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ABSTRACT. The AWS Group developed a UWB radar and UWB transceiver for indoor people 

location and tracking. A radar concept has been developed. This paper will describe step by 

step the realization of a UWB directional coupler with a novel 3-D architecture. This paper 

gives a walkthrough of our design of the 3-D directional coupler. 
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1. Introduction 

The AWS Group was developing a UWB radar and UWB transceiver for indoor 

people location and tracking. A radar concept has been developed. The radar is 

composed of a pulse generator, a channel model, a low-noise amplifier, a matched 

filter, two pulse shapers, a flip-flop circuit and an integrator. This paper will focus 

on the design of the directional coupler. The development of the broadband 

directional coupler aims to create a separation between the pulse generator and the 

Low Noise Amplifier. This enables the radar system to connect both so that only one 

antenna is necessary for the radar system; also it will avoid triggering the pulse 

detection. For the design of the coupler, the technology used is microstrip. The 

specifications for the coupler design are shown in Table I. The Software used for the 

design is AWR Microwave Office and CST Microwave Office. First the 

development of the 3D directional coupler will be detailed. Then the manufacturing 

process of the prototype will be described. Finally the measured performances of the 

prototype will be presented. 

 

 

Table 1. Directional coupler specifications 

2. Development of the 3D directional coupler 

The substrate is the CER10-250, because of its high relative dielectric coefficient 

εr = 9.5, the circuit will have a relatively small size. 

2.1. First Approach 

From the study of [3-5], it was decided that the directional coupler should be 

designed with two asymmetric elements. This is to ensure bandwidth efficiency and 

the best isolation possible. On the other hand, the phase difference between the 

coupled waves at the ends of the coupler is not 90° at all frequencies as opposed to 

symmetric couplers. As a first approach, a perfect coupler design was dimensioned 

using tables with broadband Chebyshev equal-ripple coupling response. The values 

were picked for a bandwidth ratio of 4 and a coupling factor of 10dB. The 

parameters were entered in AWR Microwave Studio into ideal coupled microstrip 

line @ 6.85GHz. These ideal elements showed perfect coupler behavior. 

 

Frequency Band 3.1-10.6 GHz 

Maximum Dimensions 20mm x 20mm 

Reflection < -20dB 

Isolation < -25dB 

Coupling = 10dB ±0.5dB 

Transmission Losses < 1dB 

Constant Group Delay As small as possible 
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Table 2. Dimensions of the directional coupler and even and odd mode 

impedances for ideal and physical model 

The dimensions of the physical layout, shown in Table 2, were calculated with 

TX-Line Calculator embedded in AWR. The simulation results of the S-parameters, 

obtained with CST microwave, are very different from what was expected: stronger 

transmission losses, reflections, strong isolations and the bandpass ripple is uneven. 

To understand, what is causing these discrepancies, the impedance of the elements 

needs to be studied. From the CST simulation of the coupler elements, the physical 

impedances differ from the expected values at 6.85GHz, shown in Table 2. The 

effect is more noticeable in element 1 due to the stronger coupling. Also the 

frequency dispersion of the effective permittivity is the source of the differences 

between even and odd mode impedances and phase velocities. This explains the 

unevenness in the bandpass. The odd mode is travelling faster because it propagates 

mostly above the substrate in the air. The even mode is travelling slower because it 

propagates mostly in the substrate with a higher dielectric constant hence slowing 

down the phase velocity. Ideally the phase velocities of both modes should be equal. 

Some tweaks were brought to the dimensions to improve the closeness of the ideal 

components and the physical layout. However there is a dimension constraint on the 

gap, due to limitations in manufacturing accuracy at the AWS group. A noticeable 

error remains between the desired values and the observed values especially with 

element 1. The first element being the most problematic, its evolution will be treated 

first. 

 

2. 2. Evolution of the first element 

The 1st element went through two evolutions before reaching its final design 

state. These evolutions aimed at countering the effect of the difference in phase 

velocity between the two modes of propagation by slowing down the odd mode 

propagation. The 1st evolution was the design of a meander in the 1st element, and 

the second the implementation of a vertically installed planar circuit. Thus it is 

needed to slow down the odd mode propagation to equilibrate the phase velocities. 

Two shapes of meander were studied: triangular and circular. However they were 

both unsuccessful. Thus I chose to implement a vertically installed planar circuit for 

the 1st element. 

The VIP adds a new degree of freedom in the design and allows finer 

adjustments of the parameters. This structure affects the transmission of the electric 

fields in even and odd mode. The value of the odd mode impedance is strongly 

related to the characteristics of the vertical substrate, since the odd mode electric 

Coupled Microstrip 

Line Parameters 

Coupler 1 

ideal / physical 

Coupler 2 

ideal / physical 

Width 418.3μm 568.2μm 

Gap 80.83μm 591.9μm 

Z0e 78.6485Ω / 81.94Ω 57.8896Ω / 60.38Ω 

Z0o 31.7902Ω / 25.975Ω 43.2133Ω / 41.85Ω 
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flux is concentrated in the vertical substrate. As for the even mode, its impedance is 

related to the main substrate. The paper recommends the use of a substrate of lower 

dielectric constant than the main substrate for the VIP. However it is dealing with 

stronger coupling coefficients and substrates with much lower dielectric coefficients. 

