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Abstract

Computational models for the personalized analysis of human femurs contain uncertain-
ties in bone material properties and loads, which affect the simulation results. To quantify
the influence we developed a probabilistic framework based on polynomial chaos (PC) that
propagates stochastic input variables through any computational model. We considered a
stochastic E-p relationship and a stochastic hip contact force, representing realistic variabil-
ity of experimental data. Their influence on the prediction of principal strains (e; and e3)
was quantified for one human proximal femur, including sensitivity and reliability analysis.
Large variabilities in the principal strain predictions were found in the cortical shell of the
femoral neck, with coefficients of variation of ~ 40%. Between 60-80% of the variance in €
and €3 are attributable to the uncertainty in the E-p relationship, while &~ 10% are caused
by the load magnitude and 5-30% by the load direction. Principal strain directions were un-
affected by material and loading uncertainties. The antero-superior and medial inferior sides
of the neck exhibited the largest probabilities for tensile and compression failure, however
all were very small (p; < 0.001). In summary, uncertainty quantification with PC has been
demonstrated to efficiently and accurately describe the influence of very different stochastic
inputs, which increases the credibility and explanatory power of personalized analyses of
human proximal femurs.
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1. Introduction

Computational models based on computed tomography (CT) are widely used to predict
the mechanical behavior of human femurs (Bessho et al., 2007, Yosibash et al., 2013, Schileo
et al.,, 2014, Ali et al., 2014). These have demonstrated their predictive accuracy with
respect to in-vitro experiments, where a well-defined load is applied (Schileo et al., 2007,
Cristofolini et al., 2010, Trabelsi et al., 2011, Ruess et al., 2012). In clinical practice, however,
personalized physiological loading conditions are required. Magnitude and direction of the
hip contact force are usually inferred from in-vivo measurements (Bergmann et al., 2001,
2010), but contain uncertainties because of inter- and intra-patient variations. Another
major challenge is the determination of heterogeneous material properties (Taddei et al.,
2007, Helgason et al., 2008, Eberle et al., 2013). The large scatter in the experiments that
determine the relationship between Young’s modulus E and a local densitometric measure p
also induces uncertainties. Quantifying the influence of both uncertainties on the predicted
mechanical response of the femur is mandatory when advocating computational models for
clinical practice.

Uncertainty quantification is an essential part of model validation and is performed in
three steps: characterizing the uncertain parameters, propagating them through the compu-
tational model, and estimating the stochastic response of interest (Oberkampf et al., 2004).
Probabilistic studies that performed uncertainty quantification for computational models of
human femurs are summarized in Table 1 along with their stochastic components, proba-

bilistic methods, and aim of research.
[Table 1 about here.|

Material and hip loading uncertainties have been characterized most frequently. Some
studies assumed a random but homogeneous Young’s modulus for the entire femur (Bah and
Browne, 2009, Mehrez and Browne, 2012) or simplified the spatial distribution of cortical
and trabecular bone (Chang et al., 2001, Nicolella et al., 2006, Viceconti et al., 2006). Others

considered material uncertainties within the FE-p relationship (Chinchalkar and Taylor, 1989,
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Taddei et al., 2006, Laz et al., 2007, Long et al., 2009), but each study applied a different
relationship with different random variables. Regarding the loading conditions, all studies
considered a quasi-static loading representing walking free or going upstairs. Uncertainty in
the hip contact force was commonly described with a random variable for the magnitude
while the direction was assumed deterministic. Only few studies considered also uncertainties
within the force direction (Nicolella et al., 2006, Long et al., 2009, Dopico-Gonzalez et al.,
2010). These conceptual differences led us to consider the stochastic E-p relationship from
Wille et al. (2012) in combination with the stochastic description of the peak hip contact force
magnitude and direction from Yosibash et al. (2015), both representing realistic variabilities
of experimental data.

Various probabilistic methods have been used for propagating uncertainties through a
computational model, among them Monte Carlo (MC) simulation (Taddei et al., 2006, Vice-
conti et al., 2006, Laz et al., 2007, Dopico-Gonzalez et al., 2010, Mehrez and Browne, 2012),
response surface methods (Chang et al., 2001, Bah and Browne, 2009, Long et al., 2009), and
the advanced mean-value method (Nicolella et al., 2006, Laz et al., 2007). These methods
have in common that they are non-intrusive with respect to the computational model, i.e.
they use the computational model as a black box and require no access to the solver. Accu-
racy and efficiency of the probabilistic methods vary, depending on the number of uncertain
parameters and the stochastic response of interest. In this study we employed a different
probabilistic method based on the concept of polynomial chaos (PC) (Ghanem and Spanos,
1990, Xiu and Karniadakis, 2002, Xiu, 2009), which has been shown to be superior in many
engineering problems over the past two decades.

