and
Reynolds numbers (based on the cavity length) were 0.85 and 6.5× 106 respectively, and
the grid sizes were 5.0 million for the clean cavity with doors-off and 5.5 million for the
clean cavity with doors-on. Instantaneous Mach number contours showed that the shear
layer broke down for both the doors on and doors off cases and that the flows had a
high level of unsteadiness inside them. Numerical schlieren contours made it possible to
visualise the propagation of pressure waves in and around these cavities. The two L/D
ratios of cavities were seen to have similar acoustic signatures reaching maximum sound
levels of 170dB. Spectral analyses for the cavities without doors revealed that by changing
the length-to-depth ratio from 5 to 7, the dominant acoustic modes at the front and rear
of the cavities were shifted from the second and third modes to the first and second modes
respectively. Proper Orthogonal Decomposition was used to reduce the data storage using
modes constructed from flowfield snapshots taken at regular intervals. Cumulative energy
plots of the constructed modes showed that Detached-Eddy Simulations were able to
capture 10% more energy for Pressure and Density variables for the same number of
modes.
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1 Introduction

Unmanned Combat Air Vehicles (UCAVs) are designed
for stealth and use cavities for storing weapons. At
transonic speeds, the flow inside these cavities become
highly unsteady and lead to large acoustic signatures
that not only affect the stealth characteristics of
the vehicle but also the integrity of its structural
components. A similar problem exists with the exposed
undercarriage and landing gear bays of aircraft. While
wind tunnel and flight test data have been used in
the past to study noise generated from landing gears
[1, 2, 3, 4], Computational Fluid Dynamics (CFD) is
increasingly being used to predict these flows.

Currently, Direct Numerical Simulation (DNS) of
transonic cavity flow is not possible, due to the
substantial computational resources needed for practical
Mach and Reynolds numbers. Studies of cavity flows use
CFD based on the use of Reynolds-Averaged Navier-
Stokes (RANS) equations together with a turbulence
model. Unsteady RANS (URANS), however, is unable
to predict the full spectrum of turbulent scales and
with Large-Eddy Simulation (LES) being too expensive
near wall regions, Detached-Eddy Simulation (DES) is
the popular choice for these flows. Store carriage and
separation from weapon bays has also received some
interest in recent years. Early works have focused on
weapon bays idealised as rectangular cavities but the
focus is shifting to weapon bays installed in UCAVs
and geometrically complex bays. Lawson and Barakos [5]
give a detailed account of work relating to UCAVs and
transonic cavities.

Simulations of store separation from cavities, for
store clearance, are becoming expensive with increasing
mesh sizes that account for geometric complexities.
This requires faster calculations to allow for numerous
simulations under varying conditions. While DES is
capable of accurately predicting these flows, it still takes
a considerable amount of time on a large number of
processors. Since its introduction by Meter et al.[6, 7, 8]
in 2003, the Scale-Adaptive Simulation (SAS) approach
gained popularity due to its LES-like behaviour in highly
separated flow regions and found place in several studies.
A detailed explanation of the theory and description of
the model was given by Menter and Egorov [9] following
which Egorov et al.[10] presented the application of
the SAS model, implemented in ANSYS-FLUENT and
ANSYS-CFX, for a range of complex flows. Other than
the demonstration of SAS for the M219 cavity case
without doors by Egorov et al.[10], no other cavity work
using SAS is available in open literature. The evaluation
of SAS for cavity flows and later for cavities with stores
will encourage its use in store separation simulations.

In view of the above, this paper presents results from
studies of the SAS approach for cavity flows. The widely
used M219 cavity and a cavity of L/D 7 are used for
numerical computations with DES, SAS and URANS
and the Helicopter Multi-Block (HMB2) flow solver of

Copyright © 2014 Inderscience Enterprises Ltd.

Liverpool [11]. The M219 clean cavity with and without
doors is used here with experimental data obtained from
Nightingale et al.[12]. Computations were also carried
out for the L/D 7 cavity with and without doors, for
which experimental and numerical results are lacking.
DES based on the Spalart-Allmaras (S-A) turbulence
model [13], SAS using the SST turbulence model and
URANS using the SST turbulence model were employed
for the computations.

Section 1 introduces the motivation behind the
current work. Details of the flow solver and the DES
and SAS approaches are given in Section 2. Section
2 describes the numerical methods used for post-
processing, flow visualisation and data reduction. Grid
details and the mesh generation process are explained
in Section 4. The results are presented and discussed in
Section 5 and a summary with conclusions of the current
work is presented in Section 6.

2 FLOW SOLVER

HMB2 is a parallel, cell-centred, finite volume method
based flow solver developed at the University of
Liverpool and was used for the computations presented
in this paper. This section provides information related
to the solver and includes the governing equations and a
description of the employed turbulence models.

