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Abstract: Ballistic spacecraft formation-flying with zero thrust has great utility, but it is limited to 

a comparatively small set of relative trajectories. However, through the application of continuous 

low thrust, rich new families of formation-flying trajectories can be accessed. This new and novel 

problem provides a wide range of potentially useful alternatives to natural ballistic formation-

flying. In this paper, the standard Clohessy-Wiltshire approximation of relative spacecraft motion 

is used to investigate the motion of a chase spacecraft about a target spacecraft which is in a 

circular Earth orbit. Families of non-Keplerian relative motion are systematically explored, 

generating analytical representations of the relative motion trajectories and the required thrust 

commands for both simple static formations and more complex new forced relative orbits. It is 

found that the impulse, and therefore propellant, required for maintenance of such relative orbits 

is small, and so the concept of low thrust augmented formation-flying is deliverable in the near 

term with existing thruster technology. 
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1. Introduction 

A useful definition of spacecraft formation flying, given by the NASA Goddard Space Flight 

Center (GSFC) [1], is that it is “the tracking or maintenance of a desired relative separation, 

orientation, or position between or among spacecraft”. An early extension of the concept was a 

proposed space-based infrared interferometer making use of several separate orbital telescopes, 

investigated by Sholomitsky, Prilutsky, and Rodin [2], and then similarly by Labeyrie [3]. Over 

the following decades, the conceptual value of such multi-spacecraft missions was explored, and 

in the late 1990s substantial interest developed for spacecraft formation-flying. The potential 

applications for spacecraft formation-flying have, in recent years, diversified greatly. Several such 

missions are in development or have flown; for example the ESA Project for On-Board Autonomy 

(PROBA-3) solar coronagraphy demonstrator [4], the Evolved Laser Interferometer Space 

Antenna (eLISA) [5], and several on-orbit inspection concepts such as the AeroAstro Escort [6]. 

The applications of Earth-orbiting spacecraft formations, in particular, are manifold: hyperspectral 

sensing, fractionated spacecraft, and multi-unit antenna arrays are examples of conceptual and 

planned Earth-orbiting missions [7, 8]. Most missions assume the use of chemical propulsion for 

relative motion control, however the low specific impulse of conventional thrusters imposes 
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limitations on the capabilities of the spacecraft formation. Most notably, the spacecraft will follow 

unforced ballistic trajectories for the majority of the mission [9]. Coulomb spacecraft formations 

(tethered and free-flying) have also been analysed by several authors as a means of propellantless 

control (e.g. [10, 11]). 

It is therefore proposed that continuous low thrust, such as that provided by solar electric 

propulsion, could widen the scope of spacecraft formation-flying. Since the thrust magnitudes 

required for formation-keeping are generally small, several concepts for efficient electrostatic 

micro-thrusters would be suitable for this purpose (e.g. [12, 13]).  

The use of continuous low thrust to counteract a component of gravity was apparently first 

suggested by Dusek, who proposed that artificial equilibria could be created in the vicinity of 3-

body libration points [14]. The related concept of displacing the plane of a two-body orbit by using 

out-of-plane thrust was later explored by several authors, notably Austin et al., Nock, Yashko and 

Hastings, and McInnes [15, 16, 19], which are generally termed non-Keplerian orbits (NKOs) 

since the plane of the orbit does not contain the two-body centre of mass. A concept for creating 

displaced non-Keplerian geostationary orbits in which the continuous thrust is provided by a solar 

sail was considered by Baig and McInnes and Heiligers [17, 18], and numerous papers have 

established the conditions for the existence, stability, and controllability of such orbits [19-25]. In 

addition to continuous electric thrust and solar radiation pressure, the use of impulsive thrust has 

been considered as a means to maintain displaced NKOs. A comprehensive survey of non-

Keplerian orbits and their potential applications has been provided by McKay et al. [26].  

