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Abstract
We propose to remove live objects from near-full heaps to
reduce memory pressure. We modify Java Collections to
enable lossy behavior. Some DaCapo benchmarks tolerate
an amount of live data loss.

Keywords memory management, Java collections, lossy
data structures

1. Introduction
At present, a typical memory-managed application with live
data that exceeds the maximum runtime heap size will crash
with an OutOfMemory error. The alternative we propose
in this paper is for the application to demonstrate graceful
degradation as it approaches a limiting factor, such as the
heap size limit; we trade-off heap space for computational
accuracy.

Suppose a program P0 normally executes in a minimum
heap size of H0. We want to enable an approximate version
of the program P1, such that P1 executes in a heap size
H1 where H1 < H0, although P1 might result in degraded
output relative to P0. Furthermore, we wish to create P1 at
run-time without the intervention of the programmer.

Our key insight is that ‘not all data is created equal’. If
we can identify data that is non-critical and less valuable
in some quantifiable sense, then we can opportunistically
discard some of this data. Existing programming language
concepts such as weak references implicitly acknowledge
that some heap-allocated objects are less important and may
be garbage collected if there is little heap space available.
High-level libraries such as software caching frameworks
follow a similar principle (Google 2014).

[Copyright notice will appear here once ’preprint’ option is removed.]

p u b l i c s t a t i c <E ex tends Comparable<? super E>>
void h e a p s o r t ( E [ ] a r r a y ) {

P r i o r i t y Q u e u e<E> heap ;
heap = new P r i o r i t y Q u e u e<E>( a r r a y . l e n g t h ) ;
f o r ( E e : a r r a y ) {

heap . add ( e ) ;
}
f o r ( i n t i =0 ; i<a r r a y . l e n g t h ; i ++) {

a r r a y [ i ] = heap . remove ( ) ;
}

}

Figure 1. An Example Heapsort using Java Collections

Our main research question is: how can we trade-off
space and accuracy automatically, without programmer in-
tervention?

1.1 Contributions
The contributions of this paper are as follows:

1. We describe a motivating scenario for approximate com-
puting driven by runtime memory management.

2. We demonstrate how approximation can be supported
transparently in Java applications by library-level mod-
ifications.

3. We sketch policies to describe the characteristics of sev-
eral concrete instances of approximate Java collections.

4. We apply these policies to standard benchmarks to eval-
uate the potential of this idea.

1.2 A Simple Example
To clarify our proposal, consider the program in Figure 1,
a simple heapsort algorithm found on the web1. If available
memory is exhausted before the priority queue is fully pop-
ulated, then the code will give an OutOfMemory error and
return no output. If instead we employ our approximation
method described in Section 2, then we sacrifice accuracy in
return for continuing execution which results in a partially
correct output; it is worth noting that approximate collec-
tions are only useful where a partial output is better than no
output at all. As our technique sometimes uses substitution

1 http://en.wikibooks.org/wiki/Algorithm_Implementation/
Sorting/Heapsort#Java
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to replace objects that are not retained, the level of error in-
troduced may depend on the amount of redundancy in the
input data.

Figure 2 illustrates the trade-off between the level of data
loss and the accuracy of the resulting output of the heapsort.
We consider each missing item that should have appeared in
the resulting array as an error. Figure 2(a) shows that, with
no redundancy in the data, the number of errors introduced
grows linearly. Figure 2(b) shows that introducing a certain
amount of redundancy in the data causes a non-linear rela-
tionship, and much lower error for most levels of data loss.

Although this is a trivial example, it demonstrates that
much of the data stored by a program in standard data struc-
tures can be substituted without causing the program to
terminate, and that induced errors are proportional to the
amount of data sacrificed. Where the lossy data structure cor-
responds to a buffer for pending work, we may gracefully
degrade the operation of the program by discarding some
data.

2. Approximate Memory Management
Policies

As we discard live data, we aim to minimize the impact of
data loss on the quality of a program’s output.

