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Purpose of review

Extensive data indicate a role for reactive oxygen species (ROS) and redox signaling in vascular damage
in hypertension. However, molecular mechanisms underlying these processes remain unclear, but oxidative
post-translational modification of vascular proteins is critical. This review discusses how proteins are
oxidatively modified and how redox signaling influences vascular smooth muscle cell growth and vascular
remodeling in hypertension. We also highlight Nox5 as a novel vascular ROS-generating oxidase.

Recent findings

Oxidative stress in hypertension leads to oxidative imbalance that affects vascular cell function through
redox signaling. Many Nox isoforms produce ROS in the vascular wall, and recent findings show that
Nox5 may be important in humans. ROS regulate signaling by numerous processes including cysteine
oxidative post-translational modification such as S-nitrosylation, S-glutathionylation and sulfydration. In
vascular smooth muscle cells, this influences cellular responses to oxidative stimuli promoting changes from
a contractile to a proliferative phenotype.

Summary

In hypertension, Nox-induced ROS production is increased, leading to perturbed redox signaling through
oxidative modifications of vascular proteins. This influences mitogenic signaling and cell cycle regulation,
leading to altered cell growth and vascular remodeling in hypertension.
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Reactive oxygen species (ROS) are produced in all
cell types of the vasculature, including endothelial
cells, smooth muscle cells, adventitial fibroblasts
and perivascular adipocytes. In the cardiovascular
system, the major ROS are superoxide (O��2 ), hydro-
gen peroxide (H2O2) and hydroxyl anion (OH-).
Reactive nitrogen species, including nitric oxide
(NO) and peroxynitrite (ONOO-), are also biologi-
cally important oxidants [1–3]. ROS regulate many
cellular processes in the vasculature such as cell
growth, contraction/dilation, migration, differen-
tiation and cytoskeletal organization, important
in maintaining vascular tone and integrity [4,5

&&

].
In stressed or pathological conditions, ROS-generat-
ing enzymes, such as nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidases (Nox), are
activated leading to increased bioavailability of
ROS (termed oxidative stress). When produced in
excess, ROS interact with lipids and proteins leading
to functional and structural changes of target
ht © 2015 Wolters Kluwe
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promotes post-translational oxidative modification
of lipids and proteins and impaired redox signaling
[6,7]. Post-translational oxidative modification
involves covalent changes of cysteine residues
within redox-sensitive proteins, important proc-
esses that regulate protein structure and function.
Redox-sensitive signaling is involved in endothelial
dysfunction, arterial remodeling and vascular
inflammation associated with hypertension and
seems to play an important role in cardiovascular
r Health, Inc. All rights reserved.
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KEY POINTS

� Multiple Nox isoforms generate superoxide in the
vascular wall in humans, including the novel Nox
isoform, Nox5.

� Nox5 expression and activation are increased in
human hypertension and atherosclerosis.

� Oxidative stress in hypertension is associated with
aberrant vascular redox signaling due to oxidative post-
translational modification of proteins.

� Redox-sensitive growth of vascular smooth muscle cells
is associated with vascular remodeling in hypertension.

� Isoform-specific Nox inhibitors may have vasoprotective
effects and may have therapeutic potential in
cardiovascular disease.

Pharmacology and therapeutics
complications and target organ damage [8,9]. The
present review discusses the role of ROS in vascular
remodeling in hypertension and focuses on cellular
and molecular mechanisms underlying ROS actions.
We specifically highlight the potential role of the
novel ROS-generating Nox isoform, Nox5 in the
vasculature,; processes of oxidative post-transla-
tional modification and impact on redox signaling
and vascular remodeling in hypertension and; tar-
geting Nox/ROS as a potential therapeutic strategy.

CHARACTERISTICS OF REACTIVE
OXYGEN SPECIES IN BIOLOGICAL
SYSTEMS
Most ROS and reactive nitrogen species are relatively
unstable oxygen-centered or nitrogen-centered-free
radicals, which contain unpaired electrons. Super-
oxide is water soluble, unstable and short-lived,
whereas H2O2 is lipid soluble and more stable than
O��2 [10]. H2O2 is produced mainly from dismuta-
tion of O��2 by superoxide dismutases and is scav-
enged by catalase and glutathione peroxide [11]. NO
is enzymatically formed by nitric oxide synthase,
which oxidizes L-arginine. NO acts as a second
messenger with vasodilatory, anti-inflammatory
and antiproliferative actions. In the presence of
excess O��2 , NO is converted into the injurious
oxidant, peroxynitrite. ROS are highly reactive
and therefore they have short half-lives in biological
systems. This makes it very challenging to measure
ROS directly and accordingly most assays are indi-
rect estimates of ROS abundance and reactivity.