In this paper, rich new families of relative trajectories are generated by the addition of continuous 

low thrust, for the purposes of formation-flying. This new and novel problem provides a wide 

range of potentially useful alternatives to ballistic formation-flying trajectories. Using the 

Clohessy-Wiltshire approximation of motion in a rotating frame for a target and chase spacecraft 

formation in a circular Earth orbit, the relative motion of the spacecraft under low thrust is 

investigated. Families of non-Keplerian relative motion are systematically explored, generating 

analytical representations of the relative trajectories and the required thrust commands for both 

simple static formations and more complex new forced relative orbits. 

The first such new class of forced relative orbits to be explored in this paper is a forced circular 

relative orbit which uses multi-axis thrust to permit circular relative orbits around the target 

spacecraft. The second class to be explored uses thrust in the out-of-plane direction to generate 

forced oscillatory motion, whose period is modifiable since the out-of-plane motion is decoupled 

from the in-plane motion. Once these orbit classes are established, they find combined application 

in a Sun vector tracking orbit, where the chase spacecraft tracks the Sun vector about the target 

spacecraft, since this type of relative orbit requires the chase spacecraft’s in-plane and out-of-plane 

motion to have periods of one solar day and one year, respectively. Finally, this paper presents a 

simple and novel approach for patching between Keplerian and non-Keplerian orbits in the rotating 

frame, in particular between oppositely displaced non-Keplerian orbits, using both propellantless 

ballistic manoeuvres and low thrust manoeuvres. 

2.  Formation Flying in the Rotating Frame 

Considering a target spacecraft which is in a circular reference orbit about a point-mass central 

body, the relative motion of a chase spacecraft with respect to the target spacecraft can be described 

by the linear Clohessy-Wiltshire equations [27]. In a frame of reference rotating with the target 
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spacecraft, the x-axis is along the radius vector to the target spacecraft, the z-axis is along the 

orbital angular momentum vector of the target spacecraft, and the y-axis completes the right-

handed system by pointing in the direction of the target spacecraft’s motion about the central body 

in the inertial reference frame, as shown in Figure 1. 

 

Figure 1. Clohessy-Wiltshire frame of reference. 

Herein, motion along the y-axis is referred to as ‘along-track’; motion along the positive and 

negative z-axis is referred to as ‘out-of-plane’, and motion along the x-axis is referred to as ‘radial’ 

motion. Using standard methods, the Clohessy-Wiltshire equations, modified by the addition of 

thrust terms, are found to be 

 

�̈� = 3𝑛2𝑥 + 2𝑛�̇� + 𝑎𝑥 

 
�̈� = −2𝑛�̇� + 𝑎𝑦 

 
�̈� = −𝑛2𝑧 + 𝑎𝑧 

(1a) 

 

(1b) 

 

(1c) 

 

where 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 are the continuous thrust-induced acceleration components in the x-, y-, and 

z-directions, respectively. When 𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 0 the equations of motion in Eq. (1a-c) have the 

well-known closed-form solutions (for initial conditions 𝑥0 , �̇�0, 𝑦0 , �̇�0 , 𝑧0 , �̇�0  for position and 

velocity in the x-, y-, and z-axes respectively) 

 

𝑥(𝑡) =
�̇�0

𝑛
sin(𝑛𝑡) − (3𝑥0 +

2�̇�0

𝑛
) cos(𝑛𝑡) + (4𝑥0 +

2�̇�0

𝑛
) 

 

𝑦(𝑡) =
2�̇�0

𝑛
cos(𝑛𝑡) + (6𝑥0 +

4�̇�0

𝑛
) sin(𝑛𝑡) − (6n𝑥0 + 3�̇�0)t −

2�̇�0

𝑛
+ 𝑦0 

 

𝑧(𝑡) = 𝑧0 cos 𝑛𝑡 +
�̇�0

𝑛
sin 𝑛𝑡 

(2a) 

 

 

(2b) 

 

(2c) 
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at time 𝑡, where the angular velocity of the rotating frame is given by 

 

𝑛 = √
𝜇

𝑅3
 

(3) 

 

where μ is the gravitational parameter and 𝑅 is the radius of the target spacecraft’s orbit about the 

central body in the inertial reference frame.  

