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ZAPPA-SZÉP PRODUCT GROUPOIDS AND C∗-BLENDS

NATHAN BROWNLOWE, DAVID PASK, JACQUI RAMAGGE, DAVID ROBERTSON,
AND MICHAEL F. WHITTAKER

Abstract. We study the external and internal Zappa-Szép product of topological groupoids.
We show that under natural continuity assumptions the Zappa-Szép product groupoid is étale
if and only if the individual groupoids are étale. In our main result we show that the C∗-
algebra of a locally compact Hausdorff étale Zappa-Szép product groupoid is a C∗-blend, in the
sense of Exel, of the individual groupoid C∗-algebras. We finish with some examples, including
groupoids built from ∗-commuting endomorphisms, and skew product groupoids.

1. Introduction

Group theory has for many years provided fertile ground for mathematicians working in C∗-
algebras. Indeed, the notion of a group C∗-algebra is as old as the field itself, and possesses
many interesting and natural properties. For instance, it is well known that the C∗-algebra of
the direct product of groups G and H is the tensor product of the individual group C∗-algebras
C∗(G) and C∗(H) (see, for instance, [3, Examples II.10.3.15]). It is also well known that the
C∗-algebra of the semidirect product induced by an action H y G is the crossed product C∗-
algebra induced by the action H y C∗(G) (see also [3, Examples II.10.3.15]). In this article we
are interested in a third, and more general, notion of a product of groups called the Zappa-Szép
product. As a consequence of our main result we are able to answer the natural questions:
what is the group C∗-algebra of the Zappa-Szép product of two groups G and H, and what
does it have to do with C∗(G) and C∗(H)?

A Zappa-Szép product of groups G and H is a generalisation of a semidirect product, in the
sense that neither group is necessarily normal in the product. Like the semidirect product,
there is an internal and external Zappa-Szép product. A group K is the internal Zappa-Szép
product of G and H if G,H are subgroups of K such that K = GH as a set, and G∩H = {e}.
It then follows that K is in bijection with G×H as a set. If G,H are both normal in K, then
K is isomorphic to the direct product of groups G ×H with pointwise multiplication. If only
G is normal, then H acts on G by conjugation (h, g) 7→ hgh−1, and K is isomorphic to the
semidirect product GoH. In general neither G nor H need be normal in K, so that direct and
semidriect products are special cases of the Zappa-Szép product. In any case, since K = GH,
given any h ∈ H and g ∈ G there are elements h · g ∈ G and h|g ∈ H such that hg = (h · g)h|g,
and the condition G∩H = {e} forces h · g and h|g to be uniquely determined. The action map
· : H × G → G is given by (h, g) 7→ h · g, and the restriction map | : H × G → H is given by
(h, g) 7→ h|g. These maps can be used to define an associative multiplication and inversion on
G×H by

(g, h)(g′, h′) = (g(h · g′), h|g′h′) and (g, h)−1 = (h−1 · g−1, h−1|g−1),

respectively. The resulting group G 1 H is called the Zappa-Szép product of G and H and
there is an isomorphism G 1 H ∼= K given by (g, h) 7→ gh (see [26, 20, 21, 22]). Given an
arbitrary pair of groups G and H with a left action of H on G and a right action of G on H
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we construct the external Zappa-Szép product G 1 H as the set G×H with a product defined
analogously.

In this article we extend the definitions given above to the more general setting of groupoids.
Groupoids have featured prominently in the study of C∗-algebras since the seminal work of
Renault [17]. The diversity of examples of groupoid C∗-algebras has been a feature of their
success, especially in the study of C∗-algebras associated to dynamical systems. Building on
the recent work on Zapp-Szép product semigroups [5] (which was influenced by the work on
self-similar actions in [13, 11, 10, 23]), we introduce the Zappa-Szép product of topological
groupoids. Our notion of the Zappa-Szép product of groupoids is not new on an algebraic level.
In [1] Aguiar and Andruskiewitsch introduced the notion of a matched pair of groupoids; a pair
of groupoids (G,H) is a matched pair if and only if there is a well-defined Zappa-Szép product
G 1 H. (Note that in [1] / corresponds to our restriction, and . corresponds to our action.)
More generally, a Zappa-Szép product of categories was introduced in the work of Brin [4].
However, in the specific case of groupoids, in which every morphism is an isomorphism, Brin’s
axioms (P1)–(P8) (see [4, p.406]) can be simplified.

After formalising the Zappa-Szép product G 1 H of topological groupoids, we switch focus
to C∗-algebras, and consider the relationship between the groupoid C∗-algebras of G, H and
G 1 H. In our main theorem we prove that C∗(G 1 H) is a C∗-blend of C∗(G) and C∗(H). C∗-
blends were recently introduced by Exel in [7] during his examination of the possible algebraic
and C∗-algebraic structures one can put on the tensor product A⊗B of two algebras A and B.
While several examples are examined in [7], any new theory in C∗-algebras always benefits from
additional examples. Our main theorem allows us to work at the level of groupoids to describe
concrete examples of C∗-blends, rather than with their C∗-algebraic completions. We are thus
able to describe several new examples, including those involving Deaconu-Renault groupoids,
and skew product groupoids.

While we were at first surprised to learn that C∗(G 1 H) is a C∗-blend of the individual
groupoid C∗-algebras, once you scratch beneath the surface, the answer is a natural one. As
discussed in [7], C∗-blends generalise crossed products of C∗-algebras by groups, in the sense
that A o G is a C∗-blend of A and C∗(G). The theory of C∗-blends then feels like a natural
home for the C∗-algebras of Zappa-Szép products of groups, given that they generalise semidi-
rect products, whose C∗-algebras are crossed products. There is also an interesting similarity
between the conditions under which the product of two groups is a Zappa-Szép product, and
when the product of two C∗-algebras is a C∗-blend. If G and H are subgroups of a group K,
then GH = {gh : g ∈ G, h ∈ H} is a group if and only if GH = HG, and is isomorphic to
G 1 H if and only if G∩H = {e}. If A,B are C∗-subalgebras of a C∗-algebra C, it is not hard
to show that the statements AB = span{ab : a ∈ A, b ∈ B} a C∗-algebra, AB = BA, and AB
a C∗-blend of A and B are equivalent. (See Remark 4.5.)