PRODUCTION OF REACTIVE OXYGEN
SPECIES IN THE VASCULAR WALL
All cell types of the vascular wall and endothelium
have the capacity to produce ROS. Physiologically,
 Copyright © 2015 Wolters Kluwer 
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ROS are generated in a regulated manner at low
concentrations and function as signaling molecules
modulating vascular function and structure. In
pathophysiological conditions, increased activity/
expression of ROS-generating enzymes, and/or
decreased activation of antioxidant systems in the
vasculature result in increased ROS bioavailability
leading to oxidative stress.

ROS are produced as by-products by enzymatic
reactions such as those catalyzed by cytochrome
P450 enzymes, xanthine oxidase, uncoupling of
eNOS, mitochondrial oxidases and glucose oxidase
[12–14]. The Nox enzymes are ‘professional
oxidases’, and have as their primary function, the
production of ROS. They are the major enzymatic
source of ROS in the vascular wall. NADPH oxidases
are multisubunit enzymes that generate O��2 by the
one electron reduction of oxygen using NADPH as
the electron donor (2O2 þNADPH! 2O��2 þNADPþ

þHþ) [15,16]. The major catalytic subunit is Nox (of
which there are seven isoforms, Nox1-5, Duox1 and
Duox2), which together with p22phox, are mem-
brane-bound subunits. The cytosolic regulatory sub-
units include p40phox, p47phox and p67phox or
homologues NoxO1 and NoxA1. Noxs are differen-
tially regulated by the subunits and not all Noxs
require subunits for activation. In human vascular
cells, the major Nox isoforms are Nox1, Nox4 and
Nox5. Nox2, the prototype Nox, is found primarily
in phagocytic cells and may also be present in the
vascular wall in pathological conditions, usually
localized in macrophages and invading monocytes.
Unlike phagocytic Nox, which is activated only
upon stimulation and generates O��2 in a burst-like
manner extracellularly, vascular Nox may be con-
stitutively active, preassembled and produces O��2
intracellularly in a slow and sustained manner [16].

Vascular Nox is activated by many prohyperten-
sive factors, including vasoactive agents, growth
factors, cytokines, shear stress and mechanical
forces [17,18]. Among these, angiotensin II (Ang
II), through AT1 receptors, appears to be particularly
important. Acute stimulation of vascular cells with
Ang II causes increased Nox-derived ROS generation
leading to activation of redox signaling pathways.
Nox expression and activation are increased in cul-
tured endothelial and vascular smooth muscle cells
and in whole vessels in experimental and human
hypertension [19–21]. Nox hyperactivation leads to
excessive ROS generation that disrupts redox net-
works, normally regulated by antioxidant systems,
resulting in oxidative stress, triggering molecular
processes, which in the vasculature, contributes to
vascular injury.

The biological significance of multiple Nox iso-
forms being expressed in the vascular wall is unclear,
Health, Inc. All rights reserved.
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but their differential tissue distribution, cellular
localization and subcellular compartmentalization
probably play a major role in Nox-specific actions
[22]. For example, whereas Ang II-activated Nox1
appears to be important in vascular smooth muscle
cells from large arteries, especially in association
with atherosclerosis, Nox4 and Nox5 may be more
important in small resistance arteries, especially in
humans [23,24]. Moreover, different Nox isoforms
may generate different ROS. For example, Nox1,
Nox2 and Nox5 generate O��2 , whereas Nox4 pro-
duces primarily H2O2 and may act as a vasodilator in
some vascular beds. Nox isoforms in the cardiovas-
cular system have recently been comprehensively
reviewed [25–28] and only the most recent of the
Nox family members, Nox5, is briefly discussed
here.
VASCULAR NOX5

Nox5 (five splice variants: a, b, d, g, e) is the most
recently identified Nox and is unique: it is Ca2þ-
sensitive, it possesses a calmodulin-like domain
with binding sites for Ca2þ, the binding of which
induces a conformational change leading to
enhanced ROS formation, and it does not require
any NADPH oxidase subunits for its activity
[29–31,32

