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Abstract
Bayesian optimal design is considered for experiments where it is hypothesised that the responses
are described by the intractable solution to a system of non-linear ordinary differential equations
(ODEs). Bayesian optimal design is based on the minimisation of an expected loss function where the
expectation is with respect to all unknown quantities (responses and parameters). This expectation
is typically intractable even for simple models before even considering the intractability of the ODE
solution. New methodology is developed for this problem that involves minimising a smoothed
stochastic approximation to the expected loss and using a state-of-the-art stochastic solution to the
ODEs, by treating the ODE solution as an unknown quantity. The methodology is demonstrated
on three illustrative examples and a real application involving estimating the properties of human
placentas.

Keywords: Approximate coordinate exchange algorithm; Bayesian optimal design; Ordinary differ-
ential equations.

1 Introduction

1.1 Modelling complex physical processes

Often the dynamics behind a complex physical process can be approximately described by a system
of non-linear ordinary differential equations (ODEs), where the solution to these equations provides
a model predicting how a quantity of interest will behave with respect to time. It is assumed that
the system of ODEs depends on some unknown physical properties (parameters) of the process in
question and, potentially, may also depend on some additional controllable (design) factors.

The value of the parameters may be of direct interest or we may be interested in predicting the be-
haviour of the process at certain values of the design variables and/or at a certain time. In either case,
we need to estimate the unknown parameters. An experiment can be conducted where observations
of the quantity of interest are collected at various different times and, possibly from multiple runs of
the experiment with different values of the design factors. To estimate the parameters, a statistical
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Table 1: Physical parameters, θ for the human placenta example described in Section 1.2.
Symbol Description

θ1 Maximum uptake
θ2 Proportion of reaction occurring through active transport
θ3 1st reaction rate
θ4 2nd reaction rate

model is assumed that links the parameters to the observations via a data-generating process based
on the solution to the ODEs (see, for example, Ramsay et al. 2007).

It may be possible to conduct a designed experiment where the observation times and design variables
are actively selected in advance of the experiment. Optimal design of experiments refers to this
selection being made optimally to minimise a loss function which reflects the ultimate goal of the
experiment, e.g. estimation of the unknown parameters or prediction of a future process.

We consider Bayesian optimal design of experiments for ODE models. Bayesian optimal design has
very principled foundations but can be hard to implement in practice due to the computational
complexities involved. Firstly, it involves the minimisation of the expected loss function which will
typically be analytically intractable. Secondly, the dimensionality of the domain of the expected
loss function can sometimes be large since every quantity that can be specified for the experiment
corresponds to a dimension.

For ODE models, these problems are compounded by the fact that, typically, the solution to the
system of ODEs is not analytically tractable. A possible approach is to use numerical methods to
find an approximate solution to the systems of ODEs (see, e.g., Iserles, 2009). However, this has two
disadvantages. First, the numerical solution can be computationally expensive. Bayesian inference
for computationally expensive models has begun to receive considerable attention in the Statistics
literature (e.g. Kennedy and O ’Hagan 2001; Rasmussen 2003; Bliznyuk et al. 2008; Fielding et al.
2011; Overstall and Woods 2013). In each case, to some degree, evaluation of the likelihood (which
depends on the computationally expensive numerical solution) is replaced by an evaluation of an
approximation. The second disadvantage, which is perhaps more serious, is that the numerical error,
unavoidable with numerical methods, is typically not taken account of when performing subsequent
evaluations with the numerical solution. This issue was explained by Chkrebtii et al. (2015) who
proposed a fully probabilistic solution to the system of ODEs. We take advantage of this methodology
in our treatment of optimal design for ODE models.

Overstall and Woods (2015) proposed the approximate coordinate exchange (ACE) algorithm for
Bayesian optimal design for non-ODE models. Very briefly, the ACE algorithm uses a cyclic descent
algorithm (see, for example, Lange, 2013, pg 171) to minimise an approximation to the expected
loss function. The approximation used is a Gaussian process (GP) emulator fitted to a Monte Carlo
integration approximation of the expected loss. In this paper, we extend this algorithm to ODE
models. We replace evaluation of the intractable solution to the ODEs by a value generated from
the probabilistic solution as proposed by Chkrebtii et al. (2015).
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1.2 Measuring human placentas

To aid exposition of the ideas and methodology introduced throughout this paper, consider the
following application from biologists at the Southampton Centre for Biological Sciences (University
of Southampton, UK). Interest lies in the transport of the amino acid serine within a human placenta.
Specifically, we are concerned by how serine moves from the outside to the inside of a portion of
placental cell membrane (called a vesicle). To investigate, an experiment is to be performed where
initial amounts of radioactive and non-radioactive serine (in µl) are placed inside and outside the
vesicle. The amount of radioactive serine inside the vesicle is then measured at a series of observation
times. The serine transport process can be described by a system of ODEs which depend on the
initial amounts of serine and four unknown physical parameters (see Table 1) which are of interest
to the scientists. The solution to the system of ODEs provides theoretically predicted amounts of
radioactive and non-radioactive serine inside the vesicle at a certain time. The practitioners have
control over the initial amounts of non-radioactive serine inside and outside the vesicle for each
experiment and the values of the observation times. Our task is to choose the initial amounts and
observation times optimally with respect to the goal of estimating the physical parameters.

1.3 Organisation of the paper

The paper is organised as follows. In Section 2 we describe the background to the problem including
statistical inference for ODE models, the premise of Bayesian optimal design and a brief description of
the ACE algorithm. In Section 3 we describe the proposed methodology for optimal design for ODE
models including a description of the probabilistic solution to ODEs of Chkrebtii et al. (2015) and
how this can be embedded in the ACE algorithm. In Section 4, we apply this methodology to three
illustrative examples where the goal is parameter estimation. Finally, in Section 5, the methodology
is applied to the human placenta example where differing goals of parameter estimation and model
selection are considered.

2 Background

2.1 Statistical inference for ordinary differential equations

Let x ∈ X be a vector of k design variables, i.e. a treatment, and let θ ∈ Θ be a p × 1 vector of
physical parameters. Consider the following system of S ODEs which define an initial value problem

u̇(t) = f (u(t), t,θ,x)
u(T0) = u0

}
for t ∈ [T0, T1], (1)

where u̇(t) is the gradient vector of u(t) with respect to time t, and u0 ∈ RS denotes the initial
conditions. In (1), f : RS × [T0, T1] × X → RS is a suitably well-behaved function that, at the very
least, we assume satisfies the Lipschitz condition (see, e.g. Iserles, 2009, pg 3). This means that (1)
has a unique solution. Note that the solution actually depends on θ and x, i.e. u(t) = u(t;θ,x) but
we only use the longer notation when we need to be clear that there may be more than one θ or x.