2.1 Policies
There are four major decisions to be made by any data
discard policy:

1. When do we delete data?

2. How much data should we delete?

3. Which data should we delete?

4. How should we attempt to mitigate the effects of dele-
tion?

We do not address the first two questions directly in this
paper, other than to state that we assume some upper limit for
memory exhaustion, and that an exponential function should
specify the relationship between the current distance to that
limit and the amount of data being deleted, i.e. as the limiting
resource becomes increasingly exhausted, the probability of
deleting data approaches 1.

As to which data we should delete, we focus on ob-
jects that are referenced by instances of the Java collections
framework. We hypothesise that collections are used princi-
pally as container data structures for Java applications, and
that they are more likely to contain data to be processed
rather than control information; the latter is critical to ex-
ecution, whereas the former is not. To ensure that we target
only the ‘hot’ collections turning over the majority of data,
we impose a threshold such that we only delete from collec-
tions that experience more than n insertions or additions, or
those that contain more than a given threshold size of data.

We mitigate the effects of deletion through two methods:
First, we select data stochastically, i.e. we do not always
delete the same data. This prevents pathological situations
where the use of an approximate data structure would always
result in the same undesired behaviour. Second, we employ
substitution, to replace deleted objects with existing objects
of the same concrete type.

2.2 Deletion Schemes
Once we have decided to delete data from a collection data
structure, there are several points during program flow where
we could perform a deletion. We choose to remove data at
insertion time.

Our deletion scheme is randomised to avoid the patho-
logical cases that arise from anything more regular. For ex-
ample, an alternative would be to delete items periodically.
Stochastic deletion allows for a checkpointing and restarting
approach to failure recovery, and it also makes for an ele-
gant and efficient decision process; we simply increase the
probability of deletion as the limit of available memory is
approached.

We rely on the garbage collector to remove objects from
the heap; we are only responsible for dropping references
to them within a collection. It is an implicit assumption of
our approach that items added to a collection will not be
referenced elsewhere, or only within another collection.

2.3 Recovery Schemes
Rather than attempt to repair the user program, for example
through injecting null pointer checks, we simply modify the
behaviour of the collection itself. The first option to reduce
the impact of a deletion is to do nothing at all; a strategy
that works surprisingly well for some programs, see Section
3.1. Alternatively, we could either substitute or synthesise
deleted data. Synthesis requires intercepting retrieval API
calls and returning new objects. This is, however, problem-
atic in the sense that the collection must then keep track of
what data has been deleted; is this null return value from a
HashMap.get(...) call a true negative or a false negative?
How do we synthesise the data? Perhaps we would need to
keep track of the types and other information about deleted
objects. We do not pursue such an approach for now.

Instead, we usually choose to substitute data objects in
place of those discarded. Provided other objects are present
in the collection that are type-compatible with the deleted
object, we simply insert another reference to the substitute
object within the collection.

2.4 Implementation using AspectJ
Rather than invasive modification of Collections library code
or the underlying VM, we use aspect-oriented programming
techniques (Kiczales et al. 1997) to modify runtime behav-
ior.

Effectively, the stochastic behaviour we have induced in
the Collections data structures is a cross-cutting concern, to
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(b) Redundant data - initial array contains integers uniformly
drawn from (0,100)

Figure 2. Probability of discarding objects versus induced errors in heapsort, for arrays of size 10,000 with and without
redundancy. 30 points for each level of probability value are shown.
.

which client code should be oblivious. We specify pointcuts
for methods in high-level abstract classes like Map and List.
At weave-time, these pointcuts will match instances of con-
crete subclasses like HashMap and ArrayList.

The pseudocode in Figure 3 gives an example of the ad-
vice we apply. Further details are available in our online
repository (White and Singer 2015). Note that AspectJ is
used for convenience in prototyping our approximate data
structure concepts. Aspect-orientation incurs runtime over-
head that could be mitigated by closer library or VM inte-
gration in a production system.

3. Experiments
In this section, we study the application of our approximate
Collections framework to the DaCapo Java benchmark suite
(Blackburn et al. 2006). We intercept calls to Java Collec-
tions methods in order to enforce various approximate mem-
ory policies, as outlined in Section 2.2.

Table 1 records an initial limits study, to measure the
prevalence of Java collections usage in DaCapo. We use
a custom JVMTI agent2 which measures the proportion of
heap-allocated memory that is reachable through live Java
collections instances immediately after GC. The table shows
the mean proportion of the heap reachable through live col-
lection instances, over the first two minutes of execution of
the DaCapo benchmarks with small inputs.