&&

,33–36]. Nox5 phosphorylation of ser-
ine/threonine (Ser475, Ser 490, Thr494 and Ser 498)
enhances sensitivity to Ca2þ and facilitates ROS
production at lower levels of Ca2þ [31]. Nox5 phos-
phorylation is regulated by protein kinase C (PKC),
specifically PKCa. Nox5 is also regulated by other
kinases, including c-Abl, Ca2þ/calmodulin-depend-
ent protein kinase II and MAP kinases [32

&&

,33–35].
Protein:protein interactions with the molecular
chaperones Hsp90 and Hsp70 further regulate
Nox5 expression and activity [35]. Nox5 was origin-
ally discovered in testes, spleen and lymph nodes,
but more recently has been found in the vasculature,
heart and kidney. In vascular cells, Nox5a and
Nox5b are the major ROS-generating isoforms and
are activated by thrombin, platelet derived growth
factor, Ang II and endothelin-1. Although all Noxs
are present in mice, rats and humans, the rodent
genome does not contain the nox5 gene, making it
challenging to study Nox5 in the experimental set-
ting. The biological significance of vascular Nox5 is
still unknown, although it has been implicated
in cell proliferation, angiogenesis and migration
[37–39]. In porcine aortic cells, Nox5-derived ROS
is required for growth factor-induced potassium
intermediate/small conductance calcium-activated
channel, subfamily N, member 4 [40], important in
vascular smooth muscle cell proliferation and
migration in atherogenesis [40]. In pathological
 Copyright © 2015 Wolters Kluwe
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conditions, such as atherosclerosis, acute myo-
cardial infarction, aneurysm and hypertension, vas-
cular Nox5 expression is increased, implying a role
for Nox5 in cardiovascular disease [41,42,43

&&

].
Macrophage and monocyte Nox5 have been shown
to play a role in ROS production in atherosclerosis
[44]. We recently demonstrated that in mice
expressing human Nox5 in a podocyte-specific man-
ner, renal function is markedly impaired and blood
pressure is elevated [45], further suggesting a role for
Nox5 in disease processes [45].
REDOX SIGNALING IN VASCULAR CELLS

ROS are important signaling molecules in vascular
smooth muscle cells. In hypertension, perturbations
in ROS signaling are associated with endothelial
dysfunction, impaired vascular tone and arterial
remodeling [46]. These processes are mediated by
changes in redox state of ion channels (Kþ channels
and Ca2þ channels), cyclases (guanylate cyclase),
kinases [mitogen-activated protein kinases (MAPK),
Rho kinases and tyrosine kinases], phosphatases
(protein tyrosine phosphatases), cytoskeletal
proteins (actin and myosin) and activation of trans-
cription factors [activator protein-1 (AP-1), nuclear
factor kB (NFkB), and nuclear factor erythroid
2-related factor 2] [47–49].

The specific signaling effects of ROS are medi-
ated by the covalent modification of specific
cysteine residues in redox-sensitive proteins. These
residues have unique features in that they contain a
terminal thiol (-SH) functional group, which is
electron-rich enabling different oxidation states,
including S-nitrosylation (S-nitration; SNO), S-glu-
tathionylation (RS-SG), sulfhydration (SSH), disul-
phide bonds (RS-SR’), sulfenylation (SOH), sulfinic
acid (SO2H) and sulfonic acid (SO3H) [50]. Oxidative
post-translational modifications influence target
protein structure and function. The multiple types
of oxidative post-translational modifications of
myriad proteins translate into diverse cellular
effects, which in vascular cells range from contrac-
tion to growth.
OXIDATIVE POST-TRANSLATIONAL
MODIFICATION OF PROTEINS IN THE
CARDIOVASCULAR SYSTEM

S-Nitrosylation

SNO of proteins in the cardiovascular system has
been associated with protective effects. This has
been demonstrated during ischemic precondition-
ing and has been attributed to SNO of ATP synthase
at Cys294 [51]. The post-translational modification
r Health, Inc. All rights reserved.
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of Cys294 is altered in heart failure, and accordingly
this Cys294 in the ATP synthase has been described as
a redox switch [51]. In experimental models of hy-
pertension, increased SNO modification of proteins
was associated with impaired aortic relaxation [52]. A
comprehensive dataset for modified SNO proteins in
cardiac, endothelial and vascular smooth muscle
cells has been compiled [50,53]. SNO-modified
proteins are localized in many subcellular compart-
ments and organelles and are involved in numerous
cellular functions, especially those related to cell
metabolism and cytoskeletal organization.