Most studies in Table 1 investigated the influence of model uncertainties within the con-
text of a total hip replacement, which increases the model complexity considerably. Only
two studies analyzed the mechanical behavior of femurs without an implant (Taddei et al.,
2006, Laz et al., 2007), but limited the investigation to global performance indicators such as
the maximum von Mises stress. Results typically included some descriptive statistics of the
response variable (e.g. mean, standard deviation, 15 and 99" percentile), estimates of its
distribution (probability density function or cumulative distribution function), and/or sen-

sitivity parameters and probabilities of failure. None of the studies quantified uncertainties
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for the prediction of principal strains at different locations of the entire proximal femur.
The objective of this research was to develop a general framework for uncertainty quan-
tification, which propagates parameter uncertainties efficiently and accurately through any
computational model in a non-intrusive manner. In addition to a complete stochastic de-
scription of the response, the framework was required to enable global sensitivity analyses
and simple reliability studies. We demonstrate uncertainty quantification for the personal-
ized analysis of one human proximal femur, with focus on the prediction of principal strain

magnitudes and directions.

2. Methods

We considered in total four stochastic input variables when analyzing a patient-specific
femur: one describing uncertainties in the E-p relationship and three describing uncertainties
in the peak hip contact force magnitude and directions. The framework was used to compute
mean and standard deviation as well as the probability density function of the stochastic
response at various post processing locations. These stochastic results were verified with a
Monte Carlo (MC) simulation. Additionally, a global sensitivity analysis of the stochastic
response and a simple reliability analysis were performed.

The framework was applied to the right proximal femur of a 56y old male, denoted FF5
in Yosibash et al. (2013). The donor died from a myocardial infarction, showed no skeletal
disease, and had an approximated body weight of 800 N. Principal strain magnitudes and
directions were computed with the Finite Cell Method (FCM) (Ruess et al., 2012), which
performs the personalized analysis directly on the voxel data of a CT-scan. Bone FF5 had
been scanned in water by a Philips Brilliance 64 CT Scanner (Eindhoven, Netherlands)
resulting in a CT-scan comprised of 140 slices with 1.25 mm slice thickness and 0.26 mm in-
plane resolution. Prior to uncertainty quantification, the accuracy of the FCM was rechecked

by comparison to an in-vitro experiment reported in Yosibash et al. (2013).

2.1. Stochastic input variables

A stochastic relationship between ash density p.q, and Young’s modulus F based on

pooled data from multiple experimental studies on femur tissue was presented in Wille et al.
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E =12000- p- - Xp E in [MPa], pash in [g/cm?] (1)

with Xg ~ InN(up = 0,0% = 0.316%) being a log-normal random variable. The two
parameters up and 0% denote mean and variance of the associated normal distribution. Xpg
characterizes the scatter of residual values around the regression mean (Wille et al., 2012).

The stochastic loading model from Yosibash et al. (2015) was considered. It describes
variations in the peak hip contact force during walking free and going upstairs and was
derived from databases HIP98 (Bergmann, 2001) and OrthoLoad (Bergmann, 2008), which
contain in-vivo measurements of the hip contact force (Bergmann et al., 2001, Heller et al.,
2001). In total 141 data records from seven patients (3 female, 4 male, age: 55-82y, weight:
49-101kg) were considered for the stochastic loading model. Using the anatomical refer-
ence frame of Orthol.oad, the hip contact force is described by its magnitude F and two
corresponding angular directions A, and A,; details are given in Yosibash et al. (2015).

We restricted this study to the stochastic loading model for going upstairs, as it has the

largest spread in data:

Xp ~ N(0.97 - BW + 1465, 277%) F, BW in [N] (2)
X4, ~ N(15.25, 3.38%) A, in [deg] (3)
Xa, ~ N(19.69, 6.49%) A, in [deg] (4)

where BW denotes the body weight. The three independent normal random variables Xp,
Xa,, and X4, characterize both inter- and intra-patient variability of the force magnitude
and direction, respectively (Yosibash et al., 2015). Inserting the assumed body weight of
800 N in (2) yields Xp ~ A(2241, 277%), which completes the stochastic hip loading for the

personalized analysis of bone FF5.

2.2. Uncertainty propagation with polynomial chaos

We consider the computational model as a black box denoted by M into which the
random vector X = [XE,XF,XAZ,XAy]T is input, and denote the stochastic output of

interest by Y = M(X). The random variable Y can be any scalar quantity at a specific
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location, like maximum or minimum principal strains (€; or €3), or principal directions in
spherical coordinates (polar angle 6 and azimuthal angle ¢).

The main idea of PC is to represent Y by a series of orthogonal polynomials that depend
on standardized random variables (Ghanem and Spanos, 1990). The distribution type of the
input random variables defines the specific family of orthogonal polynomials. In our case,

every input variable in X is related to an independent, standard normal random variable

U~ N(0,1):

Xg = exp(0.316 - Uy) (5)
Xp = 2241 + 277 - Uy (6)
X4, = 15.25 +3.38 - Uy (7)
X4, =19.69 +6.49 - U, (8)

for which the Hermite polynomials form an orthogonal basis (Xiu and Karniadakis, 2002).