Now we believe that the physical process in question is governed by (1). For j = 1, . . . ,M , we
observe the process for treatment xj, initial conditions u0j, and at times tj =

(
tj1, . . . , tjnj

)
. For
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l = 1, . . . , nj, we observe the c× 1 vector of responses yjl ∈ Yjl, where Yjl denotes the c-dimensional
sample space for the jlth observation. Let yj =

(
yj1, . . . ,yjnj

)
be the cnj × 1 vector of responses for

the jth treatment and let y = (y1, . . . ,yM) ∈ Y be the n × 1 vector of responses for the complete

experiment where n = c
∑M

j=1 nj and Y =
⋃M
j=1

⋃nj

l=1 Yjl is the overall sample space. We assume that
y are realisations according to

y|ψ,d ∼ F (ψ; d) , (2)

where F is a known probability distribution, ψ ∈ Ψ is a P × 1 vector of model parameters (with
parameter space Ψ), and d ∈ D is a q × 1 vector specifying the design (with design space D). The
distribution in (2) essentially defines a statistical model. Note that we decompose ψ = (θ,γ), where
γ ∈ Γ is a (P − p)× 1 vector of nuisance parameters. The design, d, is the set of controllable exper-
imental conditions and can include the treatments x1, . . . ,xM ; the initial conditions u01, . . . ,u0M ;
and the observation times tj1, . . . , tjnj

, for i = j, . . . ,M . In practice, some of these may be fixed by
the protocol of the experiment. Alternatively, the initial conditions may be unknown, and included
in the vector of parameters, ψ, either as physical or nuisance parameters.

The dependence of the distribution in (2) on θ and d is through the solution of the system of ODEs
given by (1). The most obvious way to do this is to assume that

E (yjl|θ,xj, tjl) = G (u(tjl),θ) ,

where G : RS ×Θ→ Yij is a known function. If G(u,θ) 6= ISu, then Ramsay et al. (2007) call this a
distributed partial data problem.

As an example, consider the human placenta example introduced in Section 1.2. The system of S = 2
ODEs is given by

u̇1(t) = x1(u2(t)+θ2θ4)−u1(t)(x2+θ2θ3)
u∗(u,t,θ,x)

u̇2(t) = x2(u1(t)+θ2θ4)−u2(t)(x1+θ2θ3)
u∗(u,t,θ,x)

u1(0) = u01

u2(0) = u02

 t ∈ [T0, T1], (3)

where

u∗ (u(t), t,θ,x) =
2(x1 + x2)(u1(t) + u2(t)) + (1 + θ2) (θ4(x1 + x2) + θ3(u1(t) + u2(t))) + 2θ3θ4

θ1

,

and T0 = 0 and T1 = 600 seconds. The solution to this system is u(t) = (u1(t), u2(t)) which are
the amounts of radioactive and non-radioactive serine, respectively, inside the vesicle at time t. The
values of x = (x1, x2) ∈ X = [0, 1000]2 are the amounts of radioactive and non-radioactive serine
outside the vesicle at time t = 0, and u0 = (u01, u02) ∈ [0, 1000]2 are the corresponding amounts of
serine inside the vesicle at time t = 0. In the experiment, we are able to control x2 and u02 (i.e. x1

and u01 are fixed by the experimental protocol), and the response, yjl, is the amount of radioactive
serine inside the vesicle at time tjl for process conditions x2j and u02j. We assume a statistical model
where

E (yjl|θ,xj, tjl) = u1(tjl),

so that in this case G(u,θ) = u1. The design is the collection of initial amounts of non-radioactive
serine x2j and u02j, and the observation times tj1, . . . , tjnj

; for j = 1, . . . ,M .
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2.2 Decision-theoretic approach to Bayesian optimal design

We now describe the decision-theoretic approach to Bayesian optimal design. We complete the
statistical model given by F in (2) by specifying a prior distribution for ψ which does not depend on
the design d. Once we observe y, the posterior distribution of ψ is given by

π(ψ|y,d) ∝ π(y|ψ,d)π(ψ), (4)

where π(y|ψ,d) is the mass/density function of F and π(ψ) is the prior density function. Note that
the right-hand-side of (4) also defines the joint distribution of ψ and y. The posterior distribution
of the physical parameters is found by marginalising (4) with respect to the nuisance parameters.

Bayesian optimal design relies on the specification of an appropriate (for the goal of the experiment)
loss function denoted by λ(ψ,y,d) which depends on the design and, potentially, the unobserved
responses and unknown parameters. An optimal design, d∗, is given by a value of d that minimises
the expectation of λ(ψ,y,d) with respect to the joint distribution of ψ and y (given d), i.e.

d∗ = arg min
d∈D

L(d),

L(d) = E (λ(ψ,y,d)|d) ,

=

∫
λ(ψ,y,d)dPψ,y|d.

For example, suppose we were interested in posterior point estimation of the elements of θ, then an
appropriate loss function might be the squared error loss (SEL) given by

λSEL(ψ,y,d) =

p∑
l=1

(θl − E (θl|y,d))2 , (5)

which does not depend on the nuisance parameters. It can be shown that

LSEL(d) = E (λSEL(ψ,y,d)|d) ,

=

∫
tr (var (θ|y,d)) dPy|d,

and so the optimal design minimises the expected trace of the posterior variance matrix of θ.

As mentioned in Section 1, we are faced with three problems when trying to minimise the expected
loss function:

• high dimensionality of the design space, D;

• intractability of the integration required to evaluate L(d) and λ (ψ,y,d);

• both evaluation of λ (ψ,y,d) and the joint distribution of y and ψ will typically depend on
the intractable solution to the system of ODEs.

The approximate coordinate exchange (ACE) algorithm, proposed by Overstall and Woods (2015),
is a solution to the first two problems and is described in the next section.
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2.3 Approximate coordinate exchange algorithm

To overcome the problem of the high dimensionality of the design space, the coordinate exchange
(CE; Meyer and Nachtsheim 1995) algorithm is used to minimise the expected loss function, L(d).
This is the same as a cyclic descent algorithm where L(d) is minimised, sequentially, over each
element (or coordinate) of the design space, where all other elements are held fixed. This process is
then repeated until convergence.