2 available in our repository (White and Singer 2015)

1: procedure ADD TO A COLLECTION(collection, input)
2: Increment insertionCounter for collection
3: if collection is not empty then
4: if insertionCounter > threshold then
5: Set discard true with probability p

drop

6: end if
7: end if
8: if discard then
9: for o in random permutation of collection do

10: if type(o) == type(input) then
11: Replace input with o
12: Exit loop
13: end if
14: end for
15: end if
16: return proceed(collection,input)
17: end procedure

Figure 3. Aspect Pseudocode for a Simple Substitution Pol-
icy, i.e. Collection.add / other / p

drop

/ threshold

3.1 Success Rate Curves
We will describe the approximation policies we apply to the
benchmarks in terms of (i) the collection update method we
intercept, (ii) the replacement value we use for the update,
(iii) the probability of interception, and (iv) the data structure
size threshold above which we might apply interception. For
instance, the policy Map.put / null / 0.1 / 100 means that
we intercept put methods to all objects that are concrete
subclasses of Map, we associate the key with null rather
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benchmark reachable data /KiB live size /KiB
avrora 2021 2431
batik 3626 3931

eclipse 8114 8593
fop 9227 10244

luindex 1168 1244
lusearch 1446 2451

pmd 1178 1264
sunflow 3035 3873
tomcat 4701 5116
xalan 1609 4918

Table 1. Mean heap-allocated memory reachable through
collections objects, measured immediately after GCs

than the supplied value, the probability of this ‘forgetful’
action is 0.1, for Map objects that have at least 100 bytes
of information stored in them already. Another example:
List.add / other / 0.01 / 1000 means that we intercept add
methods to all objects that are concrete subclasses of List,
we store a reference to another value that is already in the
list, so long as it has the same concrete type as the value that
should have been written, the probability of this ‘forgetful’
action is 0.01, for List objects that have at least 1000 bytes
already stored in them. When we apply these policies to the
DaCapo benchmarks, we investigate a range of probabilities
and storage size thresholds.

The DaCapo benchmark harness includes a validation
check for each benchmark execution. This stage compares
checksums for the standard output and error streams against
reference checksums for correct benchmark behaviour. We
use this validation to measure successful execution. For each
policy, we run 30 separate executions of a single iteration
of the benchmark with the small input size. We record how
many of the 30 executions pass validation. This measure
of success does not necessarily mean that the benchmark
application completes successfully, merely that no errors
were visible on its recorded output streams.

Figures 4 and 5 show some benchmark responses to the
policies applied. We have focused on List and Map ob-
jects at present, given their prevalence in the DaCapo bench-
marks.

We observe different kinds of benchmark response:

1. Polarized response: the benchmark either always suc-
ceeds or always dies, for a particular policy (e.g. lusearch,
jython).

2. Gradated response: the benchmark sometimes succeeds
when increasing amounts of data is forgotten. There is a
tradeoff curve for data loss and benchmark success (e.g.
avrora, luindex).

3. Failed response: the benchmark never succeeds. Some
benchmarks do not interact well with our AspectJ instru-
mentation (e.g. tomcat, xalan).

Benchmarks that exhibit the gradated response are appro-
priate for approximate collections. Some tuning may be re-
quired to find the limits of the tradeoff region. The bench-
mark response graphs show that applications exhibit differ-
ent behaviour for different data structures and for different
replacement policies.

In a small number of cases, e.g. batik in Figure 4, the
success rate increases as more data is discarded. This is a
characteristic of worklist style algorithms, when throwing
work away (especially if it is potentially corrupted work due
to data loss) makes the overall benchmark more likely to
succeed without errors.

3.2 Fuzzy Output Tolerance
Some applications have an inherent tolerance to noisy data
processing. These applications will be able to continue exe-
cution and produce sensible output even when internal data
structures are modified and data may be lost. Whereas in
Section 3.1 we only considered successful execution to be
output streams corresponding to the reference outputs—here
we are interested in output that is partially correct, yet still
of some value.