Sulfydration
H2S is produced by cystathionine g-lyase and has
been identified as a vasodilator. Mice lacking cys-
tathionine are hypertensive [54]. H2S can modify
downstream proteins by sulfydration (SSH), which is
an important Cys modification. H2S produced in
response to endoplasmic reticulum (ER) stress sulfy-
drates protein tyrosine phosphatase 1B (PTP1B), and
possibly other protein tyrosine phosphatases [55].
Sulfydration of PTP1B reduces its activity leading to
decreased PTP1B-induced dephosphorylation of
protein kinases, such as protein kinase-like ER kinase
and MAPK, key proteins that regulate vascular
smooth muscle cell function [55].

S-glutathionylation
Another form of oxidized post-translational modifi-
cation of proteins is S-glutathionylation (RS-SG),
which is reversible [56,57]. It is formed by a reaction
of glutathione (oxidized form, GSSG) or S-nitrosoglu-
tathione (GSNO) with free thiol. Many proteins in
cardiovascular cells are able to undergo S-glutathio-
nylation,whichwhenexposedtoanoxidativemilieu,
such as in hypertension and aging, is increased
[56,57]. S-glutathionylation of endothelial NOS
(eNOS) has recently been identified as an important
novel mechanism of eNOS regulation, processes that
are altered in cardiovascular disease [58,59].

Sulfenylation
Sulfenylation has been associated with injurious
oxidative damage. Sulfenic acid is very reactive,
unstable and hence is short-lived. Sulfenic acid
can be converted into other oxidized post-transla-
tional modifications, which may be reversible or
irreversible [49].
OXIDATION OF CYTOSKELETAL
PROTEINS IN VASCULAR SMOOTH
MUSCLE CELLS

Of the many proteins that undergo oxidative
changes is actin, a major protein involved in
 Copyright © 2015 Wolters Kluwer 
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cytoskeletal organization in vascular cells [60]. Actin
is highly redox-sensitive and when cells are exposed
to oxidative stress actin is among the most prom-
inent proteins to become oxidized [60]. Stimulation
of vascular cells with H2O2 causes cytoskeletal dis-
organization and morphological changes. In the
heart, actin oxidation is associated with impaired
contractility [60,61]. In vascular smooth muscle
cells, interleukin-22 stimulation leads to carbonyla-
tion of actin, as well as a-enolase, heat shock cog-
nate 71kDa protein and mitochondrial 60kDa heat
shock protein, proteins associated with cell stress
and growth [62].

Growing evidence indicates that oxidized
proteins may function collaboratively with proteins
that undergo other post-translational modifications
such as phosphorylation, acetylation and ubiquiti-
nation [49]. This networking between proteins
impacts on downstream signaling that determines
the final biological cellular response, such as cell
growth.
REDOX REGULATION OF VASCULAR CELL
GROWTH: IMPLICATIONS IN
HYPERTENSION

Vascular smooth muscle cells are intrinsically con-
tractile in nature and exhibit very low rates of pro-
liferation. However, in pathological conditions
associated with vascular injury, such as in hyperten-
sion, vascular smooth muscle cells proliferate,
undergo hypertrophy, dedifferentiate and migrate
[63]. These processes are regulated in large part
through ROS which influence redox-sensitive
mitogenic signaling and cell cycle progression
through oxidative post-translational modification
of proteins, including protein tyrosine phospha-
tases, protein kinases, cytoskeletal proteins and
transcription factors [63–65] (Fig. 1).

Despite both O��2 and H2O2 inducing vascular
smooth muscle cell proliferation, their growth sig-
naling pathways are different. Whereas O��2 prim-
arily activates extracellular signal-regulated kinase
1/2 mitogen-activated protein kinase, H2O2

increases expression of p38 mitogen-activated
protein kinase [66–68]. Mitogenic signaling path-
ways in vascular smooth muscle cells that are
sensitive to oxidant levels also directly influence
expression and activity of cyclins and cyclin-
dependent kinases, which regulate cell cycle pro-
gression [69]. Cdk 4, Cdk 6, Cdk 2 and Cdk 1 are
activated by binding with their regulatory subunits
cyclin D1, cyclin E, cyclin A and cyclin B, respect-
ively. The kinase activities of cyclin/Cdk complexes
are negatively regulated by Cdk inhibitor proteins
p21, p27, p16 and p15.
Health, Inc. All rights reserved.
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FIGURE 1. Diagram demonstrating mechanisms whereby increased Nox-induced ROS generation regulates redox signaling
and vascular smooth muscle cell function in hypertension. Prohypertensive factors, such as activation of the renin angiotensin
system, growth factors, sympathetic nervous system activation and proinflammatory mediators, induce activation of Nox
isoforms, leading to increased ROS production. Changes in intracellular redox status cause oxidative modification of proteins
important in proliferative and profibrotic signaling. Increased vascular smooth muscle cell growth, cytoskeletal reorganization
and fibrosis contribute to vascular remodeling in hypertension. ROS, reactive oxygen species.