However, instead of minimising the intractable L(d), at each iteration, the ACE algorithm minimises
an approximation, L̃(d). Consider the Monte Carlo (MC) approximation to L(d):

L̂B(d) =
1

B

B∑
i=1

λ(ψi,yi,d), (6)

where {ψi,yi}
B
i=1 is a sample generated from the joint distribution of ψ and y, given d. The L̂B(d)

is a consistent and unbiased estimator of L(d). However, there are at least two reasons why L̂B(d)

would be a poor choice for L̃(d). First, L̂B(d) is a stochastic approximation and so is a non-smooth

function. Secondly, L̂B(d) is computationally expensive. This problem is aggravated by the fact
that, in some cases, the loss function is, itself, an intractable function requiring MC approximation.

Instead, Overstall and Woods (2015) proposed constructing an approximation (or emulator) for L(d)

based on a “small” number of evaluations of L̂B(d). One of the most common types of emulator
is the Gaussian process (GP) emulator. The use of GP emulators in more general optimisation
problems dates back to, at least, the expected improvement approach of Jones et al. (1998). The GP
emulator provides a predictive distribution for L(d) and we set L̃(d) to be the predictive mean of this
distribution. This approach of smoothing the MC approximations can be seen as an extension to the
approach of Muller and Parmigiani (1996), for minimising the expected loss, to higher dimensionality
design spaces, by using the CE algorithm. A similar approach was used by Gotwalt et al. (2009)
who used a deterministic quadrature rule to evaluate the log determinant of the Fisher information
matrix averaged over a prior distribution (a commonly-used classical objective function for optimal
design) and then maximised the resulting approximation over the design space using CE.

The actual algorithm is provided in Appendix A. Note that a GP emulator, like all statistical models,
can fit inadequately. Bastos and O’Hagan (2009) developed diagnostics to assess the adequacy of GP
emulators. However, applying these methods automatically within the ACE algorithm is infeasible.
Instead, once L̃(d) has been minimised, we, independently of the GP emulator, decide whether to
accept the change to the current design before we move onto the next element/coordinate in the
ACE algorithm. This accept step is accomplished using a Bayesian hypothesis test. For more details
on this feature, on the overall ACE algorithm, and on the wider issue of Bayesian optimal design,
see Overstall and Woods (2015).

3 Methodology

In this section we describe how the ACE algorithm can be extended to find Bayesian optimal designs
for ODE models.

In Section 3.1, we briefly describing the method of Chkrebtii et al. (2015) for finding a probabilistic
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solution to a system of ODEs and then, in Section 3.2, describe how this solution can be embedded
in the ACE algorithm.

3.1 Probabilistic solution to ODEs

Let Rλ denote a square integrable kernel function with length scale parameter λ ∈ (0,∞). Further-
more, let

Qλ(t1, t2) =

∫ t1

a

Rλ(s, t2)ds,

Sλ(t1, t2) = α−1

∫ ∞
−∞

Rλ(s, t1)Rλ(s, t2)ds,

Wλ(t1, t2) = α−1

∫ ∞
−∞

Qλ(s, t1)Rλ(s, t2)ds,

Vλ(t1, t2) = α−1

∫ ∞
−∞

Qλ(s, t1)Qλ(s, t2)ds,

where α > 0. Let u(t) = (u1(t), . . . , uS(t)), then the central assumption of the method of Chkrebtii
et al. (2015) is that us(t) and its time derivative, u̇s(t), have a joint GP prior, i.e.(

u̇s(·)
us(·)

)
∼ GP

((
ṁs(·)
ms(·)

)
,

(
Sλ(·, ·) Wλ(·, ·)
Wλ(·, ·)T Vλ(·, ·)

))
, (7)

independently, for s = 1, . . . , S. The probabilistic solution to the system of ODEs given by (1),
conditional on θ, α and λ, is constructed by updating the joint distribution given by (7) sequentially
over a discrete grid of N time points τ = (τ1, . . . , τN), where T0 = τ1 ≤ τ2 ≤ · · · ≤ τN = T1.

Let τ 1:r = (τ1, . . . , τr) be the r × 1 vector of time points up to and including the rth time point τr,
for r = 1, . . . , N . The algorithm for the sequential update is as follows:

1. Compute the S × 1 row vector f1 = f (T0,u0,θ) giving the gradient at the initial time point,
T0 = τ1, and let Λ1 = 0.

2. For r = 1, . . . , N − 1 complete the following steps:

(a) Compute the S × 1 vector giving the predictive mean of u(τr+1) as

m(τr+1) = u0 +Wλ(τr+1, τ 1:r) (Sλ(τ 1:r, τ 1:r) + Λr)
−1 Fr,

where Fr is the r × S matrix with qth row given by fq for q = 1, . . . , r. Compute the
common predictive variance of us(τr+1) as

C(τr+1, τr+1) = Vλ(τr+1, τr+1)−Wλ(τr+1, τ 1:r) (Sλ(τ 1:r, τ 1:r) + Λr)
−1Wλ(τr+1, τ 1:r)

T.

(b) For s = 1, . . . , S, generate a prediction of the solution at τr+1, us(τr+1), from the predictive
distribution, i.e.

us(τr+1) ∼ N (ms(τr+1), C(τr+1, τr+1)) ,

where ms(τr+1) is the sth element of m(τr+1).
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(c) Compute the true gradient vector at time τr+1 and solution u(τr+1) as

fr+1 = f (τr+1,u(τr+1),θ) .

(d) Compute the common predictive variance of the time derivative

Ċ(τr+1, τr+1) = Sλ(τr+1, τr+1)− Sλ(τr+1, τ 1:r) (Sλ(τ 1:r, τ 1:r) + Λr)
−1 Sλ(τr+1, τ 1:r)

T,

and let Λr+1 = diag
{

Λr, Ċ(τr+1, τr+1)
}

.

Once step 2 is complete, then a probabilistic solution is given by

us(·) ∼ GP (ms(·), C(·, ·)) ,

for s = 1, . . . , S, where ms(·) is the sth element of the vector of predictive means given by

m(·) = u0 +Wλ(·, τ ) (Sλ(τ , τ ) + ΛN)−1 FN ,

and C(·, ·) is the common predictive variance given by

C(·, ·) = Vλ(·, ·)−Wλ(·, τ ) (Sλ(τ , τ ) + ΛN)−1Wλ(·, τ )T.