To maintain formation-flight between the target spacecraft and chase spacecraft, there must be 

zero secular variation in chase spacecraft relative position. In general, this means that there should 

be no secular term for the along-track (y-direction) motion. This does not, however, limit the pair 

of spacecraft to formations which are static along the y-axis: rather, periodic y-motion is made 

possible by correctly selecting initial conditions as follows. 

To eliminate the secular term, it is necessary to first consider Eq. (2b), the third term of which 

becomes unbound with time. Thus, to ensure that the chase spacecraft does not drift away from 

the target spacecraft, the condition �̇�0 + 2𝑛𝑥0 = 0 must be used. 

Using the above constraint, for some initial x-axis displacement, the motion of the chase spacecraft 

will describe an ellipse in the x-y plane with a major- to minor-axis ratio of 2:1 (the major axis 

being along the y-axis). This can be shown analytically, since when �̇�0 + 2𝑛𝑥0 = 0 the final term 

of Eq. (2a) becomes zero, and with �̇�0 = 𝑦0 = 0 the final term of Eq. (2b) also becomes zero, so 

that only the periodic terms of the two equations remain. The coefficients of the y-axis periodic 

terms are twice those of the x-axis terms, so the result is that the y-axis motion has an amplitude 

of oscillation which is twice that of the x-axis motion. An example of this bounded x-y plane 

motion is shown in Figure 2 for a target spacecraft in geostationary orbit. 

 

Figure 2. Bounded ballistic x-y plane motion with �̇�𝟎 + 𝟐𝒏𝒙𝟎 = 𝟎. 
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The above constraint allows multiple bound solutions to the classical Clohessy-Wiltshire 

equations, including the Projected Circular Orbit (PCO) [28] which causes the chase spacecraft to 

describe an apparent circle in the y-z plane, even though its three-dimensional motion is not truly 

circular. Recently, the feasibility of such orbits on a nanosatellite scale has been demonstrated by 

the University of Toronto Institute for Aerospace Studies (UTIAS) Canadian Advanced Nanospace 

Experiment (CanX) program, with the CanX-4 and CanX-5 spacecraft. Using carrier-phase 

differential GPS techniques for relative navigation, the two spacecraft successfully entered into 

along-track formations at ranges of 1000 m and 500 m, and PCO formations at 100m and 50m 

range [29].  

By making 𝑎𝑥, 𝑎𝑦, and 𝑎𝑧 nonzero, the classical solutions to the Clohessy-Wiltshire equations can 

now be augmented with the addition of continuous low thrust. 

3. Static Formations 

Continuous thrust can be used to generate locations at which a chase spacecraft may remain 

stationary with respect to the origin of a rotating frame. The simplest of low thrust augmented 

spacecraft formations, these artificial static equilibria are equivalent to the type III non-Keplerian 

orbits identified by McInnes [19]. 

Considering Eq. 1a-c, it is evident that for zero relative velocity between the chase and target 

spacecraft the required thrust-induced acceleration for all three axes must be 

 

𝑎𝑥 = −3𝑛2𝑥 

 
𝑎𝑦 = 0 

 
𝑎𝑧 = 𝑛2𝑧 

(4a) 

 

(4b) 

 

(4c) 

 

It is clear, then, that static formations in which the chase spacecraft is displaced solely along the 

y-axis require zero thrust to maintain, and displacement along the x-axis requires three times the 

acceleration required for the same displacement along the z-axis. For a thrust vector 𝒂 =

[𝑎𝑥, 𝑎𝑦, 𝑎𝑧]
T
of fixed magnitude, a surface can be plotted to illustrate all possible chase spacecraft 

positions for a range of y displacements. This plot is shown in Figure 3. 
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Figure 3. Surface plot of possible chase spacecraft positions for −𝟏𝟎𝟎𝐦 ≤ 𝒚 ≤ 𝟏𝟎𝟎𝐦, 

|𝒂| = 𝟏 × 𝟏𝟎−𝟔 ms-2, 𝟎. 𝟕𝟓 × 𝟏𝟎−𝟔 ms-2, 𝟎. 𝟓 × 𝟏𝟎−𝟔 ms-2. 