The polynomial chaos expansion (PCE) of the stochastic response reads then:

Y = M(X) =) va¥a(U) (9)
acA
where y,, are unknown coefficients; o = (o, . .., ay) aset of indices, and U = [Uy, Uy, Us, U4]T

the vector of standard normal variables. The corresponding basis functions are ¥, (U) =
hoy(Ur) « hay(U2) * hay(Us) « ha,(Uy) with h,, denoting the normalized Hermite polynomial
of degree «;. In practice, the PCE (9) is truncated at a specific order p defining the highest
polynomial degree of W,. This limits the total number of coefficients y,, which is given by
the binomial coefficient (4;”) (Sudret, 2008). When approximating Y with PCEs of order
p=1, 2,3, or 4, then only 5, 15, 35, or 70 coefficients have to be determined, respectively.

Because the orthogonality of the basis functions is defined with respect to the expectation

operator E, it holds for the Hermite polynomials that:

B0alU) Val0)) = [ Wafon) Wa(u) fo(u) du = (1) “;Z (10)

where fy(u) is the joint probability density function of random vector U, which defines

for every event w in the support space Dy the respective probability measure fy(u)du.

6
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Utilizing (10) in combination with (9), the coefficients y,, are obtained by:
Yo = E [Y \I[a(U)] = M (33) \I/a(’u’) fU(u) du (11)
Du

The integral (11) is approximated by a quadrature:
z
Yo~ Y wi M (29) Ug(ul?) (12)
i=1

with ©? and w; denoting the quadrature points and weights of the Gauss-Hermite quadra-
ture, respectively. The corresponding model inputs ¥ are derived from u® using (5)—(8).
Evaluating the multi-dimensional integral (11) by tensor products of 1-D quadrature re-
sults in an exponential growth of quadrature points as the number of dimensions increases.
This curse of dimensionality is circumvented by using Smolyak’s quadrature scheme instead
(Smolyak, 1963); we utilized the implementation provided by Heiss and Winschel (2008).

When Y is approximated with a PCE of order p = 1, 2, 3, or 4 for instance, then the
computation of all 5, 15, 35, or 70 coefficients with (12) requires only 9, 41, 137, or 385
simulation runs with the model M, respectively. Each simulation run evaluates then a
different combination of E-p relationship, force magnitude, and load directions, according
to the quadrature points. The hierarchical nature of both PCEs and Smolyak’s quadrature
scheme allowed us to adaptively increase the number of quadrature points and to reuse lower
order approximations.

A MC simulation was conducted in order to verify the results of the PCE. MC involves
repeated random sampling of X and solving for each a deterministic problem, which results
in a sample set of Y. From this we computed the sample variance and an estimate of the
response distribution (histogram). Due to the slow convergence rate of the MC simulation,

many deterministic simulation runs are required; we performed 10000.

2.3. Post-processing the stochastic response

After all coefficients have been determined using (12), the mean puy of the stochastic

response Y is described by the coefficient yo, and the variance o3 of the stochastic response
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is the sum of squares of all coefficients except yo (Sudret, 2008):

py = E[Y] =yo (13)

oy =EB[(Y =y )1 = D vl (14)
acA\0

Please note that both parameters do not imply that Y is normally distributed, but are two
parameters that describe location and dispersion, respectively, of any response distribution.
We obtained the probability density function (PDF) of Y by kernel smoothing a large set
of response samples (Wand and Jones, 1995). For this purpose, the PCE was used as a
surrogate model to generate 10 samples of the response variable. These samples were also
used for a reliability analysis. For that we considered a simple strain based failure criterion
(Schileo et al., 2008, Yosibash et al., 2010, Schileo et al., 2014), which uses the yield strain for
femoral bone tissue in tension €, = 7300 pm/m and compression €, = —10400 pm/m
(Bayraktar et al., 2004) as threshold values. Consequently, we defined the failure probability
ps for (local) tensile or compression failure as the likelihood that the maximum principal
strain €; > €m, 7 or the minimum principal strain €3 < e ¢. We approximated p; from the
number of response samples fulfilling the respective criteria, divided by the total number of
samples.

PCEs can be also used for a global sensitivity analysis. Sudret (2008) proved that PCEs
are identical to Sobol’” decompositions of the model M (Sobol’, 2001) and that the corre-
sponding Sobol’ indices can be computed directly from the coefficients of the PCE. Sobol’
indices are global sensitivity indices, which represent the fraction of the response variance that
can be attributed to a specific input variable or their interactions. The first-order sensitivity
indices Sg, Sk, Sa,, and Sy, quantify in percentage the influence of each input variable taken
alone and were computed from the square-summed and normalized coefficients that are ex-
clusively associated with the respective input variable (Sudret, 2008). Also the sum of all re-
maining higher-order interaction indices was computed using Y S;; = 1—Sg—Sp—=Sa, =S54,

Finally, the stochastic results were visualized pointwise for an intuitive interpretation.
We depicted mean and variance of the maximum and minimum principal strain with a
sphere whose color is defined by the mean, whereas the radius depends on the standard

deviation. Failure probabilities were also represented by colored spheres, however all radii
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were identical in that case. We verified the stochastic results of the PCE by comparing the
PDF with the respective histogram of the MC simulation. Moreover, we investigated the

convergence behavior of both methods approximating the variance.