The methodology holds for general kernel functions. However, Chkrebtii et al. (2015) suggest two
example kernel functions, the squared exponential kernel function given by

Rλ(t1, t2) = exp

[
−(t1 − t2)2

2λ2

]
,

and the uniform kernel function given by

Rλ(t1, t2) = I (t2 ∈ (t1 − λ, t1 + λ)) ,

where I(A) is the indicator function for the event A. Simplistically, the best choice of kernel function
depends on the assumed smoothness of the u(t). The squared exponential kernel function is infinitely
differentiable and can be used for when we expect u(t) to be smooth. On the other hand, if u(t)
is non-smooth then a better choice is the uniform kernel function which is not differentiable. For
closed form expressions for the functions Qλ, Sλ, Wλ and Vλ, under both the squared exponential
and uniform kernel functions, see Chkrebtii et al. (2015).

Consider the system of ODEs, given by (3), that describe the transport of serine in a human placenta.
Under the squared exponential kernel function, physical parameters θ = (100, 0.05, 100, 100), initial
values u0 = (0, 1000), treatment x = (7.5, 1000), and τ containing N = 501 evenly spaced time
points, Figure 1 shows 1000 draws from the probabilistic solution of u1(t) and u2(t) plotted against
t ∈ [T0, T1] = [0, 600]. Note how the uncertainty in the solution increases as time, t, increases away
from t = T0 where we know, in this example, the true value of u(t).

Chkrebtii et al. (2015) propose several MCMC algorithms for generating a sample from the posterior
distribution of the model parameters ψ = (θ,γ) and the auxiliary parameters α and λ, given existing
experimental responses y. This is accomplished by embedding the probabilistic solution into standard
MCMC algorithms.
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Figure 1: Plots showing 1000 draws from the probabilistic solution of u1(t) and u2(t) against t for the system
of ODEs, given by (3), that describe the transport of serine in a human placenta
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3.2 Extending the ACE algorithm to ODE models

At various points of the ACE algorithm we are required to evaluate a Monte Carlo approximation
of the expected loss function, i.e. as given by (6). First, this requires a sample {yi,ψi}

B
i=1 to be

generated from the joint distribution of y and ψ. This is accomplished by generating a value ψi from
the prior of ψ and then generating a value yi from the distribution F(ψi,d) (see equation (2)). This
will require B evaluations of the intractable solution of the system of ODEs, for the jth treatment
and time points: tj1, . . . , tjnj

, for j = 1, . . . ,M . Secondly, we need to evaluate the loss function at

each value in the sample {yi,ψi}
B
i=1. Unfortunately, the most commonly used loss functions are,

themselves, intractable. For example, the squared error loss function given by (5) depends on the
posterior mean, E (θl|y), of each element of the vector of physical parameters, θ. Overstall and
Woods (2015) used a Monte Carlo approximation of the posterior mean as follows

Ê (θl|y) =

∑B
j=1 θ̃jlπ(y|ψ̃j)∑B
j=1 π(y|ψ̃j)

,

where
{
ψ̃j

}B
j=1

is an additional sample generated from the prior distribution of ψ where ψ̃j =(
θ̃j, γ̃j

)
and θ̃jl is the lth element of θ̃j for l = 1, . . . , p. Evaluation of E (θl|yi), in the loss function,

for i = 1, . . . , B, is now replaced by evaluation of Ê (θl|yi) to give a nested Monte Carlo approximation
to the expected loss function. A further B evaluations of the intractable solution, u(t), will be
required for each treatment and for each time point. Therefore, in total, we need 2B evaluations of
u(t) for each treatment and for each time point, one for each vector of physical parameters in the

samples {ψi}
B
i=1 and

{
ψ̃j

}B
j=1

. Thus we are required to evaluate

uijl = u(tjl;θi,xj),

for i = 1, . . . , 2B, j = 1, . . . ,M and l = 1, . . . , nj.

The basic idea is to replace evaluation of the unknown u(t) in the ACE algorithm by a value generated
from the probabilistic solution outlined in Section 3.1. However, since B will be in the order of 1000s,
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it will be computationally infeasible to use the full probabilistic solution where both the physical
parameters, θ, and auxiliary parameters, α and λ are unknown with prior distributions. However, if
we are prepared to fix the values of the auxiliary parameters, then significant computational savings
can be found thus making the method feasible.

To see this note that we can rewrite the predictive mean of u(τr+1) in step 2(a) in Section 3.1 as
follows

m(τr+1) = u0 + aT
r Fr,

where ar = (Sλ(τ 1:r, τ 1:r) + Λr)
−1Wλ(τr+1, τ 1:r) is a r × 1 vector which does not depend on θ. Also

note that, in step 2(a), the common scalar predictive variance of us(τr+1), for s = 1, . . . , S, denoted
as Cr = C(τr+1, τr+1), also does not depend on θ. This means we can pre-compute both ar and Cr,
for r = 1, . . . , N − 1, in advance of running the ACE algorithm.

In summary, before starting the ACE algorithm, an initial phase is completed as follows.

Initial phase

1. Set Λ1 = 0.

2. For r = 1, . . . , N − 1 compute the following quantities:

ar = BrWλ(τr+1, τ 1:r)
T,

Cr = Vλ(τr+1, τr+1)−Wλ(τr+1, τ 1:r) (Sλ(τ 1:r, τ 1:r) + Λr)
−1Wλ(τr+1, τ 1:r)

T,

Λr+1 = diag
{

Λr, Ċ(τr+1, τr+1)
}
,

where

Ċ(τr+1, τr+1) = Sλ(τr+1, τr+1)− Sλ(τr+1, τ 1:r)BrSλ(τr+1, τ 1:r)
T,

Br = (Sλ(τ 1:r, τ 1:r) + Λr)
−1 .

3. Compute BN = (Sλ(τ , τ ) + ΛN)−1.

4. For j = 1, . . . ,M , compute the nj ×N matrix

Dj = Wλ(tj, τ )BN ,

and the nj × nj matrix

Ej = Vλ(tj, tj)−Wλ(tj, τ )BNWλ(tj, τ )T.

Now, embedded in the ACE algorithm, we can produce a probabilistic solution for uijl for i =
1, . . . , 2B, j = 1, . . . ,M and l = 1, . . . , nj, as follows

Main phase

1. Let f1 = f(T0,u0j,θi).

2. For r = 1, . . . , N − 1, complete the following steps.
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(a) For s = 1, . . . , S, generate
us(τr+1) ∼ N (ms(τr+1), Cr) ,

where
m(τr+1) = u0j + aT

r Fr.

(b) Compute
fr+1 = f(τr+1,u(τr+1),θi).