2.1 Governing Equations

HMB2 [11] solves the three-dimensional, unsteady,
compressible Navier-Stokes equations on multi-block
structured grids. Barakos et al.[14] provides a detailed
description of multi-block topologies employed in the
M219 clean cavity and the 1303 UCAV cavity with a
store present. The governing equations are the unsteady
three-dimensional compressible Navier-Stokes equations,
written in dimensionless form as:

∂Q

∂t
+

∂

∂x

(

F i +
1

Re
F v

)

+
∂

∂y

(

Gi +
1

Re
Gv

)

+
∂

∂z

(

Hi +
1

Re
Hv

)

= 0 (1)

where Q contains the unsteady terms and F , G and
H are spatial flux vectors, split into their inviscid (i)
and viscous (v) parts. The code solves the governing
equations on multi-block structured grids using a cell-
centred finite volume method. The convective terms are
discretised using either Osher’s [15] or Roe’s [16] scheme.
Monotone Upwind Schemes for Scalar Conservation
Laws (MUSCL) interpolation [17] is used to provide
formally third order accuracy and the Van Albada
limiter [18] is used to avoid spurious oscillations across
shocks. An implicit, dual step method [19] is used
for time-marching and the final algebraic system of
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equations is solved using a Conjugate Gradient method,
in conjunction with Block Incomplete Lower-Upper
(BILU) factorisation [20]. A number of turbulence
models including one and two-equation statistical models
as well as Large-Eddy Simulation and Detached-Eddy
Simulation have been implemented into the code. More
details of the employed CFD solver and turbulence
models are given in Barakos et al.[14]. For the work
presented in this paper, DES was employed along with
the Spalart-Allmaras turbulence model [13] and SAS and
URANS utilised the Shear Stress Transport (SST) model
[21].

2.2 Detached-Eddy Simulation

Despite the potential of LES, there are problems in
resolving the near-wall turbulent stresses since the
required resources approach those of Direct Numerical
Simulation. Pure LES gives about 10 times higher
Reynolds numbers than DNS but is of limited
application for the flow at hand. While RANS is an
option, another alternative that has gained popularity
over the years involves hybrids of LES and RANS
such as DES. The original idea of DES was postulated
by Spalart and Allmaras [13]. Its underlying principle
involved using RANS for the near-wall and boundary
layer and LES everywhere outside. Spalart modified
the S-A model to achieve a DES equivalent. The wall
distance (d) is now recomputed according to the DES
principle and represented by d̃. In the pure one-equation
S-A turbulence model, the terms d̃ and d are identical.
However, the DES formulation of d̃ is given by:

d̃ = CDES∆ (2)

where CDES is a constant and ∆ is the metric of the
grid size. In practice, the distance to the wall in the DES
formulation of the one-equation S-A model is expressed
as a comparison between the actual distance to the
wall and that calculated by CDES∆, which essentially
computes the size of the maximum cell length:

d̃ = min (d, CDES∆) (3)

∆ = max (∆x,∆y,∆z) ∀ cell. (4)

When the cell length (CDES∆) is less than the actual
distance to the nearest wall (d), LES is triggered. RANS
is activated when the converse occurs. This boundary
between LES and RANS is therefore completely
dependent on the geometry and on the density of the
computational mesh. Note that other metric relations
are also possible.

2.3 Scale-Adaptive Simulation

The governing equations of the SST-SAS model differ
from those of the SST-RANS model by an additional

source term (QSAS) in the transport equation for the
turbulence eddy frequency ω:
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The additional source term QSAS is given by:

QSAS = max
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(7)

where ζ2=3.51, σΦ=2/3 and C=2.
The length scale of the modelled turbulence L, and

the von Karman length scale LvK are defined as:

L =

√
k

c
1/4
µ ω

, LvK =
κS

|U ′′ | (8)

where κ = 0.41 is the von Karman constant.
The first velocity derivative U

′′

(y) is represented in
LvK by S, which is a scalar invariant of the strain rate
tensor Sij :

S =
√

2SijSij , Sij =
1

2

[

∂Ui

∂xj
+

∂Uj

∂xi

]

(9)

The same S is used also in the production term Pk =
µtS

2. The second velocity derivative U
′′

(y) is generalised
to 3D using the magnitude of the velocity Laplacian:

|U ′′ | =

√

√

√

√

∑

(i)

(

∂2Ui

∂xj∂xj

)2

(10)

In order to provide proper damping of resolved
turbulence at high wave numbers, the SST-SAS model
requires a lower constrain on the LvK given by:

LvK = max

(

κS

|U ′′ | , Cs

√

κζ2

( β
cµ
)− α

·∆
)

(11)

The limiter is proportional to the grid cell size ∆, which
is calculated as the cubic root of the control volume size:

∆ = Ω
1/3
CV (12)
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The purpose of this limiter is to control damping of
the finest resolved turbulent fluctuations. The structure
of the limiter is derived from analysing the equilibrium
eddy viscosity of the SST-SAS model [9]. Assuming a
balance between the production and destruction of the
kinetic energy of turbulence in both transport equations,
the following relation between the equilibrium eddy
viscosity are derived:

µeq
t = ρ





√

( β
cµ
)− α

κζ2
LvK





2

S (13)

which has similar structure as the subgrid scale eddy
viscosity in the LES model

µLES
t = ρ(CS∆)2S (14)

The limiter, imposed on the LvK value, must prevent
the SAS eddy viscosity from decreasing below the LES
subgrid-scale eddy viscosity:

µt = max(µSAS
t , µLES

t ) (15)

3 NUMERICAL METHODS

This section presents the analysis techniques carried out
on the unsteady data, the methods of flow visualisation,
and reduction of the generated flow data.