2.4. Deterministic stmulation by FCM

The FCM embeds the voxel-based geometry of bone FF5 in a simulation domain of hexa-
hedral cells following a regular Cartesian grid. Figure 1 illustrates this concept, which omits
a computational expensive segmentation and meshing procedure, as required for standard
finite element analyses. The FCM proved to be highly efficient for linear elastic analyses of

bones and was validated by in-vitro experiments in a previous study (Ruess et al., 2012).
[Figure 1 about here.|

The large computational cells were implemented as p-version hexahedral elements (Diister
et al., 2008) and should not be mistaken for low order finite elements. Within one finite cell
material properties can vary significantly, and it was shown that a coarse grid of cells is
sufficient to obtain accurate results for a fine voxel resolution like the one used in the present
study (Ruess et al., 2012). Inhomogeneous isotropic material properties were assumed for
bone tissue (Trabelsi et al., 2011). After converting Hounsfield unit HU into equivalent

mineral density peqm and then into ash density p,s, based on:

Peqm = 107" - (0.793 - HU + 4.183) [g/cm?] (15)

past = 1.2 - peqm + 0.0523 lg/cm’] (16)

where (15) is the calibration of the CT-scan with KsHPO,4 phantoms and (16) is from Keyak
and Falkinstein (2003), the heterogeneous Young’s modulus was derived from (1). Because
the random variable in (1) is location independent, it affects the heterogeneous Young’s
modulus everywhere the same and thus can be regarded as a global scaling factor. In all
computations a constant Poisson ratio v = 0.3 was used.

The hip contact force was modeled as a surface load, which distributes the force over
a locally confined contact area on the head of the femur. Since the head is approximately

spherical, the contact area was designed as a spherical cap (radius of sphere: 24 mm, radius
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of base of the cap: 10mm). The applied pressure load and the orientation of the contact
area were chosen according to the stochastic input variables Xz, X4, and X4,

Within the probabilistic framework this computational model was used to assess max-
imum and minimum principal strains (€1, €3) and principal directions (6, ¢) at 884 post-
processing locations (554 spread along the femoral cortex, 330 uniformly filling the trabecular

compartment and the diaphysis).

2.5. Verifying FCM’s accuracy

Prior to uncertainty quantification, the accuracy of the deterministic computational
model was rechecked by comparison to an in-vitro experiment (Yosibash et al., 2013). The
femur was loaded as in the experiment (F' = 1000N, A, = A, = 0Odeg), and the median
of the stochastic E-p relationship (1) was used, since Median(Xg) = 1. Principal strains
were computed for the 11 surface locations (four at the superior and inferior neck, seven at
the medial and lateral diaphysis) at which strains had been measured (Yosibash et al., 2013,
Fig 2). Convergence in energy norm was investigated by increasing the polynomial order of

the FCM, i.e. PrcMm = 1, ey 5.

3. Results

The deterministic FCM has a high predictive accuracy: computed strains matched well
the ones measured in the experiment (correlation r = 0.987, average relative error of 18%).
Convergence in energy norm was achieved for ppcy = 4 (with an error of 8.4%). Thus, all
simulation runs were performed with ppcv = 4.

The stochastic results were verified by comparing the PDFs of the PCE to the respective
histograms of the MC simulation, as depicted exemplarily for one post-processing location
in Figure 2. The PCE of order p = 4 (385 Smolyak runs) was in excellent agreement with
the MC simulation (10000 runs), which is also reflected in the convergence behavior of both

methods (Figure 2b).
[Figure 2 about here.|

Means and standard deviations of the maximum and minimum principal strains are shown

in Figure 3. The vast majority of large strain values were found within the cortical shell.

10
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Given that the loading had a pronounced inclination in the sagittal plane, ¢; was largest
at the anterior side at the distal diaphysis (1 = 2380, ¢ = 955) and the antero-superior
neck (p = 1569, o = 656). Contrarily, the largest values for €3 were predominantly at the
posterior side of the femur, with strain concentrations at the distal diaphysis (pu = —3230,

o = 1270) and the medial neck above the lesser trochanter (p = —2296, o = 824).
[Figure 3 about here.|

The largest failure probabilities within the region of the femoral neck were found to be
py = 13107 for tensile failure (point 351 in Figure 4a) and p; = 2 - 107° for compression
failure (point 231 in Figure 4b), respectively. Both locations are in the cortical shell. In

general all failure probabilities were small (p; < 0.001, at many locations even p; < 107°).
[Figure 4 about here.|

Results of the sensitivity analysis for these two points are summarized in Table 2. €
and €3 were most sensitive to the stochastic £-p relationship (Sg ~ 60% for €, at point 351,
and Sgp ~ 80% for €3 at point 231)." Around 10% of the variance in the principal strain
magnitudes is attributed to the force magnitude; the influence of the load angles is larger
for €, (Sa, = 15.2%, Sa, = 12.2%) than for €3 (Sa, = 2.8%, Sa, = 2.4%). Different
results were obtained for the principal directions: 6 and ¢ of both principal strains were
affected solely by A, and A, which accounted together for more than 95% of the respective
variances. The FE-p relationship and the force magnitude had no influence on the principal
directions (Sg, Sp < 107%). Note that the standard deviation of 6 and ¢ were found to be
very small (< 5deg). Although the load angles explained the vast majority of the variance,

their absolute effect on the principal directions is minor.

