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ABSTRACT: We present a critical state sand plasticity model accounting for the effect of fabric and its evo-
lution, and apply it to modelling the non-coaxial behaviour and shear localisation phenomenon in sand. The
model is developed within the framework of Anisotropic Critical State Theory. A novel fabric evolution law is
further proposed to guide the fabric anisotropy evolving towards a unique critical state under continuous shear.
The yield surface, hardening law and dilatancy relation of the model feature an explicit dependence on the fabric
anisotropy, and are hence affected by its evolution during the deformation of sand. The model formulation leads
naturally to a non-coaxial flow rule which enables it to capture the non-coaxial behaviour in sand with ease. We
have further applied the model to the prediction of shear localisation in sand. We identify two competing mech-
anisms dictating the occurrence and further development of shear band in sand, one attributable to the evolution
of fabric and the other imposed by the boundary constraints. The study helps to shed light on the fundamental
understanding of sand behaviour such as non-coaxility and the phenomenon of strain localisation.

1 INTRODUCTION

Soil fabric affects important soil behaviour including
strength, dilatancy and critical state. Fabric anisotropy
in sand changes constantly with the strain to estab-
lish a compatible internal structure with the applied
stress and exhibits unique characteristics at critical
state (Zhao & Guo 2013, Guo & Zhao 2013). Accu-
rate modelling of sand behaviour needs to fully con-
sider the evolving nature of fabric during the load-
ing course. The majority of existing studies on fab-
ric anisotropy have either considered a constant fabric
tensor in the model formulation, or have been based
on the rotation of yield surface. Yield surface rotation
cannot adequately account for the anisotropic nature
of sand related to particle orientation, contact normal
and void space distribution, since the direction and
magnitude of rotation are associated with the initial
stress state but not these physical properties of soil.
Despite the convenience and simplicity it may offer,
the employment of a constant fabric tensor ignores the
evolution of fabric anisotropy during the deformation
of the soil, which gives rise to inconsistent predictions
with experimental and numerical observations. It may
also lead to non-uniqueness of critical state line.

This paper presents a general three-dimensional

critical state sand plasticity model with full account
of the effect of fabric and its evolution recently de-
veloped by the authors (Gao et al. 2014). The model
has been developed within the Anisotropic Critical
State Theory proposed by Li & Dafalias (2012). It
features an explicit dependence of the yield surface,
the hardening law and the dilatancy relation on fab-
ric anisotropy. With a novel fabric evolution law be-
ing proposed, all these are further made dependent on
the evolution of fabric. The model formulation nat-
urally leads to a non-coaxial flow rule. It shows ex-
cellent predictive capacity in reproducing the typical
sand behaviour observed in laboratory tests, and pro-
vides convincing physical explanations on such phe-
nomena as non-coaxiality.

In addition to characterisation of material be-
haviour in sand, we have applied the model to sim-
ulating boundary value problems. Widely regarded as
an important precursor to catastrophic failures such
as landslides and debris flow, strain localisation in
sand has received much attention in the research com-
munity of geomechanics. The occurrence and devel-
opment of strain localisation has to be closely with
important microstructure such as soil fabric and fab-
ric evolution. While the influence of initial fabric
anisotropy on strain localisation has been treated be-



fore, the correlation between fabric evolution and
strain localisation remains an untouched topic. We
have implemented the newly developed sand plas-
ticity model considering fabric evolution in a dis-
placement finite element code and have applied it to
predicting the shear localisation in sand under plane
strain compression. Based on the simulation of the
such a well-designed boundary value problem, the in-
teraction between fabric evolution and shear localisa-
tion in sand is investigated.

2 SAND PLASTICITY MODEL ACCOUNTING
FOR FABRIC EVOLUTION

2.1 Model formulation

2.1.1 Elastic relations
The influence of fabric anisotropy on the elastic be-
haviour of sand is neglected here. The following
isotropic pressure-sensitive elastic relations are em-
ployed

G = G0
(2.97− e)2

1 + e

√
ppa, K = G

2(1 + ν)

3(1− 2ν)
(1)

where G and K are respectively the elastic shear and
bulk modulus. G0 is a material constant. e is the void
ratio and ν is the Poisson’s ratio (taken as a con-
stant). p= σii/3 and σij is the stress tensor. pa denotes
the atmospherical pressure. The following incremen-
tal elastic relations are employed to describe the non-
linear elasticity for sand:

deeij =
dsij
2G

, dεev =
dp

K
(2)

where sij=deviator stress; eeij=deviator elastic strain;
εev=volumetric elastic strain.