3.1 Post-Processing Methods

The CFD solver outputs flow-field files written at specific
instances of time as specified by the user. In addition
to this it also outputs data from specific ‘probes that
are placed in the flow. The locations of the probes are
defined at the beginning of the computation and are then
written at every time step performed. For the cavity
flow computations, probes are usually defined at the
same locations as the KuliteTM pressure transducers in
experiments and are therefore sampled at a high enough
frequency for spectral analyses.

The Power Spectral Density (PSD), Overall Sound-
Pressure Level (OASPL) and Band-Integrated Sound-
Pressure Level (BISPL) are used to compare numerical
and experimental unsteady pressure data along the
cavity floor. The PSD is used to study the frequency
content of a signal at a given location and is based upon
the unsteady pressure p′, where p′ = p− p. The PSD was
calculated using the Burg Estimator [22] (also known
as Maximum Entropy Methods or MEM) as it produces
better resolved peaks for short signals than traditional
Fast Fourier Transforms (FFT) [23] For a description of
the PSD in terms of decibels (dB), the natural definition
is that of the Sound-Pressure spectrum Level (SPL) [24]:

SPL(f) = 10 LOG10

[

PSD(f) ∆fref
p2ref

]

(16)

where ∆fref is a reference frequency, usually set to 1 Hz
and pref is the international standard for the minimum
audible sound, which has the value of 2× 10−5 Pa [24].

The variation in pressure levels along the cavity floor
was studied using the Root-Mean-Square (RMS) of the
unsteady pressure, p′rms, and can be obtained from the
measurements using the following equation:

p′rms =

√

1

N

∑

(p′)
2

(17)

Although p′rms is measured in Pascals (or any other
unit of pressure), it is customary in cavity flow studies to
report it as the Overall Sound-Pressure Level(OASPL)
[24]:

OASPL = 20 LOG10

[

p′rms

pref

]

(18)

which has the units of decibels. BISPL plots show the
energy content within a particular frequency range and
is calculated using the following equation:

BISPL = 20 LOG10

[

(
∫ f2

f1

PSD(f)

)1/2

·

1

pref

]

(19)

where f1 and f2 are the lower and upper limits of
the desired frequency range. Although the magnitude
of the BISPL aids in identifying which frequencies are
significant, the shape of each banded mode is also
important as it represents how each frequency band
varies along the cavity length. For cavity flow studies,
the BISPL plots are usually centred around the first four
Rossiter Modes.

Comparison of numerical and experimental data
for unsteady flows is not simple. For cavity flows
in particular, a mode switching phenomenon occurs.
Therefore in processing, the experimental data is split
into segments equalling the length of the numerical
signal, with each segment having a 90% overlap. Each
segment is then processed using the methods given above
and at each location the maximum and minimum levels
in the OASPL and BISPL are recorded. The curve
plotted in the PSD is the segment deemed to be the
‘best fit’ to the numerical data, where the metric used
to define the best fit was the OASPL.

The tones in the PSD are usually termed Rossiter
modes [25] and a semi-empirical formula is available for
the estimation of their frequencies. Rossiter, based the
formula on experimental results over a range of Mach
numbers from 0.4 to 1.4 and on various cavity aspect
ratios. However, outside this range the accuracy of the
predictions decreases and so Heller [26] modified the
original formula to compensate. The modified version is
as follows:

fm =
U∞

L

[

m− α

M∞

(

1 +
(

γ−1

2

)

M2
∞

)

−1/2
+ 1/κν

]

(20)

where fm is the frequency of mode m, U∞ and M∞ is
the free-stream velocity and Mach number respectively
and L is the cavity length. γ is the ratio of specific
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heats, α represents a phase shift and κν is a constant
dependant on the cavity geometry and test conditions.
These constants have the values 1.4, 0.25 and 0.57
respectively. The formula is used here for comparisons
with CFD results.

3.2 Flow-Field Analysis

3.2.1 Q-Criteria

Turbulent structures are inherently three-dimensional
and so to better identify them within the flow, the Q-
Criteria is used. Hunt [27] proposed the Q-Criteria to
identify vortex cores and reflects the amount of strain
and vorticity in a vector field. Let∇u denote the gradient
of the velocity field. The Q-Criteria is then defined as the
positive second invariant of the velocity gradient tensor:

Q ≡ 1

2

(

u2
i,i − ui,juj,i

)

= −1

2
(ui,juj,i)

=
1

2

(

‖ Ω ‖2 − ‖ S ‖2
)

(21)

where S and Ω are the symmetric and anti-symmetric
components of ∇u. The strain tensor is defined as the
symmetric part, and the antisymmetric part is closely
related to the vorticity. Thus, the Q-Criteria represents
the local balance between shear strain rate and vorticity
magnitude [28]. Where Q > 0, vorticity dominates strain
and so identifies a vortex region.

3.2.2 Numerical Schlieren

In order to visualise the unsteadiness in the flow-field,
instantaneous numerical schlieren is calculated. The
numerical schlieren variable requires the calculation of
the density gradient magnitude (DG) and is defined as:

NS = c1 exp

[−c2(DG−DGmin)

(DGmax −DGmin)

]

(22)

where c1 and c2 are constants with values of 0.8 and 10.0
respectively.