| Table 2 about here.|

4. Discussion

A probabilistic framework was developed to quantify the influence of material and load-

ing uncertainties on the prediction of principal strains within a personalized analysis of a

11
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human proximal femur. The predicted strains were highly affected by the four stochastic
input variables, which represented experimental variabilities in the E-p relationship and the
hip contact force. The large standard deviations for €; (0 < 656) and €3 (0 < 824) at the
femoral neck imply broad probability distributions and thus large ranges of possible strain
predictions. Even broader distributions were found at the distal diaphysis but can be at-
tributed to the clamped boundary condition. The coefficient of variation (standard deviation
divided by the mean) was =~ 40% for both ¢; and ez at all locations with sufficiently large
mean values. This relative variability within the principal strain predictions is larger than
the one reported in Taddei et al. (2006), which computed coefficients of variation of less than
9% for max e; and maxes. These differences may be explained by the uncertainty in the E-
p relationship, which is larger in the current study. For comparison purposes, assuming a
bone density of pgsn = 1.2g/cm?, the 95% prediction band of the Young’s modulus ranged
between 8.4-29.1 GPa in this study, compared to 16.6-16.9 GPa in Taddei et al. (2006).

The global sensitivity analysis corroborated the dominating influence of the stochastic
E-p relationship on the magnitude of e; and e3. Within the femoral neck, between 60-
80% of the variance of both principal strains were explained by the uncertainty in the FE-p
relationship. Because of its large influence compared to the other three input variables, a
reduction of the uncertainty in the FE-p relationship would have the largest effect on €; and
€3 and narrow the response distributions the most. This would require new experiments
on bone tissue specimens with a well defined protocol that reduces the large spread in the
current experimental data (Helgason et al., 2008, Wille et al., 2012).

Predictions of the principal strain direction, on the other hand, were completely unaf-
fected by the uncertainties in the FE-p relationship and the force magnitude. Only the load
direction had an influence on the direction of the principal strains. However, the effect was
marginal as the standard deviation of the principal strain directions was found to be very
small within the femoral neck (< 5deg), which is in agreement with experimental obser-
vations. Cristofolini et al. (2009) measured strains in 24 femurs for six different loading
configurations and reported for all strain measurements a standard deviation of 6.7 deg.

A comparison with sensitivity results from other stochastic studies (Table 1) renders

difficult. The main reason is that different sensitivity measures were used. Some studies

12
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reported Pearson’s correlation coefficient between the stochastic input variables and the
response variables as sensitivity indices (Taddei et al., 2006, Viceconti et al., 2006, Dopico-
Gonzalez et al., 2010), which assess the strength of the linear association between them.
In case the input affects non-linearly the computational model, such a correlation analysis
can be very misleading. More meaningful are local sensitivity analyses, with sensitivity
indices measuring how changes in the parameters of the stochastic input variables (e.g.
mean or standard deviation) affect the probability of failure (Nicolella et al., 2006, Mehrez
and Browne, 2012). In contrast, we performed a global sensitivity analysis, which is based on
a variance decomposition for the stochastic response. Here, sensitivity indices quantify the
percentage of the response variance attributable to an entire input variable or combinations
of variables.

Regarding the reliability analysis, all failure probabilities were found to be very small
(py < 0.001). The antero-superior neck region of this femur is more likely to suffer from
local tension failure (p; < 13-107%) than the postero-medial neck region from compression
failure (p; < 2-107%), when loaded with the peak hip contact force during going upstairs.
However, both events are extremely improbable; an expected outcome given that the subject
had no skeletal disease. Note that these local failure probabilities are not implying any global
clinical failure or bone fracture. Instead they describe the likelihood of irreversible damage
in the bone tissue at the respective location, which may cause fracture initiation.

The presented uncertainty quantification, including sensitivity and reliability analysis,
was used largely to demonstrate the probabilistic framework based on PC. This powerful
and widely accepted approach is novel in biomechanics, and to the best of our knowledge
was only used for a cardiovascular simulation (Sankaran and Marsden, 2011). The PC
approach was two orders of magnitude computationally more efficient than an extensive MC
simulation (10000 runs) performed to verify the stochastic results. In fact, a PCE of lower
order (p = 3) would have been sufficient to approximate the stochastic response in this
study (cf. Figure 2), further reducing the number of necessary simulation runs from 385
to 137. Uncertainty quantification with a specific objective, e.g. determining percentiles or
computing failure probabilities, might be possible at even lower computational costs with the

advanced mean value method (Nicolella et al., 2006, Laz et al., 2007). However, a meaningful
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comparison would require both methods to be applied to the same stochastic problem.