Perhaps a better understanding of the thrust requirements for such static formations can be gained 

from the vector field plot in Figure 4, where the required thrust vectors are shown across the x-z 

plane. 

 

Figure 4. Required thrust vector field for static formation-flying in the x-z plane. 

The 𝛥𝑣 required to maintain a static position displaced in the x-direction, assuming independent 

thrusters aligned to each axis, since  𝑎𝑥 is constant is 
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𝛥𝑣𝑥 = 3𝑛2𝑥𝜏 (5) 

 

where 𝜏 is the duration for which the formation is maintained. In a similar fashion, for a chase 

spacecraft position displaced in the z-direction, since 𝑎𝑧 is also constant, the impulse required is 

found using 

 

𝛥𝑣𝑧 = 𝑛2𝑧𝜏 (6) 

 

Using these expressions, it can be shown that, in order to maintain a position displaced by 1 km in 

the x-axis for one year, the 𝛥𝑣 required is approximately 503 ms-1. Thus, assuming that the chase 

spacecraft is a microsatellite of initial mass 25 kg which uses axis-aligned micro ion thrusters with 

specific impulse of 3000 s, the mass of propellant required for one year is 0.424 kg. For a chase 

spacecraft displaced by 1 km along the z-axis, the 𝛥𝑣 for one year is approximately 168 ms-1, 

resulting in a propellant expenditure of only 0.142 kg. The thrust-induced acceleration magnitude 

required is very small (1.6 × 10−5 ms-2 for the x-displaced case). 

These simple static formations have utility, however more interesting and varied new families of 

dynamic formations will now be explored.  

4. Dynamic Formations 

The bounded ballistic motion described in section 2 can be combined with or modified by 

continuous thrust to generate rich new families of relative orbits. In these cases, the chase 

spacecraft generally has nonzero relative velocity with respect to the target spacecraft (with 

instantaneous exceptions due to periodic oscillatory motion), and uses thrust in all three axes to 

produce potentially useful and interesting dynamic spacecraft formations.  

4.1. Forced Circular Relative Orbits 

A limitation of the unforced, free-flying bounded ballistic motion is that the chase spacecraft will 

always describe an ellipse about the target in the x-y plane. The maximum along-track 

displacement of the chase spacecraft will always be twice that of the radial displacement. Circular 

motion is not achievable in the ballistic case – the Projected Circular Orbit described in section 2 

only appears to produce circular motion to an observer positioned radially below the spacecraft 

formation, and the x-y planar motion remains elliptical. However, it will now be shown that low 

thrust can be used to force the chase spacecraft to follow a circular relative orbit about the target 

in the rotating frame. 

Interestingly, a simple forced circular relative orbit can be produced in the x-y plane with the 

application of thrust in only a single axis. Examining Eq. 1a and 1b, it is evident that the first 

term of Eq. 1a can be cancelled by selecting 

 

𝑎𝑥 = −3𝑛2𝑥 (7) 
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so that the in-plane equations of motion now have the same amplitude and natural frequency: i.e. 

�̈� = 2𝑛�̇� and �̈� = −2𝑛�̇�, when 𝑎𝑦 = 0. In contrast to Figure 2, the resulting x-y plane circular 

motion is shown in Figure 5 for a target spacecraft in geostationary orbit with an initial 

displacement of 𝑦0 = 100 m and initial velocity of �̇�0 = −2𝑛𝑥0, where all other initial conditions 

are zero. 

 

 

 

Figure 5. Forced circular relative orbit using single-axis thrust. 