3. For s = 1, . . . , S, generate
u∗s ∼ N (u0js + DjFN ,Ej) ,

and let
uijl = (u∗1l, . . . , u

∗
Sl) ,

where u∗sl is the sth element of u∗s.

In the above algorithm note the dependence on the initial values u0j, for the jth treatment, i.e. the
initial values are known. In some situations, the initial values will be unknown and become part of the
inference problem, i.e. they are given a prior distribution which we update to a posterior distribution
in light of the experimental responses. If that is the case, then we can replace all occurrences of u0j

by a value, u0ji, generated from their prior distribution, as we do with the unknown parameters.

4 Illustrative Examples

4.1 Preliminaries

In this section we demonstrate the extended ACE algorithm on three illustrative examples featuring
systems of ODEs:

1. Compartmental model (Section 4.2);

2. FitzHugh-Nagumo equations (Section 4.3);

3. JAK-STAT mechanism (Section 4.4).

In each example, designs are found under the three different loss functions as described below. For

each loss function, let
{
ψ̃j

}B
j=1

, where ψ̃i =
(
θ̃i, γ̃i

)
, is an additional sample generated from the

prior distribution of ψ.

• Squared error loss (as described in Section 2.2).

• Absolute error loss (AEL) given by

λAEL(y,θ,d) =

p∑
l=1

|θl −M(θl|y)|,

11



where M(θl|y) is the posterior median of θl. The posterior median is intractable and is approx-
imated as follows. For j = 1, . . . , B, let

wj =
π(y|ψ̃j)∑B
j=1 π(y|ψ̃j)

,

and let θ̃l(1) ≤ · · · ≤ θ̃l(B) be the ordered values of θl in the sample
{
θ̃j

}B
j=1

. Then an approxi-

mation to the median is given by

M̂(θl|y) =
1

2

(
θ̃l(z) + θ̃l(z+1)

)
,

where z = max {j = 1, . . . , B|wj ≤ 1/2}. We then approximate the absolute error loss function

by replacing M(θl|y) by M̂(θl|y).

• Self-information loss (SIL) given by

λSIL(ψ,y,d) = log π(θ)− log π(θ|y,d),

= log π(y|d)− log π(y|θ,d),

= log

∫
π(y|θ,γ,d)π(γ,θ)dγdθ − log

∫
π(y|θ,γ,d)π(γ)dγ. (8)

Both of the integrals in (8), denoted as

I1 =

∫
π(y|θ,γ,d)π(γ)dγ,

I2 =

∫
π(y|θ,γ,d)π(γ,θ)dγdθ,

are analytically intractable. However we can approximate them using Monte Carlo integration
as follows.

Î1 =
1

B

B∑
j=1

π(y|θ, γ̃j),

Î2 =
1

B

B∑
j=1

π(y|θ̃j, γ̃j).

We then replace evaluation of I1 and I2 in the self-information loss function by Î1 and Î2,
respectively.

Similar to approximating the squared error loss in Section 3.2, both of the nested Monte Carlo
schemes for approximating the absolute error and self-information loss require 2B evaluations of u(t)
for each treatment and time point, which we now replace by a value generated from the probabilistic
solution. For the probabilistic solution, the discrete grid of points denoted by τ will be a set of N
equally-spaced points where the absolute difference between any two values is denoted by h. Unless
stated otherwise, for the auxiliary parameters, λ = 4h.

12



4.2 Compartmental model

Compartmental models are used in pharmokinetics to understand how drugs behave inside a body.
The open one-compartment model with first-order absorption is described by the following system
of S = 2 ODEs for t ∈ [0, 24] hours

u̇1(t) = −θ1u1(t)
u̇2(t) = (θ2/θ3)u1(t)− θ2u2(t)
u(0) = (D, 0)

(9)

where u1(t) and u2(t) are the amounts of drug outside and inside the body respectively, D is the
known initial dose and θ = (θ1, θ2, θ2) are unknown parameters.

The system in (9) is a homogenous linear system with constant coefficients meaning it can be solved
analytically as

u1(t) = D exp (−θ1t) ,

u2(t) =
Dθ2

θ3(θ2 − θ1)
(exp(−θ1t)− exp(−θ2t)) .

For this example, we find and compare designs under the three loss functions from Section 4.1, and
under both the exact and probabilistic solutions to the ODEs.

This type of compartmental model (or variants of it) is often used to demonstrate optimal experi-
mental design methodology (see, for example, Atkinson et al. 1993; Gotwalt et al. 2009; Ryan et al.
2014; Overstall and Woods 2015). We follow the setup of Ryan et al. (2014) and Overstall and Woods
(2015) where D = 400, n = 15 and

log θl ∼ N(µi, 0.05),

independently, for l = 1, 2, 3 with (µ1, µ2, µ3) = (log 0.1, log 1, log 20). The amount of drug inside the
body, yi is observed at observation time ti and we assume the following statistical model

yi ∼ N
(
u2(ti), σ

2 + τ 2u2(ti)
2
)
, (10)

independently, where σ2 = 0.1 and τ 2 = 0.01. Note that (10) implies that G(u,θ) = u2. The design
only involves the n observation times: t1, . . . , tn. An added stipulation is that the observation times
have to be at least 15 minutes apart. Such constraints are straightforward to incorporate into the
ACE algorithm (see Overstall and Woods 2015).

Since we know that u(t) is smooth we employ the squared exponential kernel function. The discrete
grid, τ , is of size N = 501. The auxiliary parameter α is fixed at N .

For each loss function, we compare the designs found under the exact and probabilistic solutions
(using ACE) to a uniform designs of n = 15 equally-spaced time points in [0, 24] hours. The top row
of Figure 2 shows boxplots of twenty evaluations of the Monte Carlo approximation to the expected
loss for the uniform design and the optimal design found under each of the loss functions. There
is negligible difference between the designs found under the exact and probabilistic solutions and
these designs are clearly superior to the uniform designs. In the bottom row of Figure 2 are the
observation time points associated with the designs under comparison. The optimal designs appear
to favour having a set of observation times near the peak of u2(t) at t ≈ 2.5 hours and then a
series of observation times at the end of the observation interval. Of the points near the peak, the
optimal design under self-information loss has two distinct sets whereas the designs under squared
and absolute error loss have just one set of points.
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Figure 2: Plots summarising the results from the compartmental model in Section 4.2. The top row show
boxplots of 20 evaluations of the Monte Carlo approximation to the expected loss for the uniform design
and the optimal designs (for the exact and probabilistic solution) found under each of the loss functions.
The bottom plot shows the three designs found under each of the loss functions and the uniform design. In
the background to the plot in the bottom row is 100 draws from the exact solution, u2(t), giving the amount
of drug at time t, for 100 values drawn from the prior distribution of θ.
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4.3 FitzHugh-Nagumo equations

The FitzHugh-Nagumo equations (FitzHugh 1961 and Nagumo et al. 1962) aim to describe the
behaviour of spike potential in the giant axon of squid neurons. They are given by the following
system of S = 2 ODEs for t ∈ [0, 20]ms

u̇1(t) = θ3 (u1(t)− u1(t)3/3 + u2(t))
u̇2(t) = − (u1(t)− θ1 + θ2u2(t)) /θ3

u(0) = (−1, 1)

where u1(t) is the voltage across the axon membrane, u2(t) is the recovery variable giving a summary
of outward current and θ = (θ1, θ1, θ3).