This article is organised as follows. Section 2 provides preliminaries on topological groupoids
and gives three specific examples that will be used heavily throughout the paper: transformation
groupoids, Deaconu-Renault groupoids, and skew product groupoids. In Section 3 we discuss
the Zappa-Szép product G 1 H of two groupoids G and H, and show how the so called “arrow
space” of each groupoid along with certain identifications describes the “arrow space” of G 1 H.
We then provide an internal characterisation of a Zappa-Szép groupoid and show that if G and
H are étale groupoids, then so is G 1 H. In Section 4 we prove our main theorem, which says
that C∗(G 1 H) is a C∗-blend of C∗(G) and C∗(H). We finish in Section 5 by examining several
examples of Zappa-Szép product groupoids and their C∗-algebras.

2. Preliminaries

Let G be a set and suppose G(2) ⊂ G × G. We say G is a groupoid if there is a multiplication
(g, h) 7→ gh from G(2) to G and an inverse map g 7→ g−1 from G to G satisfying the following.

(1) If (g, h), (h, k) ∈ G(2) then (gh, k), (g, hk) ∈ G(2) and g(hk) = (gh)k.
(2) We have (g−1)−1 = g for all g ∈ G.
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(3) We have (g, g−1) ∈ G(2) for all g ∈ G and if (g, h) ∈ G(2), then g−1(gh) = h and
(gh)h−1 = g.

We call G(2) the set of composable pairs and G(0) := {gg−1 : g ∈ G} the set of units. The range
map G → G(0) is given by g 7→ gg−1 and the source map G → G(0) is given by g 7→ g−1g.

A useful interpretation of this definition is that an element g of a groupoid G is an arrow
pointing from the source of g to the range of g.

gg−1 g−1gg

We think of inversion as reversing the direction of the arrow, and a pair (g, h) ∈ G(2) whenever
the source of g agrees with the range of h in G(0); the product gh is then the composition of
arrows.

We call G a topological groupoid if G is a topological space and the multiplication and inversion
maps are continuous, where G(2) has the relative product topology. We call a topological
groupoid étale if the range (and hence also the source) map is a local homeomorphism.

Example 2.1 (Tranformation groupoids [14, p.8]). Let G be a topological group acting contin-
uously on a topological space X. There is a groupoid GnX given by

GnX = G×X
(GnX)(2) = {((g, y), (h, x)) : g, h ∈ G, x, y ∈ X, and y = h · x}
(g, h · x)(h, x) = (gh, x)

(g, x)−1 = (g−1, g · x)

We call G n X a transformation groupoid. The unit space is given by {e} × X ∼= X and an
element (g, x) has range g · x and source x. When given the product topology G n X is a
topological groupoid, and is étale if and only if G has the discrete topology.

Example 2.2 (Deaconu-Renault groupoids [19, Section 3]). The study of topological groupoids
associated with endomorphisms began with the seminal paper of Deaconu [6], and has been ex-
tended in various directions. In order to associate a groupoid C∗-algebra to a k-graph, Kumjian
and Pask [9] began the extension of Deaconu-Renault groupoids to transformations of Nk. More
recently, a completely general description of groupoids associated with transformations of Nk

and their topology is given in [19, Section 3].
Let X be a topological space and suppose k ≥ 1. Following the literature [2] we say that

σ : X → X is an endomorphism if σ is a surjective local homeomorphism. Suppose θ : Nk →
End(X) is an action of Nk on X by continuous endomorphisms. Define the Deaconu-Renault
groupoid X oθ Nk by

X oθ Nk = {(x,m− n, y) : x, y ∈ X,m, n ∈ Nk, θm(x) = θn(y)}
(X oθ Nk)(2) = {((x, k − l, y), (w,m− n, z)) : y = w}
(x, k − l, y)(y,m− n, z) = (x, (k +m)− (l + n), z)

(x,m− n, y)−1 = (y, n−m,x)

The unit space is {(x, 0, x) : x ∈ X} ∼= X and an element (x,m− n, y) has range x and source
y. With the topology described in [19, Section 3], the groupoid X oθ Nk becomes a topological
groupoid.
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Example 2.3 (Skew product groupoids [8, Section 4]). Fix an étale groupoid G, a discrete group
A and a continuous homomorphism c : G → A. The skew-product groupoid G(c) is is given by

G(c) = G × A
G(c)(2) = {(g, α)(h, β) : (g, h) ∈ G(2), β = αc(g)}
(g, α)(h, αc(g)) = (gh, α)

(g, α)−1 = (g−1, αc(g)).

We will denote1 the range and source maps by b, t : G(c)→ G(c)(0) respectively. We have

b(g, α) = (g, α)(g−1, αc(g)) = (gg−1, α)

t(g, α) = (g−1, αc(g))(g, α) = (g−1g, αc(g)).

The unit space is therefore G(c)(0) = G(0) × A.