Oxidative stress and vascular remodeling Montezano et al.
In hypertension, vascular smooth muscle cells
are stimulated to divide in response to mitogenic
factors. ROS induces variable growth-related
responses, including increased proliferation, apop-
tosis, transient cell cycle arrest, permanent senes-
cence and cell death, depending mainly on the
relative dose of exposure. Mitogenic stimulation
initiates re-entry into the cell cycle. They exit the
G1 phase and enter the S phase. Cyclin D1/Cdk 4,
cyclin E/Cdk 2 and cyclin A/Cdk 2 complexes hyper-
phosphorylate the pRb in the late G1 phase, which
then triggers entry into S phase [69,70]. Cyclin D1
controls the G0�G1 transition and is highly sensi-
tive to oxidative stress. It is the only cyclin that can
drive terminally differentiated cells back into the
cell cycle. Transcription of cyclin D1 is upregulated
by growth factors, including Ang II, through ERK1/2
and downstream redox-sensitive transcription fac-
tors, such as AP-1 and NFkB, which are highly redox-
sensitive [70]. These effects are modulated by micro-
RNA-365 [71].

Oxidants also regulate G1, S and G2 phases of
the cell cycle. Peroxides induce a G1 checkpoint
response that is attenuated by antioxidants. H2O2

suppresses S phase entry by inhibiting cyclin E/Cdk2
 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
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activity, by upregulating p21 and p53 and through
downregulation of cyclin A expression [72].

REACTIVE OXYGEN SPECIES AND
VASCULAR REMODELING IN
HYPERTENSION
ROS-induced change of vascular smooth muscle
cells to a proliferative phenotype contributes to
vascular hypertrophy and remodeling in hyperten-
sion, characterized by reduced vascular lumen,
increased media thickness, increased stiffness and
reduced distensibility [73,74]. At the molecular and
cellular levels, remodeling involves changes in cyto-
skeletal organization, altered growth/apoptosis, sen-
escence and rearrangement of vascular smooth
muscle cells, processes that are highly sensitive to
alterations in the intracellular redox milieu. Remod-
eling is also influenced by changes in extracellular
matrix protein composition and reorganization of
proteoglycans, collagens and fibronectin [74].
Targeting ROS to reduce vascular smooth muscle
cell proliferation, prevent vascular cell dedifferen-
tiation and inhibit fibrosis may be an interesting
approach to ameliorate arterial remodeling in
hypertension [47,75–77].
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TARGETING REACTIVE OXYGEN SPECIES
AS A THERAPEUTIC STRATEGY IN
CARDIOVASCULAR DISEASE
Considering the important role of oxidative
damage associated with vascular injury, strategies
to reduce ROS bioavailability should have vasopro-
tective effects in cardiovascular disease. Two major
approaches to reduce oxidative stress have been
explored including antioxidants to scavenge ROS,
and Nox inhibitors to block ROS generation.
Antioxidants

Data from experimental studies have demonstrated
that antioxidants improve endothelial function,
promote regression of vascular remodeling and
reduce blood pressure in hypertension [78,79].
These phenomena are associated with decreased
MAP kinase signaling, decreased activation of tran-
scription factors and reduced vascular smooth
muscle cell proliferation, inflammation and fibrosis
[78–82]. However, clinical findings have been
inconsistent and results from antioxidant clinical
trials have mainly been negative, showing little
cardiovascular benefit of antioxidant vitamins and
carotene [83–86]. Possible reasons for these disap-
pointing results from antioxidant trials have been
discussed in detail elsewhere [83–86], but a number
of points should be highlighted: patients who
entered into the trials already had long-standing
cardiovascular disease wherein irreversible oxidative
damage may have already occurred and hence scav-
enging of ROS already formed may have little
benefit; inappropriate antioxidants may have been
used, as antioxidant vitamins themselves can act as
oxidants thereby promoting oxidative stress; anti-
oxidant-dosing regimens and duration of therapy
may have been suboptimal to effectively scavenge
ROS in vivo; orally administered antioxidants may be
inaccessible to the source of free radicals, particu-
larly if ROS are generated in intracellular compart-
ments and organelles. This may be especially
pertinent to water soluble vitamins, such as vitamin
C, which may not cross the cell membrane to scav-
enge intracellular ROS and; antioxidants do not
inhibit the production of ROS; they scavenge free
radicals once they are formed. Finally, in none of the
large antioxidant clinical trials was it ever proven
that patients did indeed have evidence of
oxidative stress.
Nox inhibitors