The experiment involves measuring the voltage, yi, at time ti, for i = 1, . . . , n = 21. Following
Ramsay et al. (2007), the following statistical model is assumed

yi ∼ N
(
u1(ti), σ

2
)
, (11)

independently, where σ ∼ U[1/2, 1]. Furthermore, we assume the following prior distributions for
the unknown parameters: θ1 ∼ U[0, 1], θ2 ∼ U[0, 1] and θ3 ∼ U[1, 5]. In (11), G(u,θ) = u1.

As noted by Ramsay et al. (2007), the solution to the FitzHugh-Nagumo equations can alternate
between smooth evolution and sharp changes of direction. For this reason we employ the uniform
kernel. The discrete grid is of size N = 200 and the auxiliary parameter α is fixed as N .

The design consists of the n observation times: t1, . . . , tn. Similar to Section 4.2, we stipulate that
the observation times have to be at least 0.25ms apart. We find designs under each of the loss
functions in Section 4.1. In each case, we compare the optimal design to a uniform design of n
equally spaced points in [0, 20]ms. Figure 3 shows boxplots of twenty evaluations of the Monte Carlo
approximation to the expected loss for the uniform design and the optimal design found under each
of the loss functions. In each case, there is a clear improvement to be made on using a uniform design.
Also shown in Figure 3 are the four designs under comparison. Both the squared and absolute error
optimal designs have a significant number of frequent observations at the beginning of the experiment.
For example these designs have around a third of their observation times before 2.5ms. On the other
hand, the self-information loss and uniform designs only make 3 observations before this time. A
feature of all of the optimal designs is that they make no observations between about 2.5 and 6ms.
The remaining observation times appear roughly evenly spaced. The background to this plot shows
100 draws from the probabilistic solution, u1(t), giving the voltage at time t, for 100 values drawn
from the prior distribution of θ. It appears that the initial phase of high frequency observations is to
learn about the steep increase in voltage for small t. The remaining set of evenly spaced observation
times is for learning when the voltage has high noise due to parameter uncertainty.

4.4 JAK-STAT mechanism

The JAK-STAT mechanism describes a set of biochemical reactions of STAT-5 transcription factors
in response to binding of the Erythropoietin hormone to cell surface receptors. The system of S = 4
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Figure 3: Plots summarising the results from the FitzHugh-Nagumo equations in Section 4.3. The top row
show boxplots of 20 evaluations of the Monte Carlo approximation to the expected loss for the uniform
design and the optimal design found under each of the loss functions. The bottom plot shows the three
designs found under each of the loss functions and the uniform design. In the background to the plot in the
bottom row is 100 draws from the probabilistic solution, u1(t), giving the voltage at time t, for 100 values
drawn from the prior distribution of θ.
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ODEs, for t ∈ [0, 60], is

u̇1(t) = −θ1u1(t)κ(t) + 2θ4u4(t− ω)

u̇2(t) = θ1u1(t)κ(t)− θ2u2(t)2

u̇3(t) = −θ3u3(t) +
1

2
θ2u2(t)2

u̇4(t) = θ3u3(t)− θ4u4(t− ω)

u(0) = (u01, 0, 0, 0)

where u01 and ω are unknown, and u4(t) = 0 for t ∈ [−ω, 0]. The examples thus far have been initial
value problems (IVPs) whereas the system above is an example of a delay initial function problem
(DIFP). After gene activation in the cell nucleus, the transcription factors revert to their initial state,
returning to the cytoplasm for the next activation cycle. This stage is explained by the unknown
time delay denote by ω.

The function G is given by

G(u,θ) =


θ5(u2 + 2u3)

θ6(u1 + u2 + 2u3)
u1

u3/(u2 + u3)

 .

An experiment has already been conducted (Swameye et al., 2003) which consisted of two series of
n = 16 measurements of the first two elements (G1 and G2) of G at a set of distinct observation times:
t1, . . . , tn. A further observation of G3 is made at time t = 0 and of G4 at time t∗. The following
statistical model is assumed

(y1i, y2i) ∼ N (G(u(ti),θ)1:2,Ci) ,

y3 ∼ N
(
G(u(ti),θ)3, σ

2
3

)
,

y4 ∼ N
(
G(u(ti),θ)4, σ

2
4

)
independently, for i = 1, . . . , n, where Ci = diag {σ2

1i, σ
2
2i}. See Raue et al. (2009) and Chkrebtii

et al. (2015) for analyses of these data. In these papers, σ2
1i, σ

2
2i, σ

2
3 and σ2

4 (for i = 1, . . . , n) are
experimentally determined, i.e. they are known.

The design task considered here will be to optimally find a follow-up design based on information
on the parameters from the existing data. We assume the same statistical model as above and find
t1, . . . , tn and t∗. In the terminology of Sections 2 and 3, the prior distribution for θ, ω and u01 is
the posterior distribution for the existing data as per the analysis of Chkrebtii et al. (2015). Instead
of the variance parameters being fixed, we assume that σ2

1i = σ2
1, σ2

2i = σ2
2, for all i = 1, . . . , n and

σ1 ∼ U[0, 0.1]

σ2 ∼ U[0, 0.1]

σ3 ∼ U[0, 20]

σ4 ∼ U[0, 0.1].

These prior distributions are consistent with the experimentally determined values from the original
analysis.
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Note that the system of ODEs depends on the forcing function κ(t). This is unknown, but has been
measured at 16 time points. Following Chkrebtii et al. (2015), we assume these measurements are
without error and use a GP to give a probabilistic approximation to κ(t) at any value of t ∈ [0, 60].