3. Zappa-Szép products of groupoids

In this section we will describe the Zappa-Szép product of two groupoids with bijective unit
spaces. To do this we need to recall a fibre product of two sets. Suppose G, H, and X are sets
such that γ : G → X and η : H → X are maps. The fibre product (or pull-back) of G and H
over X is the set

G ×γ η H := {(g, h) ∈ G×H : γ(g) = η(h)}.
Let G and H be groupoids and suppose there is a bijection G(0) → H(0). For simplicity, we

will consider them the same set and write G(0) = U = H(0). As in [1] we will think of elements
of G as vertical arrows and elements of H as horizontal arrows as shown below:

b(g) = gg−1

t(g) = g−1g

g l(h) = hh−1 r(h) = h−1h
h

We have denoted the range and source maps of G by b for bottom and t for top, respectively,
and the range and source maps of H by l for left and r for right, respectively. Suppose that
there are maps

· : H ×r b G → G given by (h, g) 7→ h · g and | : H ×r b G → H given by (h, g) 7→ h|g
satisfying

(ZS1) (h1h2) · g = h1 · (h2 · g)
(ZS2) h · (g1g2) = (h · g1)(h|g1 · g2)
(ZS3) h|g1g2 = (h|g1)|g2
(ZS4) (h1h2)|g = (h1|h2·g)(h2|g)
(ZS5) b(h · g) = l(h)

(ZS6) r(h|g) = t(g)
(ZS7) t(h · g) = l(h|g)
(ZS8) b(g) · g = g
(ZS9) h|r(h) = h,

whenever these formulae make sense. We call · the action map and | the restriction map. These
axioms appear in [1], where the action is denoted ., and the restriction is denoted /.

Before we can construct the Zappa-Szép product groupoid, we need the following lemma.

Lemma 3.1 (cf. [1, Lemma 1.2]). For any (h, g) ∈ H ×r b G we have

(1) h · r(h) = l(h),
(2) b(g)|g = t(g),
(3) (h · g)−1 = h|g · g−1, and
(4) (h|g)−1 = h−1|h·g.

1This unusual choice of labelling the range and source maps by b and t is explained in Section 3.
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Proof. For (1), using (ZS2), (ZS9), and that b(g) = r(h) we compute

h · g = h · (b(g)g) = (h · b(g))(h|b(g) · g) = (h · r(h))(h · g),

which implies h · r(h) = b(h · g) = l(h) by (ZS5).
For (2), using (ZS4) and then (ZS8) we compute

h|g = (hr(h))|g = h|(r(h)·g)r(h)|g = h|b(g)·gb(g)|g = h|gb(g)|g,

which implies that b(g)|g = r(h|g) = t(g) by (ZS6).
For (3) and (4), using (ZS5), part (1), and (ZS2) we have

(h · g)(h · g)−1 = b(h · g) = l(h) = h · r(h) = h · b(g) = h · (gg−1) = (h · g)(h|g · g−1)

and (3) follows by cancelling (h · g) on the left. Similarly, using (ZS6), part (2), and (ZS4) we
have

(h|g)−1(h|g) = r(h|g) = t(g) = b(g)|g = r(h)|g = (h−1h)|g = (h−1|h · g)(h|g)

and (4) follows by cancelling (h|g) on the right. �

We define the Zappa-Szép product as the set

G 1 H = G ×t l H,

with the range of (g, h) ∈ G 1 H given by (b(g), b(g)) ∈ U × U , and the source of (g, h) given
by (r(h), r(h)) ∈ U × U . We have

(G 1 H)(2) = {((g1, h1), (g2, h2)) : r(h1) = b(g2)}.

We define multiplication by

(g1, h1)(g2, h2) = (g1(h1 · g2), h1|g2h2)

and inversion by

(g, h)−1 = (h−1 · g−1, h−1|g−1).

Proposition 3.2. With the above structure, G 1 H is a groupoid with unit space G(0) ×t lH(0) ∼=
U .

Proof. Conditions (ZS5) and (ZS6) imply that the multiplication is well-defined and (ZS7) shows
G 1 H is closed under multiplication. Suppose ((g1, h1), (g2, h2)) and ((g2, h2), (g3, h3)) ∈ (G 1
H)(2). It is easy to see that (g1(h1 · g2), h1|g2h2), (g3, h3)) ∈ (G 1 H)(2) and ((g1, h1), (g2(h2 ·
g3), h2|g3h3)) ∈ (G 1 H)(2). Some parenthetical gymnastics using (ZS1-4) shows that the
following associativity holds:

((g1(h1 · g2), h1|g2h2))(g3, h3) = (g1, h1)(g2(h2 · g3), h2|g3h3).

For (g, h) ∈ G 1 H we have

((g, h)−1)−1 = (h−1 · g−1, h−1|g−1)−1

= ((h−1|g−1)−1 · (h−1 · g−1)−1, (h−1|g−1)−1|(h−1·g−1)−1).(3.1)

By Lemma 3.1 (3) the first term in (3.1) becomes

(h−1|g−1)−1 · (h−1 · g−1)−1 = (h−1|g−1)−1 · (h−1|g−1 · g) = g

and by Lemma 3.1 (4) the second term in (3.1) becomes

(h−1|g−1)−1|(h−1·g−1)−1 = (h|(h−1·g−1))|(h−1·g−1)−1 = h.
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So ((g, h)−1)−1 = (g, h) as required. From (ZS5) we have ((g, h), (h−1 ·g−1, h−1|g−1)) ∈ G 1 H(2).
Using (ZS1), (ZS3), (ZS8) and Lemma 3.1 (2) we have

(g, h)(h−1 · g−1, h−1|g−1) = (g(h · (h−1 · g−1)), h|h−1·g−1h−1|g−1)

= (g(l(h) · g−1), l(h)|g−1)

= (g(b(g−1) · g−1), b(g−1)|g−1)

= (b(g), b(g)),

so if ((g1, h1), (g2, h2)) ∈ (G 1 H)(2), then Lemma 3.1 (1) and (ZS9) imply

(g1, h1)(g2, h2)(g2, h2)−1 = (g1, h1)(b(g2), b(g2)) = (g1(h1 · r(h1)), (h1|r(h1))r(h1)) = (g1, h1).

A similar argument shows

(g, h)−1(g, h) = (r(h), r(h)) and (g1, h1)−1(g1, h1)(g2, h2) = (g2, h2),

as required. �

Remark 3.3. In the proof of Proposition 3.2, note that we used all of the axioms (ZS1–9). This
shows the necessity of the rather large number of axioms.