Further limitations of this study are related to the computational model and the stochas-
tic input variables. Any personalized computational model requires assumptions on the
geometry, material behavior, and boundary conditions. Uncertainties in geometry due to
imprecise segmentation from CT-scans were not addressed, because they are considered neg-
ligible compared to material and loading uncertainties (Gelaude et al., 2008, Trabelsi et al.,
2009). The material behavior of the bone was assumed to be linear elastic and isotropic,
which is a simplification of the reality that proved to be reasonable for stance-like loading
conditions (Trabelsi et al., 2011). Orthotropic or transversely isotropic material models may
become necessary in case of loading conditions that introduce considerable torsional mo-
ments, e.g. during sidewise falling. Another limitation is the clamped boundary condition at
the distal diaphysis. Although mean deflections were within physiological range (< 2.5 mm),
realistic physiological boundary conditions would include kinematic constraints at the joints
as well as muscle forces (Speirs et al., 2007). The absence of muscle forces in this study
explains the very small strains observed in the greater trochanter area. However, we are
unaware of any (stochastic) muscle force model that is suitable for the personalized analysis
of human femurs. Clearly, all limitations related to the stochastic input variables pass on
to the probabilistic analysis. For example, the stochastic peak hip contact force was derived
from an elderly population (age 55-82y) with total hip replacements (Yosibash et al., 2015).
Here, the subject (age 56y) falls inside the range, but had no hip implant. Moreover, the
stochastic F-p relationship was obtained by pooling data sets of various experimental studies
(Wille et al.; 2012). The different experimental protocols contributed considerably to the
uncertainty in the E-p relationship. In both cases it is important to enhance the respec-
tive data basis with further experimental results, as this will improve the description of the
stochastic input parameters.

In closing, a probabilistic framework that allows to quantify the influence of parameter
uncertainties on the personalized analysis of human femurs was presented. The probabilistic
framework can be applied to any computational model and easily extended by additional
stochastic input variables. Future studies may not only perform uncertainty quantification

for the prediction of principal strains, but investigate also displacements, stresses, global

14



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

bone stiffness, implant micro-motions etc. The global sensitivity indices can then be used
to identify input parameters that have a negligible influence on the stochastic response and
therefore can be safely considered as deterministic parameter. In case of clinical assessments,
uncertainty quantification will significantly increase the credibility and explanatory power

of computational models.

Conflict of interest statement

None of the authors have any conflict of interest to declare that could prejudice this work.

Acknowledgments

The authors thank the anonymous reviewers for their valuable and constructive comments
leading to improvements in the content and presentation. We acknowledge the generous
support of the Institute for Advanced Study of the Technische Universitdt Miinchen (TUM),
funded by the German Excellence Initiative, and thank Dr. Tason Papaioannou from the

TUM for helpful discussions.

References

Ali, A.A., Cristofolini, L., Schileo, E., Hu, H., Taddei, F., Kim, R.H., Rullkoetter, P.J.
Laz, P.J., 2014. Specimen-specific modeling of hip fracture pattern and repair. Journal of

Biomechanics 47, 536-543.

Bah, M.T., Browne, M., 2009. Effect of geometrical uncertainty on cemented hip implant

structural integrity. Journal of Biomechanical Engineering 131, 054501.

Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, T.M.,
2004. Comparison of the elastic and yield properties of human femoral trabecular and

cortical bone tissue. Journal of Biomechanics 37, 27-35.

Bergmann, G. (Ed.), 2001. HIP98 - Loading of the Hip Joint. Julius Wolff Institute, Charité

- Universitatsmedizin Berlin. www.OrthoLoad.com.

15



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Bergmann, G. (Ed.), 2008. OrthoLoad database. Charité - Universititsmedizin Berlin.

www.OrthoLoad.com.

Bergmann, G., Deuretzbacher, G., Heller, M.O., Graichen, F., Rohlmann, A., Strauss, J.,
Duda, G.N., 2001. Hip contact forces and gait patterns from routine activities. Journal of

Biomechanics 34, 859-871.

Bergmann, G., Graichen, F., Rohlmann, A., Bender, A., Heinlein, B., Duda, G.N., Heller,
M.O., Morlock, M.M., 2010. Realistic loads for testing hip implants. Bio-Medical Materials
and Engineering 20, 65-75.

Bessho, M., Ohnishi, 1., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K., 2007.
Prediction of strength and strain of the proximal femur by a CT-based finite element

method. Journal of Biomechanics 40, 1745-1753.

Chang, P.B., Williams, B.J., Bhalla, K.S.B., Belknap, T.W., Santner, T.J., Notz, W.I.,
Bartel, D.L., 2001. Design and Analysis of Robust Total Joint Replacements: Finite
Element Model Experiments With Environmental Variables. Journal of Biomechanical

Engineering 123, 239-246.

Chinchalkar, S., Taylor, D.L., 1989. Loading and Material Property Uncertainties in Finite
Element Analysis for Orthopedics, in: Thirty-fifth Conference on the Design of Experi-
ments, U.S. Army Research Office, Monterey, USA, 13-20 October 1989. pp. 91-102.

Cristofolini, L., Juszczyk, M.M., Taddei, F., Viceconti, M., 2009. Strain distribution in
the proximal human femoral metaphysis. Proceedings of the Institution of Mechanical

Engineers, Part H: Journal of Engineering in Medicine 223, 273-288.