3.3 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a
technique used in image processing, signal analysis and
data compression [29]. It aims to obtain low-dimensional
approximations of high-dimensional processes, therefore
eliminating information which has little impact on the
overall process. It was first introduced in the context
of fluid mechanics and turbulence by Lumley [30] to
decompose the flow into modes. These modes identify the
large coherent structures which contribute to the flow.

The principle behind POD is that any function can
be written as a linear combination of a finite set of
functions, termed basis functions. Any set of functions

or vectors, f1, f2, ..., fn are linearly independent if they
satisfy the following equation:

α1f1 + α2f2 + ...+ αnfn 6= 0 (23)

where the coefficients α1, α2,..., αn are constants and
non-zero. If a vector space V , can be described by a
subset of vectors v1, v2, ...,vn, then these form a basis set
if they are linearly independent and they can be written
in a linear combination of the form:

V = α1v1 + α2v2 + ...+ αnvn (24)

The set of basis vectors can also be an orthonormal basis
set if the inner product of vi and vj is zero, where i 6= j.
Also, they are required to have a length of 1 (i.e. the
inner product of vi and vi is 1).

Three different methods fall under the generalised
term of Proper Orthogonal Decomposition: Karhunen-
Loeve Decomposition (KLD), Principal Component
Analysis (PCA) and Singular Value Decomposition
(SVD). However, in the context of turbulence and fluid
mechanics, if the acronym POD is used, it generally
means KLD.

4 MODEL GEOMETRY AND MESH

GENERATION

In this section, the mesh generation process applied
in this work is discussed. For all configurations, the
geometry, the structured multi-block topologies and the
mesh were generated using ICEMCFD v13 [31]. The
following sections discuss the grids for the M219 cavity
configurations.

Experimental pressure measurements were obtained
at Bedford, UK [32]. Clean cavities were studied with
and without doors. The doors prevented any leakage at
the cavity edges in the spanwise direction forcing the
flow to channel into the cavity.

The L/D 5 cavity model (with width-to-depth ratio
of 1) measured 20 in. in length and 4 in. in width
and depth. The generic cavity rig model (Fig. 1) was
positioned at zero incidence and sideslip and the wind
tunnel was operated at a Mach number of 0.85 and
atmospheric pressure and temperature. The Reynolds
numbers (based on the cavity length) was 6.78 million
for the clean cavity with and without doors. Unsteady
pressure measurements were taken inside the cavity via
10 pressure transducers, shown in Fig. 2, on the cavity
floor, aligned along the rig center [32, 12]. The data was
sampled at a rate of 6 kHz for approximately 3.5s.

The flow domain used for computations is shown in
Fig. 3, along with the applied boundary conditions. The
cavity was modelled on the experimental setup, with all
solid surfaces having no-slip boundary conditions. The
values at the far-field were extrapolated, and so the far-
field boundaries had to be set a large distance away
from the cavity. Therefore, the domain extended five
cavity lengths above the surface of the plate and an extra
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Figure 1: Schematic of the model geometry for the clean
cavity with doors L/D 5.

(a) Y-X view (b) Y-Z view

Figure 2: Locations of the KulitesTM sensors used in
combination with the M219 cavity.

two cavity lengths around the plate on each side. The
boundary conditions for extra section around the plate
were set to Y-symmetry, which imposed a slip condition
so that no boundary layer would build up.

Figure 3: Schematics of the computational domain for
the clean cavity with doors L/D 5.

The geometry used to create the grids was based
on the wind-tunnel experiments. A schematic is shown
in Fig.1. CFD grids of approximately 5.0 million cells
(doors-off) and 5.5 million (doors-on) were used to
perform computations for the clean cavity, where the
grid densities were based on previous experience with
the numerical method[14].

For all computed cases, the free-stream Mach number
was kept at 0.85 and the Reynolds number based on
the length of the cavity was 6.5× 106 (based on the

(a) Clean cavity without
doors

(b) Clean cavity with doors

Figure 4: Surface mesh for the clean cavity L/D 5
without doors (a) and with doors (b).

cavity length). Past work [14] has shown that reducing
the Reynolds number to one million had little effect on
the cavity flow-field. The recent results were kept at this
Reynolds number, so that they could be compared to the
experimental data. Details of the computations and the
associated grids used in this work are given in Table 1.

Table 1 Summary of computational mesh details.

Computation Method Grid Size CFD Time
(106) -Step

(10−5s)

CC, L/D 5, DES S-A 5.0 2.19
Doors off SAS SST 5.0 17.58

CC, L/D 5, DES S-A 5.5 2.19
Doors on SAS SST 5.5 17.58

CC, L/D 7, DES S-A 7.0 2.19
Doors off SAS SST 7.0 17.58

CC, L/D 7, DES S-A 7.5 2.19
Doors on SAS SST 7.5 17.58

CC: Clean Cavity, S − A: Spalart Allmaras, Mach number:
0.85 and Reynolds number: 6.0× 106 (based on the cavity

length).