From now on we will freely identify (G 1 H)(0) with U . We can consider G and H as
subgroupids of G 1 H via

G ∼= {(g, t(g)) : g ∈ G} and H ∼= {(l(h), h) : h ∈ H}.

Since G 1 H = G ×t lH as a set, we may represent elements (g′, h′) ∈ G 1 H and (h, g) ∈ H ×r bG
as pairs of arrows between elements of U as follows:

b(g′)

t(g′) = l(h′)

g′

r(h′)
h′

and

l(h) r(h) = b(g),
h

t(g)

g

respectively. In the Zappa-Szép product G 1 H, the element (h, g) ∈ H ×r b G is identified with
(h · g, h|g) ∈ G 1 H. Visually, this amounts to the following two diagrams being identified:

l(h) r(h) = b(g)
h

t(g)

g ←→

b(h · g)

t(h · g) = l(h|g)

h · g

r(h|g)
h|g

This geometric identification corresponds to the algebraic axioms (ZS5–7). Now suppose
((g1, h1), (g2, h2)) ∈ (G 1 H)(2), then the product (g1, h1)(g2, h2) = (g1(h1 · g2), h1|g2h2) is
represented by

g1

h1

g2

h2

←→

g1

h1 · g2

h1|g2 h2
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Finally, if (g, h) ∈ G 1 H, then the inverse (g, h)−1 = (h−1 · g−1, h−1|g−1) is represented by

g

h

7−→

h−1

g−1
←→

h−1 · g−1

h−1|g−1

The following proposition determines when a given groupoid decomposes as a Zappa-Szép
product.

Proposition 3.4 (Internal Zappa-Szép products). Let K be a groupoid and let G and H be
subgroupoids. Suppose that for any k ∈ K there is a unique pair (g, h) ∈ (G × H) ∩ K(2) such
that k = gh. Then K ∼= G 1 H.

Proof. We must first show that G and H admit the structure required to take a Zappa-Szép
product. First, fix u ∈ K(0). Then there is a unique g ∈ G and h ∈ H with u = gh. But
then u = gg−1 ∈ G and u = h−1h ∈ H. Since u = uu, uniqueness forces h = u = g. Hence
K(0) = G(0) = H(0). We define action and restriction maps using the unique decomposition;
given a pair (g, h) ∈ (G ×H)∩K(2) let (g ·h, g|h) ∈ (G ×H)∩K(2) be the unique pair such that

gh = (g · h)(g|h).
Routine calculations show these maps satisfy (ZS1–9), and k 7→ (g, h), where k = gh, is an
isomorphism K ∼= G 1 H. �

Using Proposition 3.4 and Lemma 3.1 we can show that taking groupoid Zappa-Szép products
is symmetric.

Corollary 3.5. Any groupoid Zappa-Szép product G 1 H is isomorphic to a Zappa-Szép product
H 1 G.

Proof. In light of Proposition 3.4 it suffices to notice that any (g, h) ∈ G 1 H can be rewritten
uniquely as

(3.2) (g, h) = (b(g), h|h−1·g−1)(h−1|g−1 · g, r(h)).

That (3.2) holds is a straightforward computation involving several applications of Lemma 3.1
(3) and (4). For the uniqueness, suppose (g, h) = (l(h′), h′)(g′, t(g′)) for some g′ ∈ G and
h′ ∈ H. Then g = h′ · g′ and h = h′|g′ . Substituting these equations into (3.2) and applying
Lemma 3.1 shows that h′ = h|h−1·g−1 and g′ = h−1|g−1 · g. Thus the decomposition in (3.2) is
unique. �

If G and H are topological groupoids with homeomorphic unit spaces, then after endowing
G ×t l H with the relative product topology of G × H it is natural to ask whether G 1 H is a
topological groupoid. It is easy to check that this is true if and only if the action and restriction
maps are continuous, where H ×r b G has the relative product topology.

A similar question may be asked when G and H are étale.

Proposition 3.6. A Zappa-Szép product groupoid G 1 H endowed with the relative product
topology of G ×H is étale if and only if both G and H are étale and the action and restriction
maps are continuous.

Proof. Since G and H are both isomorphic to subgroupoids of G 1 H, assuming G 1 H is étale
immediately implies G and H are étale.

For the reverse implication, suppose G and H are étale. We must show that (g, h) 7→ b(g) is
a local homeomorphism. To this end, fix (g, h) ∈ G 1 H. Using that G and H are étale we can
find open subsets

U, V ⊂ G, W ⊂ H
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with g ∈ U ∩ V and h ∈ W such that b|U , t|V and l|W are all homeomorphisms. Define

X := ((U ∩ V )×W ) ∩ (G ×t l H) ⊂ G 1 H.
Then X is open, (g, h) ∈ X and for any (g′, h′), (g′′, h′′) ∈ X we have

b(g′) = b(g′′)⇐⇒ g′ = g′′ since g′, g′′ ∈ U
⇐⇒ t(g′) = t(g′′) since g′, g′′ ∈ V
⇐⇒ l(h′) = l(h′′) since (g′, h′), (g′′, h′′) ∈ G ×t l H
⇐⇒ h′ = h′′ since h′, h′′ ∈ W.

We see that the range map (g, h) 7→ b(g) is a homeomorphism on X as required. �

Corollary 3.7. Suppose G,H and K are étale groupoids such that G and H are subgroupoids of
K and K ∼= G 1 H, as in Proposition 3.4. Then K ∼= G 1 H is an isomorphism of topological
groupoids and K is étale.