However, this approach only produces circular relative orbits in a single plane, and so a more 

general solution is now sought which permits a circle of any orientation about the target spacecraft. 

It is possible to modify the shape and period of the x-, y-, and z-axis motion of the chase spacecraft 

so that it follows a circular relative trajectory about the target spacecraft, in any orientation. The 

angular velocity and radial distance between the target and chase spacecraft must be constant in 

the rotating frame, in this case. 

To produce a circular trajectory about the target spacecraft, consider first the three-dimensional 

parametric equations of a circle 

 

𝑥(𝜃) = 𝑐1 + 𝑟 cos(𝜃) 𝛼1 + 𝑟 sin(𝜃)𝛽1 

 
𝑦(𝜃) = 𝑐2 + 𝑟 cos(𝜃) 𝛼2 + 𝑟 sin(𝜃)𝛽2 

 
𝑧(𝜃) = 𝑐3 + 𝑟 cos(𝜃) 𝛼3 + 𝑟 sin(𝜃)𝛽3 

 

(8a) 

 

(8b) 

 

(8c) 
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in which the vector 𝜶 = [𝛼1, 𝛼2, 𝛼3]𝑇 is collinear with the circle’s transformed x-axis (transformed 

from the x-axis of the rotating frame, and fixed with respect to the circle), and the vector 𝜷 =
[𝛽1, 𝛽2, 𝛽3]𝑇 is collinear with the transformed y-axis of the circle. Both 𝜶 and 𝜷 are unit vectors. 

The circle’s centre is 𝒄 = [𝑐1, 𝑐2, 𝑐3]𝑇, r is the radius of the circle, and 𝜃 is the angle between the 

radius vector and the x-axis measured in the anticlockwise direction about the circle’s central axis. 

It is taken that 𝜃 = −𝛾𝑛𝑡 (negative because the motion of the chase spacecraft in the x-y plane is 

clockwise), where 𝛾 is the ratio of the target spacecraft’s Keplerian orbit period to the period of 

the circular relative orbit in the rotating frame (if 𝛾 = 1, then the period of the circular motion is 

equal to that of the Keplerian orbit of the target spacecraft), and where n and t have their usual 

meaning. The inclusion of 𝛾 also permits the modification of the period of the relative orbit. 

Taking the first and second time derivatives of x, y, and z in Eq. 8a-c allows direct substitution into 

the augmented Clohessy-Wiltshire equations of Eq. 1a-c. It is then possible to obtain the required 

thrust-induced accelerations such that 

 

𝑎𝑥 = 𝑛2(−r(𝛼1(𝛾2 + 3) − 2𝛽2𝛾) cos(𝛾𝑛𝑡) + r(2𝛼2𝛾 + 𝛽1(𝛾2 + 3)) sin(𝛾𝑛𝑡) − 3𝑐1) 

 

 𝑎𝑦 = −𝑛2𝑟𝛾((2𝛼1 − 𝛽2𝛾)sin (𝛾𝑛𝑡) + (𝛼2𝛾 + 2𝛽1)cos(𝛾𝑛𝑡)) 

 

 𝑎𝑧 = 𝑛2(−𝛼3𝑟(𝛾2 − 1)cos(𝛾𝑛𝑡) + 𝛽3𝑟(𝛾2 − 1)sin (𝛾𝑛𝑡) + 𝑐3) 

(9a) 

 

(9b) 

 

(9c) 

 

The above general-case thrust commands can be used to produce a circular relative orbit with any 

orientation or angular velocity. A novel application for these equations will be described later in 

section 4.3, when they are combined with modified out-of-plane periodic motion. 

4.2. Modified Out-of-Plane Motion 

Examination of the Clohessy-Wiltshire equations of Eq. 1a-c shows that the z-axis motion is 

decoupled from the motion in the x-y plane. Using low thrust, the period of the natural oscillatory 

out-of-plane motion can be modified without affecting the motion in the other two axes: indeed, 

this augmented z-axis motion can be readily combined with other types of motion to produce 

interesting new relative trajectories.  