Cristofolini, L., Schileo, E., Juszczyk, M.M., Taddei, F., Martelli, S., Viceconti, M., 2010.
Mechanical testing of bones: the positive synergy of finite-element models and in vitro

experiments. Philosophical transactions. Series A, Mathematical, physical, and engineering

sciences 368, 2725-2763.

Dopico-Gonzalez, C., New, A.M.R., Browne, M., 2010. Probabilistic finite element analysis

16



1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

of the uncemented hip replacement—effect of femur characteristics and implant design

geometry. Journal of Biomechanics 43, 512-520.

Diister, A., Parvizian, J., Yang, Z., Rank, E., 2008. The finite cell method for three-
dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and

Engineering 197, 3768-3782.

Eberle, S., Gottlinger, M., Augat, P., 2013. Individual density-elasticity relationships im-
prove accuracy of subject-specific finite element models of human femurs. Journal of

Biomechanics 46, 2152-2157.

Gelaude, F., Vander Sloten, J., Lauwers, B., 2008. Accuracy assessment of CT-based outer
surface femur meshes. Computer Aided Surgery 13, 188-199.

Ghanem, R.G., Spanos, P.D., 1990. Polynomial Chaos in Stochastic Finite Elements. Journal
of Applied Mechanics 57, 197.

Grasa, J., Pérez, M.A., Bea, J.A., Garcia-Aznar, J.M., Doblaré, M., 2005. A probabilistic
damage model for acrylic cements. Application to the life prediction of cemented hip

implants. International Journal of Fatigue 27, 891-904.

Heiss, F., Winschel, V., 2008. Likelihood approximation by numerical integration on sparse

grids. Journal of Econometrics 144, 62-80.

Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjolfsson, S., Viceconti, M., 2008. Mathe-
matical relationships between bone density and mechanical properties: a literature review.

Clinical Biomechanics 23, 135-146.

Heller, M.O., Bergmann, G., Deuretzbacher, G., Diirselen, L., Pohl, M., Claes, L., Haas,
N.P., Duda, G.N., 2001. Musculo-skeletal loading conditions at the hip during walking

and stair climbing. Journal of Biomechanics 34, 883-893.

Keyak, J.H., Falkinstein, Y., 2003. Comparison of in situ and in vitro CT scan-based finite
element model predictions of proximal femoral fracture load. Medical Engineering &

Physics 25, 781-787.

17



10

11

12

13

14

15

16

17

18

19

20

21

22

23

Laz, P.J., Stowe, J.Q., Baldwin, M.A., Petrella, A.J., Rullkoetter, P.J., 2007. Incorporating
uncertainty in mechanical properties for finite element-based evaluation of bone mechanics.

Journal of Biomechanics 40, 2831-2836.

Long, J.P., Santner, T.J., Bartel, D.L., 2009. Hip resurfacing increases bone strains associ-

ated with short-term femoral neck fracture. Journal of Orthopaedic Research 27, 1319-25.

Mehrez, L., Browne, M., 2012. A numerically validated probabilistic model of a simplified
total hip replacement construct. Computer Methods in Biomechanics and Biomedical

Engineering 15, 845-858.

Nicolella, D.P., Thacker, B.H., Katoozian, H., Davy, D.T., 2006. The effect of three-
dimensional shape optimization on the probabilistic response of a cemented femoral hip

prosthesis. Journal of Biomechanics 39, 1265-1278.

Oberkampf, W.L., Trucano, T.G., Hirsch, C., 2004. Verification, validation, and predictive

capability in computational engineering and physics. Applied Mechanics Reviews 57, 345.

Pérez, M.A., Grasa, J., Garcia-Aznar, J.M., Bea, J.A., Doblaré, M., 2006. Probabilistic anal-
ysis of the influence of the bonding degree of the stem-cement interface in the performance

of cemented hip prostheses. Journal of Biomechanics 39, 1859-1872.

Ruess, M., Tal, D., Trabelsi, N., Yosibash, Z., Rank, E., 2012. The finite cell method for bone
simulations: verification and validation. Biomechanics and Modeling in Mechanobiology

11, 425-437.

Sankaran, S., Marsden, A.L., 2011. A stochastic collocation method for uncertainty quan-
tification and propagation in cardiovascular simulations. Journal of Biomechanical Engi-

neering 133, 031001.

Schileo, E., Balistreri, L., Grassi, L., Cristofolini, L., Taddei, F., 2014. To what extent can
linear finite element models of human femora predict failure under stance and fall loading

configurations? Journal of Biomechanics 47, 3531-3538.

18



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Schileo, E., Taddei, F., Cristofolini, L., Viceconti, M., 2008. Subject-specific finite element
models implementing a maximum principal strain criterion are able to estimate failure
risk and fracture location on human femurs tested in vitro. Journal of Biomechanics 41,

356-367.

Schileo, E., Taddei, F., Malandrino, A., Cristofolini, L., Viceconti, M., 2007. Subject-
specific finite element models can accurately predict strain levels in long bones. Journal

of Biomechanics 40, 2982—-2989.