Proof. We know from Proposition 3.4 that there is a bijective homomorphism G 1 H → K
satisfying (g, h) 7→ gh. Since multiplication is continuous, to see that this map is a homeo-
morphism it suffices to show it is open. This follows immediately from the fact that G 1 H is
étale. �

Remark 3.8. A subset U of an étale groupoid G is called a bisection if both the range and source
maps restricted to U are injective. The collection B(G) of all open bisections in G is an inverse
semigroup under composition UV = {gh : (g, h) ∈ U × V ∩ G(2)}. If we identify a bisection U
with the homeomorphism r(U)→ s(U) on G(0) satisfying r(g) 7→ s(g), then it is easily checked
that B(G) is a pseudogroup of homeomorphisms of the topological space G(0), in the sense of
[18, Section 3].

The Zappa-Szép product of inverse semigroups (and semigroups more broadly) are studied
in [24]. It is natural to examine the existence of a Zappa-Szép product of B(G) and B(H), and
whether there is a connection to the collection of bisections of G 1 H. We considered these
problems, and there seems to be no obvious definitions for the action and restriction maps. In
particular, there is no reason that the sets

V · U := {h · g : h ∈ V, g ∈ U, r(h) = b(g)} and V |U = {h|g : h ∈ V, g ∈ U, r(h) = b(g)},
for U ∈ B(G), V ∈ B(H), are open bisections in B(G) and B(H), respectively.

4. The C∗-algebra of a Zappa-Szép groupoid

In this section we prove the main result of this paper, which says that the groupoid C∗-
algebra of the Zappa-Szép product of two groupoids G and H is a C∗-blend of the two groupoid
C∗-algebras C∗(G) and C∗(H). Before we state this result, we briefly recall the construction of
groupoid C∗-algebras, and the formal definition of a C∗-blend from [7].

For G a locally compact Hausdorff étale groupoid with range and source maps r and s, define
a multiplication and involution on Cc(G) by

ξ ∗ η(g) =
∑
g1g2=g

ξ(g1)η(g2) and ξ∗(g) = ξ(g−1).

With these operations, pointwise scalar multiplication and addition, and ∗-algebra norm given
by

‖ξ‖I = sup
u∈G(0)

max

 ∑
r(g)=u

|ξ(g)|,
∑
s(g)=u

|ξ(g)|

 ,

Cc(G) becomes a normed ∗-algebra. This norm, called the I-norm, is typically not a C∗-norm.
However, there is a C∗-norm on C∗(G) given by

‖ξ‖ = sup{‖π(ξ)‖ : π is a ‖ · ‖I-bounded ∗-representation of Cc(G)},
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and the completion of Cc(G) under ‖ · ‖ is called the full groupoid C∗-algebra of G.
There is also a reduced groupoid C∗-algebra. For each u ∈ G(0) there is an I-norm-bounded

representation Indu of Cc(G) on `2(s−1(u)) given by Indu(f)δg =
∑

r(h)=r(g) f(h−1g)δh. The

reduced norm is given by ‖f‖r = supu∈G(0) ‖ Indu(f)‖. The completion of Cc(G) under ‖ · ‖r is
called the reduced groupoid C∗-algebra of G. For more details of these constructions we refer
the reader to Renault’s original treatment [17].

We now recall Exel’s notion of a C∗-blend from [7].

Definition 4.1. For C∗-algebras A and B we denote by A⊗C B the algebraic tensor product.
Given a C∗-algebra X and ∗-homomorphisms

i : A→M(X) and j : B →M(X),

the bilinear maps (a, b) 7→ i(a)j(b) and (b, a) 7→ j(b)i(a) induce linear maps

i~ j : A⊗C B →M(X) satisfying a⊗ b 7→ i(a)j(b)

and
j ~ i : B ⊗C A→M(X) satisfying b⊗ a 7→ j(b)i(a).

A C∗-blend is a quintuple (A,B, i, j,X), consisting of: C∗-algebras A, B, and X; and ∗-
homomorphisms i and j as above, with the property that the range of i ~ j is contained and
dense in X (or, equivalently, range(j ~ i) = (range(i~ j))∗ is contained and dense in X).

We can now state our main theorem.

Theorem 4.2. Suppose G 1 H is a locally compact Hausdorff étale Zappa-Szép product groupoid.
The maps i : Cc(G)→ C∗(G 1 H) and j : Cc(H)→ C∗(G 1 H), given by

i(ξ)(g, h) = δh,t(g)ξ(g) and j(η)(g, h) = δg,l(h)η(h),

extend to ∗-homomorphisms i : C∗(G) → C∗(G 1 H) and j : C∗(H) → C∗(G 1 H), and the
quintuple (C∗(G), C∗(H), i, j, C∗(G 1 H)) is a C∗-blend.

Remark 4.3. Notice that the range of i and j are in C∗(G 1 H), rather than the multiplier
algebra, since G 1 H is étale by Proposition 3.6.

To prove this result we need a lemma about slices, which are precompact open subsets of
a groupoid on which the range and source maps are bijective. We think this lemma is well
known, but we could not find a proof, so we include one here. Note that ‖ · ‖∞ denotes the
usual supremum norm on functions.

Lemma 4.4. Let G be a locally compact Hausdorff étale groupoid. Let ξ ∈ Cc(G) ⊂ C∗(G) such
that supp(ξ) is a slice. Then

‖ξ‖ = ‖ξ‖r = ‖ξ‖I = ‖ξ‖∞.

Proof. We first show that ‖ξ‖I = ‖ξ‖∞. For any unit u ∈ G(0) we have

|r−1(u) ∩ supp(ξ)|, |s−1(u) ∩ supp(ξ)| ≤ 1

since r, s are local homeomorphisms on supp(ξ). Therefore

‖ξ‖I = sup
u∈G(0)

max

 ∑
r(g)=u

|ξ(g)|,
∑
s(g)=u

|ξ(g)|

 = sup
g∈G
|ξ(g)| = ‖ξ‖∞.

To see that ‖ξ‖r = ‖ξ‖∞, first fix g ∈ G. We have

ξ∗ξ(g) =
∑
hk=g

ξ∗(h)ξ(k) =
∑
hk=g

ξ(h−1)ξ(k).