5 Results And Discussion

5.1 Instantaneous Flow-Field

Instantaneous contours of Mach number for the clean
cavities without doors for L/D of 5 and 7 are shown
in Figs. 5(a) and 5(c), respectively, using SAS with one
slice in each direction to have a three-dimensional view
inside the cavity. The unsteadiness and breakdown of
the shear layer is seen as it separates from the leading
edge of the cavity at about a third of its length. For
both cavities, L/D 5 and 7, the doors-off case showed
‘spillages’ over the edges of the cavity. The doors on
cases, however, caused the early breakdown of the shear
layer and restricted the flow along the spanwise direction
(Fig. 5(b) and 5(d)).
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(a) Clean cavity, L/D 5, doors off

(b) Clean cavity, L/D 5, doors on

(c) Clean cavity, L/D 7, doors off

(d) Clean cavity, L/D 7, doors on

Figure 5: Instantaneous contours of Mach number for
the clean cavity with L/D 5 (a,b) and L/D 7 (c,d) as
predicted using SAS. Planes are located at x/L=0.99,
y/L=-0.19 and z/L=-0.04.

The propagation of pressure waves out of the cavity
is visualised using numerical schlieren contours for all
L/D configurations with and without doors and is shown
in Fig. 6 along three directions. Strong acoustic waves
are observed for the clean cavity case without doors.
Structures in the shear layer travel toward the aft wall
while outside the cavity and reflected acoustic waves
travel out and toward the front wall.

(a) Clean cavity, L/D 5, doors off

(b) Clean cavity, L/D 5, doors on

(c) Clean cavity, L/D 7, doors off

(d) Clean cavity, L/D 7, doors on

Figure 6: Instantaneous contours of Numerical schlieren
for the clean cavity with L/D 5 (a,b) and L/D 7 (c,d)
as predicted using SAS. Planes are located at x/L=0.99,
y/L=-0.19 and z/L=-0.04.

Contours of Q-Criteria (Fig. 7) show that the flow
for the clean cavities without doors contained large
structures that existed for almost the whole cavity
length with structures spilling over the side walls. The
channelling effect of the doors restricted the flow and the
structures for these cases.
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(a) Clean cavity, L/D 5, doors off

(b) Clean cavity, L/D 5, doors on

(c) Clean cavity, L/D 7, doors off

(d) Clean cavity, L/D 7, doors on

Figure 7: Instantaneous iso-surfaces of Q-Criteria for
the clean cavity with L/D 5 (a,b) and L/D 7 (c,d) as
predicted using SAS. Iso-surfaces at Q=2000 are shown
and coloured with Mach number ranging between 0.0
(blue) and 1.0 (red).

5.2 Spectral Analysis for Doors Off Computations

Power Spectral Density (PSD) plots of pressure for
the doors off cases for L/D 5 and L/D 7 cavities are
shown in Figs. 8 and 9, respectively, comparing DES,
SAS and URANS methods with experimental data for
the M219 cavity. The results are also compared against
modes obtained from Rossiter’s equation [25]. The plots
correspond to three pressure probe locations on the
cavity floor at x/L = 0.05, y/L = 0.50 and z/L = 0.90
respectively that coincide with the locations of the
KulitesTM in the M219 cavity.

Comparisons for the L/D 5 cavity in Fig 8 showed
that SAS and DES compare well with experimental
results while URANS does not correctly predict tones
at the first two Kulite locations. The two dominant
acoustic modes (modes two and three) at the front (Fig
8(a)) and aft (Fig 8(c)) of the cavity are predicted by
DES and SAS as well as the dominant second mode
in the middle of the cavity (Fig 8(b)). Towards the
leading edge, URANS does not compare well and begins
to capture spurious tones at the middle and aft of the
cavity. Similar comparisons for the L/D 7 cavity in Fig 9
showed that SAS results compare well with DES results
while URANS shows considerable differences. The two
dominant acoustic modes (modes one and two) at the
front (Fig 9(a)) and aft (Fig 9(c)) of the cavity are
predicted by DES and SAS as well as the dominant
second mode in the middle of the cavity (Fig 9(b)).

Increasing the L/D from 5 to 7 caused a shift in the
dominant tones that were excited inside the cavity. At
the front and aft regions this was a shift from modes two
and three to modes one and two going from L/D 5 to
L/D 7. Both cavities had these modes dominating the
middle of the cavity with the L/D 7 being 10dB lower
then the L/D 5.

OASPL plots for the doors off cases for L/D 5
and L/D 7 cavities are shown in Fig. 10 comparing
DES, SAS and URANS methods. For the L/D 5 cavity,
experimental data for the M219 cavity was also included.
The plots correspond to ten pressure probe locations
along the length of the cavity on the cavity floor that
coincide with the locations of the KulitesTM in the M219
cavity. DES and SAS results for the L/D 5 cavity show
good comparison with the experimental data with an
almost constant overprediction of 5dB along the length
of the cavity. Both methods captured the shape of the
experimental data. The URANS predicted a similar
shape to the experimental data but with an almost
constant underprediction of 5dB along the length of the
cavity. Results for the L/D 7 cavity show that SAS, DES
and URANS have similar trends in terms of the shape
of the curve and magnitude at each probe location.