In this case, in a fashion similar to the z-displaced artificial static equilibria, the z-axis thrust is 

made proportional to the z-axis displacement such that  

 

𝑎𝑧 = 𝜆2𝑧 (10) 

 

where 
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𝜆 = 𝑛√1 − (
1

𝑘2
) 

(11) 

 

 

In which k can be considered the augmented period coefficient, so that the period of the z-direction 

motion is 𝑇𝑧 = 𝑘𝑇. Substituting Eq. 10 into Eq. 1c yields the new equation of out-of-plane motion 

 

�̈� = −
𝑛2𝑧

𝑘2
 

(12) 

 

which is a harmonic oscillator whose frequency can now be selected through the coefficient of the 

out-of-plane thrust law. 

An example of this augmented out-of-plane motion, combined with bounded ballistic x-y plane 

motion, is shown in Figure 6 for a target spacecraft in geostationary orbit, where 𝑘 = 3, 𝑥0 = 𝑧0 =
100 m, 𝑦0 = 0, �̇�0 = �̇�0 = 0, and �̇�0 = −2𝑛𝑥0, propagated for three orbit periods. 

 

 

Figure 6. Relative motion of chase spacecraft with thrust proportional to z-axis 

displacement, k = 3. 

The ability to modify the frequency of the oscillation along the z-axis independently of the motion 

in the other two axes finds application in the next section.   

4.3. Sun Vector Tracking Orbit 

A novel application of the two previously discussed families of forced dynamic formations is 

proposed whereby the chase spacecraft is caused to follow the Sun vector as it rotates about a 
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target in geostationary Earth orbit, in the rotating frame. The concept is described, in the Earth-

centred inertial frame, in Figure 7 and Figure 8. Note that, in Figure 7, the Sun vector’s relative 

motion around the target spacecraft will describe a circle in the orbit plane. Note also that, in Figure 

8, the out-of-plane position of the chase spacecraft will have to oscillate with a period of one year. 

If it is assumed that the Earth has a circular orbit around the Sun, then the maximum and minimum 

Sun declinations will be equal and opposite so that the z-axis motion will be sinusoidal over time. 

Thus, the Sun vector tracking orbit requires that the in-plane and out-of-plane motion have periods 

of one solar day and one year respectively. 

To generate the thrust commands for this kind of relative orbit, we first use the general-case forced 

circular relative orbit commands and simplify them since the circular relative orbit is in the x-y 

plane. Since the two unit vectors, 𝜶 and 𝜷, are [1, 0,0]𝑇 and [0,1,0]𝑇 respectively, and the x and y 

locations of the circle centre are 𝑐1 = 𝑐2 = 0, Eq. 9a and 9b simplify to 

 

𝑎𝑥 = −𝑛2𝑟(𝛾2 − 2𝛾 + 3) cos(𝛾𝑛𝑡) 

 
𝑎𝑦 = − 𝑛2𝑟𝛾(2 − 𝛾) sin(𝛾𝑛𝑡) 

(13a) 

 

(13b) 

 

For the z-axis cycle, we use 𝑎𝑧 = 𝜆2𝑧 , where 𝜆 = 𝑛√1 − (
1

𝑘2)  as in Eq. 10 and Eq. 11, 

respectively. The two constants k and 𝛾 are selected as 365.25 (the number of days in the Julian 

year) and 0.99727 (the ratio of sidereal day to solar day), respectively.  

 

Figure 7. Sun vector tracking in GEO, viewed from the direction of the Earth’s spin axis. 
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Figure 8. Sun vector tracking in GEO, viewed from equatorial plane. 

When these thrust commands are used, for a chase spacecraft beginning its orbit at local solar noon 

at the minimum annual Sun declination angle, the resulting motion is shown in Figure 9. 