If ξ∗ξ(g) 6= 0, there exists h, k ∈ G with hk = g and ξ(h−1)ξ(k) 6= 0. Then h−1, k ∈ supp(ξ),
and since r|supp(ξ) is injective, we have

g = hk =⇒ r(h−1) = r(k) =⇒ h−1 = k =⇒ g ∈ G(0).
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Hence ξ∗ξ ∈ C0(G(0)). Now, fix u ∈ G(0) and δg ∈ `2(Gu), where Gu := {g ∈ G : g−1g = u}.
Since supp(ξ∗ξ) ⊂ G(0) we have

Indu(ξ
∗ξ)δg =

∑
r(h)=r(g)

ξ∗ξ(h−1g)δh = ξ∗ξ(g−1g)δg = ξ∗ξ(u)δg,

and so ‖ Indu(ξ
∗ξ)‖ = |ξ∗ξ(u)|. Hence

‖ξ‖2
r = ‖ξ∗ξ‖r = sup

u∈G(0)
‖ Indu(ξ

∗ξ)‖ = sup
u∈G(0)

|ξ∗ξ(u)| = ‖ξ∗ξ‖∞ = ‖ξ‖2
∞.

Finally, ‖ξ‖r ≤ ‖ξ‖ ≤ ‖ξ‖I = ‖ξ‖r, so we have shown all the required equalities. �

Proof of Theorem 4.2. Fix ξ ∈ Cc(G). We claim that i(ξ) ∈ Cc(G 1 H). To see that i(ξ) is
continuous, fix an open subset V ⊆ C. If 0 6∈ V , then

i(ξ)−1(V ) = {(g, t(g)) : ξ(g) ∈ V } = (ξ−1(V )×H(0)) ∩ (G ×t l H).

If 0 ∈ V , then

i(ξ)−1(V ) = {(g, t(g)) : ξ(g) ∈ V } ∪ {(g, h) ∈ G ×t l H : h ∈ H \ H(0)}
= ((ξ−1(V )×H(0)) ∪ (G ×H \ H(0))) ∩ (G ×t l H).

Since ξ is continuous, we have ξ−1(V ) open, and since H is Hausdorff and étale, both H(0) and
H \ H(0) are open. So in either case, i(ξ)−1(V ) is open in the relative product topology, and
i(ξ) is continuous. The support of i(ξ) is the set supp(ξ) ×t l H(0), which is homeomorphic to
supp(ξ) via (g, t(g)) 7→ g. Since supp(ξ) is compact, we have i(ξ) ∈ Cc(G 1 H), as claimed. A
symmetric argument using that G is Hausdorff and étale shows that j(η) ∈ Cc(G 1 H) for any
η ∈ Cc(H).

We extend i and j to ∗-homomorphisms C∗(G) → C∗(G 1 H) and C∗(H) → C∗(G 1 H),
respectively, and we now claim that (C∗(G), C∗(H), i, j, C∗(G 1 H)) is a C∗-blend. Firstly, for
each ξ ∈ Cc(G) and η ∈ Cc(H) we have

i~ j(ξ ⊗ η)(g, h) = ξ(g)η(h),

from which we see that i~ j(ξ ⊗ η) is continuous. We also have

supp(i~ j(ξ ⊗ η)) = (supp(ξ)× supp(η)) ∩ (G ×t l H),

which is compact. So the image of i~ j is contained in Cc(G 1 H). To complete the proof we
need to show that this image is dense in C∗(G 1 H).

For an arbitrary function θ ∈ Cc(G 1 H) we can cover the support by a finite number of
precompact open bisections {Uk : 1 ≤ k ≤ n}. If {πk : 1 ≤ k ≤ n} is a partition of unity
for supp(θ) with supp(πk) ⊂ Uk, then θ =

∑n
k=1 θπk, where supp(θπk) is a precompact open

bisection. Since we know from Lemma 4.4 that ‖θπk‖∞ = ‖θπk‖I , it suffices to show that
the image of i ~ j is uniformly dense in Cc(G 1 H). To this end, fix (g, h) 6= (g′, h′). By
the Stone-Weierstrass theorem for locally compact spaces, it is enough to find ξ ∈ Cc(G) and
η ∈ Cc(H) with i ~ j(ξ ⊗ η)(g, h) = 1 and i ~ j(ξ ⊗ η)(g′, h′) = 0. Without loss of generality
assume g 6= g′. Fix ξ ∈ Cc(G) with ξ(g) = 1, ξ(g′) = 0 and η ∈ Cc(H) with η(h) = 1. Then

i~ j(ξ ⊗ η)(g, h) = ξ(g)η(h) = 1 and i~ j(ξ ⊗ η)(g′, h′) = ξ(g′)η(h′) = 0,

as required. �

Remark 4.5. If G and H are subgroups of a group K, then GH = {gh : g ∈ G, h ∈ H} is
a group if and only if GH = HG. Moreover, GH is isomorphic to G 1 H if and only if
G∩H = {e} (see [16, Satz 6]). There is a similar characterisation for the product of subsets of
a C∗-algebra to be a C∗-blend. Suppose A and B are C∗-subalgebras of a C∗-algebra C, and
denote by AB the set span{ab : a ∈ A, b ∈ B}. Then the following are equivalent:

(1) AB = BA,
(2) AB is a C∗-algebra,
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(3) there exist C∗-homomorphisms i : A → M(AB) and j : B → M(AB) such that
(A,B, i, j, AB) is a C∗-blend.

For (2) =⇒ (3) we use maps i : A → M(AB) and j : B → M(AB) given by i(a)x =
ax and j(b)x = bx. Implications (3) =⇒ (2) and (1)⇐⇒ (2) are straightforward exercises.

5. Examples

In our final section we examine several examples of Zappa-Szép product groupoids and their
C∗-algebras.