The nature of the DIFP does introduce an added complexity to our implementation of the proba-
bilistic solution. In step 2(b) of the main phase of the algorithm in Section 3.2 we are required to
compute

fr+1 = f(τr+1,u(τr+1),θi).

In an IVP, this is dependent on u(τr+1) which is generated from a normal distribution in step 2(a).
However in the DIFP, to compute fr+1, we also need u4(τr+1−ωi), where ωi is a value generated from
the prior (posterior from original analysis) distribution of ω. If τr+1−ωi ≤ 0, then u4(τr+1−ωi) = 0
by the initial conditions of the system of ODEs. For τr+1 − ωi > 0, in the probabilistic solution
of Chkrebtii et al. (2015), the conditional distribution of u4(τr+1 − ωi) can be derived and a value
generated. However, this will be computationally expensive to incorporate in the implementation
of the probabilistic solution described in Section 3.2. Instead, if τr+1 − ωi > 0, then we replace
u4(τr+1 − ωi) by u4(τr̄) where

r̄ = arg min
r′=1,...,r+1

|τr+1 − ωi − τr′ |,

i.e. from the series of u4(τ1), . . . , u4(τr+1) generated in step 2(a), thus far, we choose the value at
time τr̄ that is “closest” to τr+1 − ωi.

As noted by Chkrebtii et al. (2015), the time delay can cause discontinuities in the derivative meaning
we emply the uniform kernel function. The discrete grid, τ , is of size N = 500, and the auxiliary
parameters are λ = 0.085 and α = 8000 which are consistent with their posterior distribution from
the original analysis.

We use the extended ACE algorithm to generate designs under the three loss functions from Sec-
tion 4.1 and compare these designs to the original design used in the experiment of Swameye et al.
(2003). As in the previous examples, the observation times need to be at least 1 second apart. Fig-
ure 4 shows boxplots of twenty evaluations of the Monte Carlo approximation to the expected loss for
the original design and the optimal design found under each of the loss functions. In each case, there
is a clear improvement to be made on repeating the experiment with the same set of observation
times. Also shown in Figure 4 are the four designs under comparison. Clearly the optimal designs
favour having a dense set of points early in the observation window and then a smaller set of times
at the end of the window. This is especially true for the designs under the squared and absolute
error loss where 75% of the observation times are less than 15 seconds, compared to about 60% for
self-information loss and 50% for the original design. It appears that the early observation times
can learn about the peak in G1 and the sharp decrease in G2 at and up to 10 seconds, respectively.
For the single observation time, t∗, of G4, the optimal designs clearly favour making a very early
observation. Note that t∗ for each of the optimal designs is between 1 and 2 seconds.

5 Application: Transport of serine across human placenta

Now consider the human placenta example introduced in Sections 1.2 and 2.1. By the protocol of
the experiment, the initial amounts of radioactive serine inside (u01) and outside (x1) are fixed as 0
and 7.5, respectively.

18



Figure 4: Plots summarising the results from the JAK-STAT example in Section 4.4. The top row show
boxplots of 20 evaluations of the Monte Carlo approximation to the expected loss for the original design and
the optimal design found under each of the loss functions. The bottom plot shows the three designs found
under each of the loss functions and the original design. In the background to the plot in the bottom row is
100 draws from G1, G2 and G4, at time t, for 100 values drawn from the prior distribution of θ, u01 and ω.
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We consider M = 2, . . . , 7 placentas and let nj = n∗ = 8, for all j = 1, . . . ,M . We also fix tjl = tl
for l = 1, . . . , nj and j = 1, . . . ,M . The following statistical model is assumed for the experimental
responses

yjl = u1(tl;θj,xj) + εjl, (12)

for j = 1, . . . ,M and l = 1, . . . , n∗, where xj = (x1, x2j),

εjl
iid∼ N

(
0, σ2

)
,

and θj are the physical parameters for the jth placenta. For d = 1, . . . , p, we specify a multiplicative
hierarchical prior structure for θj as

θjd
iid∼ U [θd (1− cd) , θd (1 + cd)] ,

where cd
iid∼ U [0, 0.05], and θ = (θ1, . . . , θp) are the population physical parameters. For the latter,

we assume the following independent prior distributions for each element

θd ∼ Tri[al, bl],

where Tri[a, b] denotes the symmetric triangle distribution on the interval [a, b]. We assume a1 =
a2 = a4 = 80, b1 = b2 = b4 = 120, a2 = 0.02 and b2 = 0.08. This reflects actual prior knowledge on
the value of these parameters from past experiments. For the response variance, we assume

σ2 ∼ U[0, 1].

We expect the solution to be smooth so use the squared exponential kernel function. The discrete
grid, τ , is of size N = 601 and the auxiliary parameter α = 10N .

Specifying a design corresponds to specifying the M = 7 experimental conditions x21, . . . , x2M , and
initial values u021, . . . , u02M , as well as the common n∗ = 8 observation times t1, . . . , tn∗ . Therefore,
the design space has 22 dimensions.

For each value of M , we use the ACE algorithm to find designs under the three loss functions from
Section 4.1. In addition, suppose a question of interest concerns whether the reaction rates are
symmetric, i.e. is θ3 = θ4? To answer this question, we define two models: m1 (where θ3 = θ4) and
m2 (where θ3 6= θ4). An appropriate loss function, termed the Model selection loss (MSL), is

λ(y,m,d) = 1− I(m̂ = m),

where m ∈ M = {m1,m2} denotes the model and m̂ = argmaxm∈Mπ(m|y) is the model that
maximises the posterior model probability. The posterior model probability of model m is given by

π(m|y) =
π(y|m)π(m)∑

j∈M π(y|mj)π(mj)
,

where π(m) is the prior model probability of model m and

π(y|mj) =

∫
π(y|θj,γ)π(θj,γ)dθjdγ (13)

for j = 1, 2, with θj being the parameters under mj. Under j = 1, 2, the integration in (13) is
intractable but can be approximated using a Monte Carlo approximation in a similar way to I2
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Figure 5: Plots summarising the results from the placenta example in Section 5. Shown are boxplots of 20
evaluations of the Monte Carlo approximation to the expected loss for the proposed design and the optimal
design found under each of the loss functions and each value of M .
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Table 2: Initial concentrations (to nearest integer) of non-radioactive serine inside (u02 = u2(0)) and outside
(x2) each of the M = 7 placentas for the optimal designs found under the four loss functions and the
proposed design.