A study of the effects of the substrate dielectric coefficient on the studied structure 

led to the conclusion that the same substrate should be used for the VIP to obtain 

maximum performances. Considering manufacturing, the implementation shown in 

figure 1 (left) was designed. The solder was also taken in consideration because the 

VIP cladding thickness influences the impedances. The dimensions of this element 

are as follow: gap = 388.311μm, width (W1) = 286.854μm, VIP Height = 

375.664μm. The simulation results on the effective dielectric constants are shown in 

figure 2. The even and odd mode impedances in this case are close to ideal values 

and the phase velocities have been about equalized. Now let us take care of the 2nd 

element’s evolution. 

    
Figure. 1. 1st element final state (left),  2nd element final state (right) 

 
 

εeffo 

εeffe 

 
 

Figure. 2. Even and Odd mode effective dielectric constant (εeffe, εeffo) for element 

1from our design 
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2. 3. Evolution of the second element 

The coupling factor of the 2nd element is lower than for the 1st element. This 

makes the use of the VIP technique unfeasible in this case. Instead a piece of 

uncladded substrate was added horizontally on the second element. Hence the odd 

mode is travelling in a medium with the same dielectric constant as for the even 

mode. The new layout for the 2nd element is shown in figure 1 (right) and its 

dimensions are as follow: gap = 1170μm, width (W2) = 424.90μm , width of 

substrate = 1252.39μm. The even and odd mode impedances in this case are close to 

ideal values and the phase velocities have been about equalized. Now let us move on 

to transitions. 

 

2. 4. Evolution of the transitions 

The design of the transition between the two elements of the coupler has become 

problematic. The elements of the coupler aren’t in direct contact. Hence particular 

attention had to be given to the design of the transition to reduce reflections and 

isolation coefficients and also optimize energy transfer. The first consideration is to 

implement a transition at 45º inclination to suppress the coupling effect in the 

transition. A few designs for the transition where studied. The evolution of the 

transition is shown in Figure 5. The simulation of the last transition shows the best 

performances out of all those tested. The transitions to port 1 and 4 need some 

adjustments to optimize the coupler’s performance. The transitions to port 2 and 3 

are just regular steps. The dimensions for the transitions to port 1 and port 4 are b1 = 

210μm, b4 = 250μm. The transition to port 1 is illustrated in Figure 6, the transition 

to port 4 is similar. 
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Figure. 5. Evolution of the transition between 

both elements 

 

 
Figure. 6.  

transition to port 1 

The transitions to port 2 and 4 are steps from the width of the line to a 50Ω-

line.The full design of the directional coupler is almost complete. Some adjustments 

were brought to the length of the elements. The physical size of the connectors was 

taken in account for the size of the board. And the length of the added piece of 

substrate on element 2 was adjusted by reducing the length by 200um on each side 

symmetrically relatively to the length of the second element. The resulting layout is 
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shown in Figure 3. The S-parameters’ performances are shown in Figure 5.The 

design doesn’t meet fully the requirements but is satisfactory to move on to the 

prototyping part. The simulqted coupling factor is purposely stronger than it should 

be to compensate errors in manufacturing which usually result in a lower coupling 

factor. 

 
Fig. 3. Directional coupler final layout 

 
Fig. 4. Prototype of the Directional 

coupler’s final layout 

 
Fig. 5. S-parameters’ performances of the directional coupler final layout 

 
Fig. 6. S-parameters’ measured performances of the directional coupler final 

layout @ port 1 
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3. Manufacturing process of the prototype 

The prototype (figure 4) of the coupler was produced using precision machinery. 

The board layout was produced in University College Dublin. A precision milling 

machine: LPKF-C60 was used to mechanically etch the pattern on the CER-10. The 

assembly of the board was carried out in Tyndall National Institute. The assembly 

involved cutting 2 CER-10 VIP bricks X 4mm x Y 0.705mm x Z 0.375mm and X 

2.9mm x Y 2.5mm x Z 0.67mmu sing a Disco DAD6H/T dicing saw. They were 

both positioned and fixed using a microscope and a Finetech flip chip aligner 

bonder. The 1st brick (double cladded) was soldered with Alpha Metals SAC387 

solder paste. The 2nd brick (uncladded) was glued on the board.  

Table 3 Directional coupler measured S-parameter performances 

4. Performance Measurements of the prototype 

The S-parameters were measured using the VNA HP8720C. While two ports 

where connected to the VNA, the other two ports where equipped with 50Ω-load 

impedances. The VNA was calibrated using Agilent Calibration Kit guaranteeing the 

validity of S parameters up to 9GHz. In figure 6 and table 5, we show the measured 

S-parameters of the directional coupler manufactured using precision machinery. 

The S-parameters are different from the to the simulation results, the coupling is 

lower than expected but it fits the requirement of -10dB. However the ripple is about 

one and half or twice as high as required. The isolation in the coupler is satisfactory 

<-20dB but higher than the specifications required. The losses and the reflection in 

the circuit are on the other hand higher than expected. 
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5. Conclusion 

Following the unsatisfactory experimental results, we incorporated the SMA 

connectors to the simulation and obtained results matching the measurements. So 

this means that we have to redesign the transition between SMA connectors and the 

microstrip line. Also regarding the higher transmission losses of the real directional 

coupler, the substrate has probably a higher loss tangent of dielectric than its model. 

Thus the measured insertion losses are mainly due to losses of the feeding 

transmission lines. An improved model of the substrate has to be incorporated to the 

model and some modifications to decrease overall losses, insertion losses and 

increase isolation have to be brought before this 3D architecture can be considered 

viable. 
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