5.1. ∗-commuting endomorphisms. In this section we show that every pair of ∗-commuting
endomorphisms of a topological space gives rise to a Zappa-Szép product of Deaconu-Renault
groupoids (see Example 2.2).

Recall from [2] that a pair of commuting endomorphisms S and T of a topological space X
are said to ∗-commute if, for every x, y ∈ X with Tx = Sy, there exists a unique z ∈ X with
Sz = x and Tz = y. We call such S and T ∗-commuting endomorphisms.

Proposition 5.1. Suppose S and T are ∗-commuting endomorphisms of a topological space X.
Then there is an action θ of N2 on X given by θ(m1,m2) = Sm1Tm2, and the Deaconu-Renault
groupoid for this action is the internal Zappa-Szép product of the individual Deaconu-Renault
groupoids for the actions of N on X induced by S and T .

Since S and T commute, θ(m1,m2) := Sm1Tm2 gives an action θ of N2 by continuous endo-
morphisms of X. Let X oθ N2 be the corresponding Deaconu-Renault groupoid, and X oS N
and X oT N be the Deaconu-Renault groupoids for the actions of N on X induced by S and T ,
respectively. Notice that X oS N and X oT N can be viewed as subgroupoids of X oθ N2 via

X oS N ∼= {(x,m− n, y) : m,n ∈ N× {0}}, and

X oT N ∼= {(x,m− n, y) : m,n ∈ {0} × N}.
So to prove Proposition 5.1 we need to show that

X oθ N2 ∼= (X oS N) 1 (X oT N).

Proof of Proposition 5.1. We aim to use Proposition 3.4. Fix (x,m − n, y) ∈ X oθ N2. Write
m = (m1,m2) and n = (n1, n2). By definition of X oθ N2 we have

Sn1T n2y = Tm2Sm1x

Since S and T ∗-commute, the maps Sm1 and Tm2 also ∗-commute. Therefore, there is a
unique z ∈ X such that Sn1z = Sm1x and Tm2z = T n2y. This information is summarised in
the following diagram:

y z x

T n2y Sm1x

Sn1T n2y = Tm2Sm1x

T n2 Tm2 Sm1Sn1

Sn1
Tm2

Hence, we have elements

(x, (m1, 0)− (n1, 0), z) ∈ X oS N ⊂ X oθ N2

and
(z, (0,m2)− (0, n2), y) ∈ X oT N ⊂ X oθ N2
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with (x, (m1, 0) − (n1, 0), z)(z, (0,m2) − (0, n2), y) = (x,m − n, y). Since z was unique, this
decomposition is also unique and so Proposition 3.4 provides us with the desired isomorphism.

�

Remark 5.2. Applying Theorem 4.2 in this setting gives a C∗-blend

(C∗(X oS N), C∗(X oT N), i, j, C∗(X oθ N2)).

5.2. 1-coaligned 2-graphs. We know from [12, Defintion 2.1] (also see [25]) that examples of
∗-commuting maps come from the shift map on certain 2-graphs. We recall the details.

We view the monoid N2 as a category with one object in the usual way. We write e1 = (1, 0)
and e2 = (0, 1) for the canonical generators. Recall from [9] that a 2-graph is a small category
Λ equipped with a degree functor d : Λ→ N2 which satisfies the factorisation property, in the
sense that whenever λ ∈ Λ and m,n ∈ N2 satisfy d(λ) = m + n, there are unique elements
µ, ν ∈ Λ satisfying d(µ) = m, d(ν) = n and λ = µν. The objects of Λ can be identified with
Λ0 := d−1(0). The codomain and domain maps are denoted by r and s, and are called the
range and source maps. A 2-graph is called row-finite and with no sources if for every v ∈ Λ0

and n ∈ N2 the set {λ ∈ Λ : d(λ) = n, r(λ) = v} is nonempty and finite.
Let Ω2 be the category with objects N2, morphisms {(m,n) : m,n ∈ N2,m ≤ n} where

N2 has the usual partial order, and range and source maps r(m,n) = m, s(m,n) = n. With
the degree functor d(m,n) = n − m, Ω2 is a 2-graph. If Λ is a 2-graph, an infinite path
in Λ is a functor x : Ω2 → Λ. We write Λ∞ for the space of infinite paths. If Λ is row-
finite and with no sources, then Λ∞ equipped with the topology generated by cylinder sets
Z(λ) := {x ∈ Λ∞ : x(0, d(λ)) = λ} is a totally disconnected locally compact Hausdorff space.
For each p ∈ N2 consider the shift map σp : Λ∞ → Λ∞ given by σp(x)(m,n) = x(m+ p, n+ p).
Each σp is a local homeomorphism. If in addition Λ has no sinks, in the sense that for the
each v ∈ Λ0 and n ∈ N2 the set {λ ∈ Λ : d(λ) = n, s(λ) = v} is nonempty, then each σp is
also surjective. So for Λ a 2-graph which is row-finite and with no sinks or sources, the map
k 7→ σk determines an action of N2 by endomorphisms Λ∞. Let GΛ = Λ∞oN2 be the associated
Deaconu-Renault groupoid.

Definition 5.3. [12, Defintion 2.1] A 2-graph Λ is 1-coaligned if for every pair (e1, e2) ∈
Λe1 ×s s Λe2 there exists a unique pair (f 1, f 2) ∈ Λe1 ×r r Λe2 such that f 1e2 = f 2e1.

A large class of examples of 1-coaligned 2-graphs are provided in [12, Theorem 3.1]. The
connection between 1-coaligned 2-graphs and ∗-commuting endomorphisms comes from the
following result (which applies to more general k-graphs, but we state only for 2-graphs).

Theorem 5.4. [12, Corollary 2.4] If Λ is a 1-coaligned row-finite 2-graph with no sinks or
sources, then for each i 6= j, σei and σej are ∗-commuting surjective local homeomorphisms.