Theoretically, compounds that block ROS generation
to reduce an oxidative load should be more effica-
cious than nonspecific antioxidant ROS scavengers.
 Copyright © 2015 Wolters Kluwer 
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This is based on experimental evidence in which it
has been shown that inhibition of Nox-mediated
ROS generation, using pharmacological and gene-
targeted strategies, leads to regression of vascular
remodeling, improved endothelial function and
lowering of blood pressure [87,88]. A number of
pharmacological agents have now been developed
as NADPH oxidase/Nox inhibitors, including non-
specific and isoform-specific compounds.

Classical NADPH oxidase inhibitors, apocynin
and diphenyleneiodinium (DPI), are nonspecific
and may act as ROS scavengers. Apocynin has intrin-
sic antioxidant activity and DPI acts as a general
flavoprotein inhibitor [76,77,89]. Hence, because of
the nonspecific nature of these agents, they should
not be used as selective Nox inhibitors.

Recently, new isoform-specific Nox inhibitors
have been characterized from rational drug delivery.
These include the small molecule inhibitors
GKT137831 and GKT136901 (GenKyoTex), which
variably inhibit Nox1, Nox4 and Nox5; 2-actyl-
phenothiazine (ML171) (Scripps Research Institute),
which inhibits Nox1; VAS2870 and VAS3947 (Vaso-
pharm GmbH), which inhibit mainly Nox2 and to a
lesser extent Nox4; S17834 (Servier), which inhibits
Nox2 and Nox4; and Fulvene-5, which inhibits
Nox2 and Nox4 [75–77]. Biological peptidic inhibi-
tors of NADPH oxidase have been developed by the
Pagano group [90

&&

,91], including NOX2ds-tat,
which prevents p47phox binding to Nox2, thereby
preventing assembly of the active Nox2 oxidase, and
NOXA1ds, a Nox1 inhibitor, which inhibits binding
of NOXA1 to NOX1.

Of the Nox inhibitors that have been registered
in the patent literature [76,77,89,90

&&

], only one has
progressed through to clinical trials, specifically
GKT137831, which has entered into a phase 2 trial
in diabetic nephropathy (www.genkyotex.com).
Clinical outcomes of this trial should shed light
on the role of Nox as a therapeutic target in oxi-
dative stress-related diseases. Further clinical studies
are still needed to confirm the clinical utility of Nox
inhibitors, but these drugs may hold some promise
in patients with Nox/ROS-associated diseases.
CONCLUSION

In hypertension, dysregulation of ROS-generating
enzymes, including the novel NADPH oxidase,
Nox5, results in oxidative stress, which contributes
to vascular damage, through multiple processes
including activation of transcription factors, stimu-
lation of mitogenic signaling pathways and modu-
lation of cell cycle progression. Fundamental to
these phenomena is cysteine oxidative post-trans-
lational modification of vascular proteins, which
Health, Inc. All rights reserved.
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determines final cellular responses to oxidative
stimuli. The field of oxidative proteomics [92

&&

] in
the vascular system is still immature and the vas-
cular oxidative proteome in hypertension has yet to
be elucidated, but increasing evidence indicates that
oxidation of vital cytoskeletal proteins, kinases and
phosphatases in vascular smooth muscle cells is
critical in phenotype switches in pathological con-
ditions. Although inconclusive at present, strategies
to regulate ROS bioavailability by decreasing pro-
duction and/or by increasing radical scavenging
may regress vascular remodeling, prevent vascular
damage and reduce hypertension and its associated
end-organ damage. Targeting oxidative stress with
novel Nox inhibitors and other ROS modulators
may be an attractive therapeutic strategy to ameli-
orate endothelial dysfunction and vascular damage
in hypertension and associated diseases. Outcomes
of current clinical studies evaluating cardiovascular
and renal effects of Nox inhibitors will shed light on
the clinical utility of this approach and will also
inform on the role of Nox/ROS in human disease.
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