Self-information Squared error Absolute error Model selection Proposed

Placenta x2 u02 x2 u02 x2 u02 x2 u02 x2 u02

1 0 1000 0 0 0 0 0 0 0 0
2 0 1000 0 0 0 0 0 105 250 0
3 0 1000 0 58 0 40 0 169 250 250
4 0 1000 0 56 0 67 302 0 250 1000
5 0 1000 217 952 188 932 306 457 1000 0
6 0 1000 215 1000 184 1000 755 1000 1000 250
7 0 1000 194 1000 207 1000 570 117 1000 1000

under the self-information loss. In each case, as in the previous examples, the observation times need
to be at least 5 seconds apart.

Figure 5 shows boxplots of twenty evaluations of the Monte Carlo approximation to the expected loss
for the optimal design found under each loss function plotted against M = 2, . . . , 7. For M = 7, also
shown is a boxplot of twenty evaluations of the Monte Carlo approximation for a design (see Table 2)
proposed by the biologists at the Southampton Centre for Biological Sciences. For M = 2, . . . , 6,
the corresponding boxplots show evaluations of the Monte Carlo approximation for twenty designs
formed by randomly choosing M rows from the proposed design. As expected, the expected loss
decreases with the number of placentas, M . Also, the optimal designs are clearly superior to the
proposed designs. However, it should be noted that, for each loss function, the optimal design is
expected to gain more information from M = 2 placentas than the proposed design is expected to
do so from M = 7 placentas.

We now look at the case of M = 7 placentas in more detail. The initial concentrations of non-
radioactive serine inside (u02) and outside (x2) each of the M = 7 placentas for the optimal designs
found under each of the four loss functions are shown in Table 2. Also shown are the conditions
for the design proposed by the biologists. Figure 6 show the optimal (for each loss function) and
proposed observation times. Each row shows 100 draws from u1(t) plotted against t for 100 draws
from the prior distribution of θ and γ, for each placenta and initial concentrations shown in Table 2.

Under the self-information loss, Table 2 shows that the optimal design has replicates of the same
initial concentrations of non-radioactive serine. Figure 6 shows that, compared to the other designs,
these initial concentrations lead to a larger maximum value of u1(t). Note that the between-placenta
variability of u1(t) in Figure 6 is due to the placenta-specific physical parameters, θj. The optimal
observation times under the self-information loss occur in two clusters, just before and after the peak
in u1(t).

The designs under the squared and absolute error loss functions appear similar. In both cases they
are superior to the proposed design. The initial concentrations in Table 2 lead to three distinct
profiles of u1(t) (Placentas 1 and 2; 3 and 4; 5, 6 and 7). The profile for placentas 1 and 2 has a
slow steady increase in u1(t) with respect to t. Placentas 3 and 4 have a steep initial increase and
subsequent decrease in u1(t) with respect to t. Finally, placentas 5 to 7 has a steep initial increase in
u1(t) with respect to t followed by a slow decrease. The optimal observation times are predominantly
at the beginning of the observation window.
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Figure 6: Plots summarising the results from the placenta example in Section 5. Shown are 100 draws from
u1(t) plotted against t for 100 values drawn from the the prior distribution of θ, for each of the M = 7
placentas and experimental conditions given by Table 2.
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The initial concentrations of the optimal design under the model selection loss result in two distinct
profiles of u1(t). For placentas 2, 3 and 5 to 7, u1(t) has a slow steady increase in u1(t) with respect
to t. Placentas 1 and 4 have a steep initial increase and subsequent decrease in u1(t) with respect
to t. Opposite to the other loss functions, the optimal observation times are predominantly towards
the end of the observation window.

6 Concluding Remarks

This paper introduces an extension of the ACE algorithm for Bayesian optimal design so that the
challenging problem of experimental design for ODE models can now be attempted.

The method relies on the probabilistic solution to a system of ODEs as recently proposed by Chkrebtii
et al. (2015) and is demonstrated on four examples where the goal of the experiment is estimating
unknown physical parameters.

One key issue not addressed is model discrepancy (Kennedy and O ’Hagan, 2001). This is a systematic
mis-match between the true physical process and the solution to the ODEs. Not taking account of this
bias can lead to significant bias in the posterior estimates of the physical parameters (Brynjarsdottir
and O ’Hagan, 2014). Future work will focus on Bayesian optimal design for physical models including
model discrepancy.

A The ACE algorithm

1. Choose an initial design d0 =
(
d0

1, . . . , d
0
q

)
and set the current design to be dC =

(
dC1 , . . . , d

C
q

)
=

d0.

2. For each element i = 1, . . . , q of d:

(a) Let Li(d) = L(dC1 , . . . , d
C
i−1, d, d

C
i+1, . . . , d

C
q ) be the function given by the expected loss

function which only varies over the design space, Di, for the ith element.

(b) For j = 1, . . . , Q, evaluate

zj = L̂iB(dj),

for {d1, . . . , dQ} ∈ Di. Fit a GP emulator to {zj, dj}Qj=1 and set L̃i(d) to be the resulting
predictive mean.

(c) Find
d∗i = argmind∈Di

L̃i(d),

and let d∗ =
(
dC1 , . . . , d

C
i−1, d

∗, dCi+1, . . . . . . , d
C
q

)
be the proposed design.

(d) For i = j, . . . , B, set

λCj = λ(ψC
j ,y

C
j ,d

C),

λ∗j = λ(ψ∗j ,y
∗
j ,d

∗),

where
{
ψC
j ,y

C
j

}B
i=1

and
{
ψ∗j ,y

∗
j

}B
j=1

are samples generated from ψ,y|dC and ψ,y|d∗,
respectively.
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(e) Calculate

p∗ = 1− F

(
−
∑B

i=j λ
C
i −

∑B
i=1 λ

∗
j√

2Bv̂

)
,

where F (·) is the distribution function of the t-distribution with 2B−2 degrees of freedom,

v̂ =

∑B
j=1(λCj − λ̄C)2 +

∑B
j=1(λ∗j − λ̄∗)2

2B − 2
,

and λ̄C and λ̄∗ are the sample means of the λCj ’s and λ∗j ’s, respectively.

(f) Set dC = d∗ with probability p∗.

3. Return to step 2, until convergence.

Convergence can be assessed informally using trace plots of the evaluations of either λ̄∗ or λ̄C at step
2(e), dependent on whether the proposed design was accepted or not, respectively.

The ACE algorithm should be started from multiple different starting designs d0. Out of the resulting
designs, the one with the lowest value of L̂B(d) is returned.
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