Using our results we can now decompose both the graph groupoid of a 1-coaligned 2-graph,
and its groupoid C∗-algebra, the graph algebra. We direct the reader to [15] for an account of
directed graphs, k-graphs, and their C∗-algebras. For a 2-graph Λ we define the blue graph BΛ

and the red graph RΛ to be the directed graphs

BΛ = (B0
Λ := Λ0, B1

Λ := Λe1 , r|Λe1 , s|Λe1 ) and RΛ = (R0
Λ := Λ0, R1

Λ := Λe2 , r|Λe2 , s|Λe2 ).

Theorem 5.5. For every 1-coaligned row-finite 2-graph Λ with no sinks or sources we have

GΛ
∼= (Λ∞ oσe1 N) 1 (Λ∞ oσe2 N).

Moreover, there are ∗-homomorphisms i : C∗(BΛ) → C∗(Λ) and j : C∗(RΛ) → C∗(Λ) which
make (C∗(BΛ), C∗(RΛ), i, j, C∗(Λ)) a C∗-blend.

This result follows from Theorem 4.2 once the isomorphisms C∗(BΛ) ∼= C∗(Λ∞ oσe1 N)
and C∗(RΛ) ∼= C∗(Λ∞oσe2 N) are established; this is an exercise in finding appropriate Cuntz-
Krieger families in C∗(Λ∞oσe1 N) and C∗(Λ∞oσe2 N), and applying the gauge-invariant unique-
ness theorem. We leave the details to the reader.
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5.3. Skew product groupoids. Fix an étale groupoid G, a discrete group A and a continuous
homomorphism c : G → A. Recall from Example 2.3 the construction of the skew product
groupoid G(c); this groupoid is also étale because A is discrete.

The formula β · (g, α) := (g, αβ−1) defines a left action of A on the space G(c). For a
composable pair ((g, α), (h, αc(g))) ∈ G(c)(2), this action satisfies

β · (g, α)(h, αc(g)) = β · (gh, α) = (gh, αβ−1)

= (g, αβ−1)(h, αβ−1c(g))

=
(
β · (g, α)

)
(h, αc(g)c(g)−1β−1c(g))

=
(
β · (g, α)

)(
c(g)−1βc(g) · (h, αc(g))

)
.

This identity is suggestive of a Zappa-Szép product structure on G(c)×A with restriction given
by β|(g,α) := c(g)−1βc(g). The next result says that is indeed the case, although we have to be
careful with the unit spaces, which makes the details a little more complicated.

Proposition 5.6. Fix an étale groupoid G, a discrete group A and a continuous homomorphism
c : G → A. There is a left action of A on the space G(0) ×A given by β · (u, α) := (u, αβ−1). If
H := An (G(0)×A) denotes the corresponding transformation groupoid, with range and source
maps denoted l and r, then the maps · : H ×r b G(c)→ G(c) and | : H ×r b G(c)→ H given by

(β, (gg−1, α)) · (g, α) := (g, αβ−1) and (β, (gg−1, α))|(g,α) := (c(g)−1βc(g), (g−1g, αc(g)))

satisfy (ZS1–9), and hence induce a Zappa-Szép product groupoid G(c) 1 H.

The proof of this result is nothing more than a checklist of what it takes for β · (u, α) :=
(u, αβ−1) to give an action, and the axioms (ZS1–9). As each calculation is routine, we
leave the details to the reader. Notice that an arbitrary element of G(c) 1 H has the form
((g, α), (β, (g−1g, αc(g)β))), and is completely determined by the elements (g, α) ∈ G(c) and
β ∈ A. So as a space it is homeomorphic to G(c)× A and in some sense should be considered
as the Zappa-Szép product of the groupoid G(c) with the group A.

The C∗-algebras of skew product groupoids are well studied in [17, 8], and we use the notation
of [17]. We know from [8] that c induces a coaction δc : C∗(G) → C∗(G) ⊗ C∗(A) satisfying
δc(ξ) = ξ ⊗ Ub whenever ξ ∈ Cc(G) satisfies supp ξ ⊂ c−1({b}). In [8, Theorem 4.3] the
authors show that C∗(G(c)) is isomorphic to the coaction crossed product C∗(G) oδc A. The
canonical left-action β · (g, α) 7→ (g, βα) commutes with right multiplication in G(c) and hence
induces an action γ : A → AutC∗(G(c)) characterised by γβ(ξ)(g, α) = ξ(β−1 · (g, α)), for
ξ ∈ Cc(G(c)). In [8, Corollary 4.5] it is shown that γ is dual to the coaction δc, so that
C∗(G(c)) oγ A ∼= C∗(G)⊗K(`2(A)).

The alternative left action β ·(g, α) = (g, αβ−1) that we used to build the Zappa-Szép product
does not commute with right multiplication in G(c), and hence does not induce an action of
A on C∗(G(c)). We do not therefore expect a crossed-product description of C∗(G(c) 1 H).
Theorem 4.2 does apply and says that C∗(G(c) 1 H) is the blend of C∗(G(c)) and C∗(H).

We can also say a little more about the Zappa-Szép product groupoid G(c) 1 H. There is
a right action of G by automorphisms of A given by α · g = c(g)−1αc(g), from which we can
form the semidirect product groupoid G n A. Pairs ((g, α), (h, β)) are composable in G n A
if (g, h) ∈ G(2), and composition and inversion are given by (g, α)(h, β) = (gh, c(h)−1αc(h)β)
and (g, α)−1 = (c(g)α−1c(g)−1, α−1). One can check that the map c̃ : G n A → A satisfying
c̃(g, α) = c(g)α is a continuous groupoid homomorphism, and that the map ((g, α), β) 7→
((g, α), (β, (g−1g, αc(g)β))) is a groupoid isomorphism of (G nA)(c̃) onto G(c) 1 H. So despite
C∗(G 1 H) not admitting a natural crossed-product description, we can use the results of [8]
to describe it as the coaction crossed product C∗(G n A) oδc̃ A.
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