The BISPL plots for the L/D 5 cavity in Fig.
11 showed that the first three modes are predicted
well by both DES and SAS. All three methods (DES,
SAS and URANS) captured the overall shapes of the
first four modes with the differences arising mainly
in the magnitude being overpredicted (DES/SAS) or
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(a) x/L = 0.05

(b) x/L = 0.50

(c) x/L = 0.95

Figure 8: PSD plots for the clean cavity L/D
5 comparing results from DES, SAS and URANS
methods to experimental data for the M219 cavity from
Nightingale et al[12]. Plots are for the front (a), middle
(b) and rear (c) transducers on the cavity floor and
presented in terms of SPL. CC - Clean Cavity, S-A -
Spalart Allmaras.

underpredicted (URANS). For all modes, DES and SAS
have similar shapes and magnitudes and overpredict
the experimental data by about 4dB . URANS on the
other hand, managed to predict the shapes of the first

(a) x/L = 0.05

(b) x/L = 0.50

(c) x/L = 0.95

Figure 9: PSD plots for the clean cavity L/D 7
comparing results from DES, SAS and URANS methods.
Plots are for the front (a), middle (b) and rear (c)
transducers on the cavity floor and presented in terms
of SPL. CC - Clean Cavity, S-A - Spalart Allmaras.

three modes but failed with the higher frequency mode.
The shapes of the curves are reasonably predicted given
the relatively coarse mesh explored here, and based on
experience with finer grids[14], the results are seen as
satisfactory for DES/SAS comparisons.
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(a) Clean Cavity L/D 5

(b) Clean Cavity L/D 7

Figure 10: OASPL along the cavity floor for the clean
cavity L/D 5 and 7. For the L/D 5 cavity, plots are
also compared to experimental data from Nightingale
et al.[12].

Unlike the L/D 5 cavity, URANS showed better
comparisons for the L/D 7 cavity (Fig. 12). Not only did
URANS capture the shapes of the modes quite well, it
did so with similar magnitudes to that of DES and SAS,
differing only from the middle to the rear of the cavity
where the flow completely broke down. DES and SAS
show very similar results to each other across the board.
Overall the shapes of the BISPL curves look similar
between the L/D 5 and L/D 7 cavity except for mode
two where the ‘W’ shape is more pronounced in the L/D
5 cavity.

5.3 Spectral Analysis for Doors On Computations

PSD plots of pressure for the doors on cases for L/D
5 and L/D 7 cavities are shown in Figs. 13 and 14,
respectively, comparing DES, SAS and URANS methods
with experimental data for the M219 cavity with doors
on. DES and SAS showed similar results between each
other and good agreement with the experiment for the
L/D 5 cavity (Fig 13). Low energy high frequency
modes were also captured by DES and SAS. Similar

(a) Mode 1: 50 ≤ f ≤ 250 Hz

(b) Mode 2: 250 ≤ f ≤ 450 Hz

(c) Mode 3: 500 ≤ f ≤ 700 Hz

(d) Mode 4: 700 ≤ f ≤ 900 Hz

Figure 11: BISPL along the cavity floor for the clean
cavity L/D 5. Plots compare results from DES, SAS and
URANS methods to experimental data from Nightingale
et al.[12].

comparisons for the L/D 7 cavity in Fig 14 showed
that SAS results compared well with DES, with both
methods capturing the dominant second mode across
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(a) Mode 1: 50 ≤ f ≤ 250 Hz

(b) Mode 2: 250 ≤ f ≤ 450 Hz

(c) Mode 3: 500 ≤ f ≤ 700 Hz

(d) Mode 4: 700 ≤ f ≤ 900 Hz

Figure 12: BISPL along the cavity floor for the clean
cavity L/D 7. Plots compare results from DES, SAS and
URANS methods.

the length of the cavity. In both cases, URANS did
not give a good prediction compared to DES and SAS.
The addition of the doors did not cause a shift in the
dominant frequencies between the L/D 5 and L/D 7

unlike the case with doors off. However, like before the
L/D 7 had a reduction of about 10dB at the second
mode. The addition of the doors is seen to channel and
constrain the oscillation of the flow in both cases.

(a) x/L = 0.05

(b) x/L = 0.50

(c) x/L = 0.95

Figure 13: PSD plots for the clean cavity L/D 5 with
doors comparing results from DES and SAS methods to
experimental data for the M219 cavity from Nightingale
et al[12]. Plots are for the front (a), middle (b) and rear
(c) transducers on the cavity floor and presented in terms
of SPL. CC - Clean Cavity, S-A - Spalart Allmaras.
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(a) x/L = 0.05

(b) x/L = 0.50

(c) x/L = 0.95

Figure 14: PSD plots for the clean cavity L/D 7 with
doors comparing results from DES, SAS and URANS
methods. Plots are for the front (a), middle (b) and rear
(c) transducers on the cavity floor and presented in terms
of SPL. CC - Clean Cavity, S-A - Spalart Allmaras.

OASPL plots for the doors on cases for L/D 5
and L/D 7 cavities are shown in Fig. 15 comparing
DES, SAS and URANS methods with experimental data
for the M219 cavity with doors on. For the L/D 5
cavity (Fig. 15(a)), DES, SAS and URANS captured
the characteristic ‘W’ shape of the experimental data.