Smolyak, S., 1963. Quadrature and interpolation formulas for tensor products of certain

classes of functions. Soviet Mathematics Doklady 4.

Sobol’, 1., 2001. Global sensitivity indices for nonlinear mathematical models and their

Monte Carlo estimates. Mathematics and Computers in Simulation 55, 271-280.

Speirs, A.D., Heller, M.O., Duda, G.N., Taylor, W.R.; 2007. Physiologically based boundary

conditions in finite element modelling. Journal of Biomechanics 40, 2318-2323.

Sudret, B., 2008. Global sensitivity analysis using polynomial chaos expansions. Reliability

Engineering & System Safety 93, 964-979.

Taddei, F., Martelli, S., Reggiani, B., Cristofolini, L., Viceconti, M., 2006. Finite-element
modeling of bones from CT data: sensitivity to geometry and material uncertainties. IEEE

Transactions on Biomedical Engineering 53, 2194-2200.

Taddei, F., Schileo, E., Helgason, B., Cristofolini, L., Viceconti, M., 2007. The material
mapping strategy influences the accuracy of CT-based finite element models of bones:
an evaluation against experimental measurements. Medical Engineering & Physics 29,

973-979.

Trabelsi, N., Yosibash, Z., Milgrom, C., 2009. Validation of subject-specific automated p-FE

analysis of the proximal femur. Journal of Biomechanics 42, 234-241.

Trabelsi, N., Yosibash, Z., Wutte, C., Augat, P., Eberle, S., 2011. Patient-specific finite
element analysis of the human femur—a double-blinded biomechanical validation. Journal

of Biomechanics 44, 1666—-1672.

19



10

11

12

13

14

15

16

17

Viceconti, M., Brusi, G., Pancanti, A., Cristofolini, L., 2006. Primary stability of an anatom-

ical cementless hip stem: a statistical analysis. Journal of Biomechanics 39, 1169-1179.

Wand, M.P., Jones, M.C., 1995. Kernel Smoothing. Chapman & Hall/CRC Monographs on
Statistics & Applied Probability. 1. ed. ed., Chapman & Hall, London.

Wille, H., Rank, E., Yosibash, Z., 2012. Prediction of the mechanical response of the femur

with uncertain elastic properties. Journal of Biomechanics 45, 1140-1148.

Xiu, D., 2009. Fast numerical methods for stochastic computations: a review. Communica-

tions in Computational Physics 5, 242-272.

Xiu, D., Karniadakis, G.E., 2002. The Wiener—Askey Polynomial Chaos for Stochastic
Differential Equations. SIAM Journal on Scientific Computing 24, 619-644.

Yosibash, Z., Katz, A., Milgrom, C., 2013. Toward verified and validated FE simulations of
a femur with a cemented hip prosthesis. Medical Engineering & Physics 35, 978-987.

Yosibash, Z., Tal, D., Trabelsi, N., 2010. Predicting the yield of the proximal femur using
high-order finite-element analysis with inhomogeneous orthotropic material properties.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

368, 2707-2723.

Yosibash, Z., Wille, H., Rank, E., 2015. Stochastic description of the peak hip contact force

during walking free and going upstairs. Journal of Biomechanics 48, 1015-1022.

20



ACCEPTED MANUSCRIPT

1 Tables

Table 1: Summary of probabilistic studies performing uncertainty quantification for computational models of
human femurs. The checkmark symbol (v') indicates which components of the femur model were considered
to be stochastic.
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Table 2: Global sensitivity analysis for ¢; at point 351 and €3 at point 231 (magnitude and 0 and ¢ of the
corresponding eigenvector). Shown are mean u, standard deviation o, related first-order sensitivity indices
Sr,S4,,54,, Sk, and the sum of all remaining higher-order interaction indices Sj;.
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Figure 1: Deterministic finite cell model based on the CT scan of bone FF5 reported in Yosibash et al. (2013).
The computational model is clamped at the distal end of the diaphysis. The hip contact force is modeled
as surface load on a confined contact area on the head. During uncertainty quantification the heterogeneous

Young’s modulus F and the surface load (magnitude and orientation) are changed for every simulation run,
as depicted by the samples that give an insight into the region of the dashed circle.
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Figure 2: Comparison of PCE with MC simulation for €; at post-processing point 351.
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Figure 3: Mean and standard deviation of principal strains represented by spheres (color = mean, radius of
sphere — standard deviation). All 884 post-processing locations are shown at once (554 along the femoral
cortex, 330 within the trabecular compartment and the diaphysis). Femur’s geometry is indicated by a
translucent voxel representation that was derived from the CT data. For animations of these results the
reader is referred to the supplementary material.
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Figure 4: Probability of failure py represented as colored uniﬂsﬁhere at locations with py > 1076, Within the
femoral neck the largest probability of tensile failurej"slatl;point 351 and for compression failure at point 231.
Femur’s geometry is indicated by a translucent vokél\)réprésentafion that was derived from the CT data. For
animations of these results the reader is referred to the supplementary material.
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