Our example application is the batik program from the
DaCapo benchmark suite. Batik is a scalable vector graphics
(SVG) processing tool. The particular behaviour is render-
ing a bitmap image from a textual description of the vec-
tor graphics in XML format. As the image is rendered,
each component part of the vector image is added to a
worklist (AbstractSVGList. item(SVGItem item) for
rendering. When we apply an approximate aspect to re-
move items from the worklist, this has the effect of los-
ing parts of the rendered bitmap image. Figure 6 shows
how the output bitmap file is affected by various levels of
drop-rate. As the likelihood of dropping data increases,
the image loses sub-shapes. Some of the runs fail with
IndexOutOfBoundsExceptions—it may take several runs
before a single output file is produced.

The key point is that this output file (when we can gener-
ate it) is of some value to end-users, even if data is missing.
Humans may infer missing information (i.e. black regions in
the map). At other times, the missing information (statistics
about local populations) may not be required by the user. So
there is partial value in incomplete output. This inbuilt error
tolerance for human consumption is generally characteristic
of visual and audio outputs.

4. Related Work
Nguyen and Rinard (Nguyen and Rinard 2007) demonstrate
the use of circular buffers. They perform a profiling-based
analysis to determine the maximum number of distinct ob-
jects alive from each allocation site. Then they transform
the program to use a circular buffer of size N at alloca-
tion site s when they show there never more than N live
objects at s. They proceed to reduce the sizes of the circular
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Figure 4. Successful executions (out of 30 runs) for DaCapo benchmarks with the List.add/null/p/s policy for various
probabilities p and list sizes s

Figure 5. Successful executions (out of 30 runs) for DaCapo benchmarks with the Map.put/other/p/s policy for various
probabilities p and map sizes s
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Figure 6. A series of bitmap output files generated by the batik DaCapo benchmark with small input.. From left to right,
top to bottom, the probability of dropping data increases by 0.025 between adjacent images, from 0.0 to 0.975 inclusive. The
approximate memory policy intercepts list.add() with 10kB size threshold and inserts null values.

buffers, thus overwriting live objects. (This is equivalent to
our replacement policy in Section 2.4 above.) They report
that, for several widely used programs such as the FreeCiv
game server and the Pine email client, there are no observ-
able behavior anomalies due to object replacement in cir-
cular buffers during prolonged periods of typical user inter-
action. Nguyen and Rinard apply this technique to run pro-
grams that would otherwise suffer from memory leaks. They
refer to this general approach as failure-oblivious computing.
Rinard discusses this notion further (Rinard 2003). Rinard et
al. (Rinard et al. 2010) outline a generalized framework to
show how optimizations of this kind fit abstract patterns for
approximate computing—situations where accuracy can be
traded off for some other reduced resource.

Matias et al. (Matias et al. 1994) present an approximate
version of a specific data structure, which denotes ordered
multisets of integers. They use this data structure for vari-
ous dynamic programming applications including minimum
spanning tree and single-source shortest path. They abstract
integer values to their most-significant bits only, which re-
duces problem to a smaller domain. They give a theoreti-
cal treatment, analysing reductions in computational com-
plexity, and discussing implementation concerns on a hypo-
thetical random access machine model. Chazelle (Chazelle
1998) introduces an approximate version of priority queues,
which he calls soft heaps. Keys are occasionally corrupted
(their values are increased) to facilitate moving items in
groups when updating the heap. Chazelle shows reductions
in asymptotic complexity for certain operations with this ap-
proximation. In contrast, we present a generalized approxi-

mation framework that is oblivious of the structure and se-
mantics of particular collection types.

5. Conclusions & Future Work
Our current work is entirely preliminary; the next stage is to
develop our ideas further through wider application of this
method to more libraries and a wider range of benchmarks.
From initial experience, we think it is inevitable that pro-
grammer intervention will be required for some applications
to degrade gracefully. In particular, we envisage situations
where data critical to successful program completion could
be inadvertently lost. To remedy this, we propose the devel-
opment of debugging tools that will automatically identify
the cause of undesirable behaviour, paired with source code
annotations to identify essential data that should not be con-
sidered for deletion.

We also intend to investigate why some applications re-
spond better than others to the approximations. The response
may be dependent on the application, and on the deletion/re-
placement policy.
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