DES and SAS showed an almost constant overprediction
of 4dB while for URANS the maximum overprediction
was 6dB. In the case of the L/D 7 cavity (Fig. 15(b)),
DES and SAS showed similar shapes and magnitudes
while URANS was underpredicted along the length of
the cavity. Here, the ‘W’ shape is not as pronounced as
in the L/D 5 case. The URANS did not predict the ‘W’
shape and as a result the magnitudes in the range of
x/L = 0.2 to x/L = 0.6 are almost 5dB lower than the
DES and SAS.

(a) Clean Cavity L/D 5

(b) Clean Cavity L/D 7

Figure 15: OASPL along the cavity floor for the clean
cavity L/D 5 and 7 with doors. . For the L/D 5 cavity,
plots are also compared to experimental data from
Nightingale et al.[12].

The BISPL plots for the L/D 5 cavity with doors
on in Fig. 16 show that the four modes are reasonably
captured by both DES and SAS. The overprediction
in the first mode for DES and SAS are between 1
to 4dB. For the dominant second mode, SAS is very
similar in shape and magnitude to the experiment
with an underprediction at two locations in the middle
of the cavity of about 5dB. URANS captured the
overall shapes of the first two modes and showed an
overprediction for the last two modes along the first
half of the cavity length. For the L/D 7 cavity (Fig.
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17), URANS underpredicted the first, second and fourth
modes compared to DES and SAS while mode three
had a similar shape and magnitude. DES and SAS
showed similar shapes and magnitudes for mode one
and mode two with differences in mode three and
mode four occurring around the middle of the cavity. A
summary of the computational details of the different
cavity configurations are given in Table 2. The clock time
shown in hours is based on the use of 32 cores for each
computational case.

Table 2 Summary of computational details of CFD
calculations. CC: Clean Cavity. S − A: Spalart
Allmaras.

Computation Method Clock Time
(hr)

CC, L/D 5, DES S-A 3909
Doors off SAS k-ω 312

CC, L/D 5, DES S-A 4560
Doors on SAS k-ω 364

CC, L/D 7, DES S-A 4100
Doors off SAS k-ω 400

CC, L/D 7, DES S-A 4850
Doors on SAS k-ω 470

5.4 Joint Time-Frequency Analysis

The unsteadiness within the cavity was investigated
using Joint Time-Frequency Analysis (JTFA) through
Short-Time Fourier Transform (STFT)[33]. A space-time
map of the dominant Rossiter modes on the cavity
floor, for the L/D 5 cavity with doors off, was produced
comparing the experimental data (Fig. 18(a)), DES
(Fig. 18(b)) and SAS (Fig. 18(c)) results. Like in the
experiment, mode two is seen to dominate along the
middle of the cavity for DES and SAS with occasional
mode switching to mode one and mode four. Along the
front and rear end of the cavity, modes are seen to switch
between one to three over time. The DES results show
good comparison to the experiment where large regions
of mode three are present at the front of the cavity and a
mix of mode one, two and three are present at the rear.
Mode three is seen to be intermittent at the front and
rear of the cavity, for DES and more in SAS, compared
to the experiment. The relatively low mode three in SAS
and the high mode one suggests a shift of energy to lower
frequency modes.

Similar plots were produced for the L/D 5 cavity with
doors on comparing experimental data (Fig. 19(a)) and
SAS (Fig. 19(b)) results. Here the effect of the doors
is clearly by the dominance of the second mode along
the length of the cavity with some mode one content
towards the rear of the cavity. SAS is seen to produce
similar frequency content as in the experiment but with
relatively more mode three at the front and less of mode
one at the back.

(a) Mode 1: 50 ≤ f ≤ 250 Hz

(b) Mode 2: 250 ≤ f ≤ 450 Hz

(c) Mode 3: 500 ≤ f ≤ 700 Hz

(d) Mode 4: 700 ≤ f ≤ 900 Hz

Figure 16: BISPL along the cavity floor for the clean
cavity L/D 5 with doors. Plots compare results from
DES, SAS and URANS methods to experimental data
from Nightingale et al.[12].



14 S. Babu et al.

(a) Mode 1: 50 ≤ f ≤ 250 Hz

(b) Mode 2: 250 ≤ f ≤ 450 Hz

(c) Mode 3: 500 ≤ f ≤ 700 Hz

(d) Mode 4: 700 ≤ f ≤ 900 Hz

Figure 17: BISPL along the cavity floor for the clean
cavity L/D 7 with doors. Plots compare results from
DES, SAS and URANS methods.

5.5 Proper Orthogonal Decomposition Analysis

To construct the POD modes, 101 snapshots were taken
at regular intervals for the SAS computation of the

(a) Experiment

(b) DES

(c) SAS

Figure 18: Space–time maps along the floor for the clean
cavity, L/D 5, without doors comparing results from
DES (b) and SAS (c) to the experimental data (a) from
Nightingale et al.[12]. The different colours represent:
blue - mode 1, green - mode 2, red - mode 3, white -
mode 4.