 

Figure 9. Relative trajectory of chase spacecraft tracking the Sun vector about the target 

spacecraft for one year. 
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The impulse requirements for this type of orbit are found by integrating the thrust-induced 

acceleration in each axis (assuming independent body-mounted thrusters) as piecewise functions 

since the thrust changes direction with each plane crossing. For a Sun vector tracking relative orbit 

with in-plane radius of 100 m and out-of-plane displacement range of ±43.3 m, then the total 𝛥𝑣 

for maintaining the orbit for one year is 36.66 ms-1. 

5. Orbit Transfers in the Rotating Frame 

An interesting solution to patching between non-Keplerian and Keplerian orbits in the rotating 

frame is presented. Since the non-Keplerian orbit requires continuous low thrust to be maintained, 

it is considered operationally advantageous to design a transfer manoeuvre which can be 

accomplished by using either zero thrust or only low thrust. As such, the first manoeuvre presented 

is the ballistic transfer, which requires zero thrust. 

Assuming the chase spacecraft is in a non-Keplerian orbit (with initial out-of-plane 

displacement 𝑧0, such that 𝑎𝑧 = 𝑛2𝑧0) with bounded in-plane motion (as described in section 2, 

with  �̇�0 + 2𝑛𝑥0 = 0 ), then to transfer to an oppositely-displaced non-Keplerian orbit with 

displacement −𝑧0 it is necessary only to disable the thrust. The chase spacecraft will, over one half 

of an orbit period, follow a ballistic arc until it reaches −𝑧0, at which point the thrust is resumed 

with  𝑎𝑧 = −𝑛2𝑧0 . Clearly, this type of manoeuvre requires zero impulse and therefore zero 

propellant to perform, with its primary disadvantage being that it will always require one half of 

an orbit period to complete. The relative trajectory of the chase spacecraft while performing this 

manoeuvre between two symmetrically displaced non-Keplerian orbits is displayed in Figure 10, 

for 𝑧0 = 100 m. 

 

Figure 10. Ballistic patching between displaced NKOs in the rotating frame. 

Alternatively, if a shorter transfer time or flatter trajectory is desirable, low thrust can be used to 

achieve the transfer by modifying the out-of-plane period as described in section 4.2 (so that  
𝑎𝑧 = 𝜆2𝑧). In this case, to perform the transfer in less than one orbit period, the augmented period 

coefficient k must be selected as 𝑘 < 1 for the duration of the transfer. The disadvantage of this 

method is that the peak thrust required to perform the transfer is greater than that required to 
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maintain the NKO, and so the suitability of this manoeuvre type depends on the capabilities of the 

selected propulsion technology. The relative trajectory of the chase spacecraft in the rotating frame 

is shown in Figure 11, where 𝑧0 = 100 m and 𝑘 = 0.5, and the orbit transfer duration is 0.25 orbit 

periods. In this case, the peak thrust induced acceleration magnitude required for the manoeuvre 

is approximately 1.6 × 10−6 ms-2, which is three times that required to simply maintain the NKO. 

 

Figure 11. Forced low-thrust patching between displaced NKOs in the rotating frame (k = 

0.5). 

6. Summary and Conclusions 

In this study, rich new families of relative orbits have been analytically described and explored, 

for a two-spacecraft formation in Earth orbit. It has been shown that continuous low thrust can be 

used to augment spacecraft formations by permitting relative flight on forced Keplerian and non-

Keplerian trajectories. For relatively small impulse and therefore small propellant expenditure, 

statically displaced formations and modified-period relative orbits can be generated. This work 

presents three primary advances, namely the generic thrust commands for the creation of forced 

circular relative orbits in the rotating frame with arbitrary period and orientation, the analytical 

description of a forced relative orbit in which one spacecraft tracks the Sun vector around a target 

spacecraft in a circular Earth orbit, and a novel approach for transferring between displaced non-

Keplerian and Keplerian orbits in the rotating frame using either propellantless ballistic 

manoeuvres or out-of-plane low thrust alone.  
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