L/D 7 cavity with doors off. The POD was performed
on the five primitive variables: density, u, v and w
velocities and pressure. The three-dimensional cavity
flow-field was reconstructed using 2, 11, 51 and 101
modes. This selection was limited by the available disk
storage, for which the 101 snap-shots approached 100
GB for a mesh size of five million cells. With the mean
mode ignored, the cumulative energy is shown in Fig.
20 for DES and SAS showing that pressure and density
modes contained more energy than the velocity variables.
As an example, the cumulative energy per mode from
DES shows that 80% of the energy in pressure can
be gained from 20 modes, whereas approximately 50
modes would be needed to gain the same value for the
w velocity. This meant that the pressure field was more
coherent and organised, and could be described using
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(a) Experiment

(b) SAS

Figure 19: Space–time maps along the floor for the
clean cavity, L/D 5, with doors comparing results from
SAS (b) to the experimental data (a) from Nightingale
et al.[12]. The different colours represent: blue - mode 1,
green - mode 2, red - mode 3, white - mode 4.

fewer modes, while the velocity fields contained smaller
and possibly more turbulent structures, meaning that
the energy was redistributed to the higher modes. For the
modes constructed from SAS, the energy in the velocity
variables per mode were similar to DES, however, the
pressure and density variables showed a 10% decrease in
the energy per mode. This means that while 80% of the
energy in density can be gained from 20 modes of a DES
solution, 30 modes are required from the SAS solution
to gain the same amount of energy

The decomposition using 101 snapshots and a
reduced set of 51 snapshots are compared in Fig. 21 for
DES and SAS. The ratios of the modes to the first mode
were quite similar for both decompositions (51 and 101)
up to about mode number 20 for DES and SAS implying
that even the reduced set would give a good indication of
the structure of the flow, although the modes would not
be as well resolved. The comparison of the decomposition
between DES and SAS showed that most of the energy
was contained within the lower modes. SAS shifted more
of the energy into lower modes than DES. Pressure
and normal velocity showed the biggest differences with
curves for DES dropping faster after about 20 modes.
This mean that more number of modes would be required
by SAS to capture the lower levels of energy in the flow.

(a) DES

(b) SAS

Figure 20: Cumulative energy for increasing number of
modes for DES (a) and SAS (b) results for the clean
cavity L/D 7.

5.6 Flow-Field Reconstructions for Clean Cavity
L/D 7

SAS flow-fields for the cavity L/D 7 without doors
were reconstructed using 2, 11, 51 and 101 modes. The
flow-fields from the reconstructions are shown in Fig.
22. Contours of Mach number at the cavity centreline
show that the full dynamics of the shear layer was
only represented when 51 modes or more were used.
Structures inside the cavity only began to appear when
51 modes were used.

The areas of high difference were generally restricted
to the aft half of the cavity. Reconstructions from
51 modes gave significant improvement, although
differences still appeared in areas around the aft wall
and shear layer where the smallest structures occurred.
It should be noted that the time-varying mean flow-
field (POD mode 1) was always included in the
reconstructions. Therefore when the reconstructed data
are averaged, the flow-field was unaffected by the number
of modes used in the reconstruction.
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(a) Pressure

(b) Streamwise Velocity

(c) Normal Velocity

(d) Spanwise Velocity

Figure 21: Mode eigenvalues normalised by the first
mode eigenvalue comparing the POD for DES (a) and
SAS (b) results for the clean cavity L/D 7 comparing
DES and SAS results for reduced sets of 51 and 101
modes.

(a) Original

(b) 2 Modes

(c) 11 Modes

(d) 51 Modes

(e) 101 Modes

Figure 22: Reconstruction of the SAS computation for
the L/D 7 cavity Mach field using increasing number of
modes. Contours are shown at the cavity centreline and
range from 0 (blue) to 1 (red).

6 Summary and Conclusions

Simulations for the flow over transonic cavities were
carried out for cavities of L/D 5 and 7 with and without
doors. Flow visualisations showed the unsteadiness and
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breakdown of the shear layer, the upstream propagation
of acoustic waves from the aft wall and away from the
cavities. Q-Criteria revealed the structures present inside
and along the length of the cavities. Results from DES,
SAS and URANS were compared with experimental
results for the L/D 5 case and revealed fundamental
differences between the two configurations. Unsteady
pressure data along the floor that revealed the spectra for
the cavities with doors off were dominated by multiple
peaks from the first, second and third modes, however,
the cavities with doors on were dominated by the second
mode only. The dominant modes of the cavity shifted
between the L/D 5 and L/D 7 case with doors off
where modes two and three were dominant for L/D 5
and modes one and two were dominant for L/D 7. The
addition of the doors stopped this shifting of modes and
retained dominance of the second mode for both types
of cavities with the L/D 7 being quieter than the L/D 5
by 10dB. The JTFA showed the mode switching nature
of the L/D 5 cavity without doors and also highlighted
the dominance of the second mode along the middle
of the cavity. SAS produced results at about a 10th
of the time of DES and showed good agreement with
experimental results for the L/D 5 cavity and good
agreement with the DES results for the L/D 7 cavity for
which experimental results were not available. The use
of POD to reduce the information stored demonstrated
that approximately 85% of the flow energy needed to be
retained for an accurate flowfield reconstruction. Future
work will focus on simulations of a store in the cavity to
further demonstrate the use of SAS and the possibility
to extend it to the problem of store release from cavities.
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