2.1.2 Yield function
To account for the influence of fabric anisotropy,
the following fabric-dependent yield function is em-
ployed in the model (Gao et al. 2014):

f =
R

g(θ)
−He−kh(A−1)2 = 0 (3)

where the first term R/g(θ) is a normalised shear
stress, while the second term denotes a general-
ized shear resistance involving the influence of fab-
ric anisotropy through A. R =

√
3rijrij/2 is the

stress ratio tensor (rij = (σij − pδij)/p = sij/p;
δij=Kronecker delta); H is a hardening parameter
whose evolution law depends on the stress as well
as internal variables including the density and fab-
ric; kh is a non-negative model constant. When kh =
0, the yield function degenerates to a conventional
isotropic yield surface in the stress space; g(θ) is an
interpolation function dependent on the Lode angel θ

of rij viz: g(θ) =

√
(1+c2)2+4c(1−c2) sin3θ−(1+c2)

2(1−c) sin3θ where
c=Me/Mc denotes the ratio between the critical state
stress ratio in triaxial extensionMe and that in triaxial
compressionMc. Serving as an important component,
A in Eq. (3) denotes a fabric anisotropy variable de-
fined by the first joint invariant of the fabric tensor Fij
and the loading direction tensor nij:

A = Fijnij (4)

where Fij is is a symmetric traceless fabric tensor
whose norm F =

√
FijFij represents the degree of

fabric anisotropy. A normalised fabric tensor Fij is
used such that F is unity at critical state. The devia-
toric unit loading direction tensor nij is defined by

nij =
Nij −Nmnδmnδij/3

||Nij −Nmnδmnδij/3||
(5)

where
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where f̄ = R/g(θ). At critical state, nij and Fij be-
come co-directional (Li & Dafalias 2012), F reaches
a critical state value of 1, which results in A = 1.
In this case, the yield function in Eq. (3) becomes
an isotropic critical state failure surface again. An
isotropic critical state failure surface does not neces-
sarily mean the critical state fabric is isotropic, which
has been confirmed by DEM simulations (Zhao &
Guo 2013, Guo & Zhao 2013).

2.1.3 Fabric evolution, plastic hardening law and
dilatancy relation

The following dilatancy relation is followed:

D =
d1

Mcg(θ)
[1 +

R

Mcg(θ)
][Mcg(θ)emζ −R] (7)

where d1 and m are two model constants. ζ is the
diltatancy state parameter defined by Li and Dafalias
(2012)

ζ = ψ− eA(A− 1) (8)

where eA is a model parameter. ψ = e− ec is the state
parameter defined by Been and Jefferies (1985).

The following fabric evolution law is proposed:

dFij = 〈λ〉Θij = 〈λ〉kf (nij − Fij) (9)

where λ is the plastic multiplier. kf is a positive model
constant representing the rate of fabric evolution. The
fabric evolves with the plastic deformation according
to Eq. (9), which renders the fabric tensor tending to-
wards coaxiality with the loading direction nij . The
following hardening law is employed:

dH = 〈λ〉rn = 〈λ〉G(1− che)
pR

[Mcg(θ)e−nζ −R](10)

where ch and n are two positive model parameters.



2.1.4 Non-coaxial associated flow rule in the
deviatoric space

The yield function in Eq. (3) includes the joint invari-
ant A, which naturally produces non-coaxial defor-
mation for associated flow rule. This is demonstrated
as follows. By assuming an associated flow rule in
the deviatoric stress space, the plastic strain rate will
be dependent on the derives of the yield function with
respect to the stress tensors. Based on Eq. (3) one can
easily obtain:
∂f

∂rij
= Nij +
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(11)

where
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It is readily seen that the inclusion of fabric anisotropy
viz A in the yield function leads to ∂f/∂rij consist-
ing of two parts. The first part Nij is apparently coax-
ial with the direction of the stress ratio rij (or equiv-
alently to the direction of the stress σij . The second
part involves fabric anisotropy Fij which is generally
non-coaxial with rij as long as fabric anisotropy is
non-zero. This naturally addresses the non-coaxiality
in soil modelling. Granular media generally exhibit an
appreciable amount of non-coaxial deformation with
the stress during early stage of shearing, which may
gradually diminish with the shearing to high strain
level. This can indeed be reasonably explained by the
second part of Eq. (11).

2.1.5 Incremental stress-strain relation
Based on the above formulations, the following incre-
mental stress strain relation can be determined based
on the yield function and the elasticity relation
dσij = Dijkldεkl (13)
where the elastoplastic stiffness tensor is

Dijkl = Cijkl − h(λ)(2Gmij +
√

2/3KDδij)Πkl (14)

whereCijkl =Kδijδkl + 2G(δikδjl− 1
3
δijδkl).D= dεpv

dεpq

is the dilatancy. h(λ) is the Heaviside step function
where h(λ > 0) = 1 and h(λ ≤ 0) = 0. Πkl can be
expressed by the deviator unit loading direction ten-
sor Nij , the derivatives based on the consistency con-
dition of yield function and the plastic modulus Kp.
For detail of the expression please refer to Gao et al.
(2014).

2.2 Model Calibration and verification

The model has been carefully calibrated based on ex-
perimental data on dry-deposited Toyoura sand re-
ported by Yoshimine et al. (1998). Figure 1 presents
a comparison of stress-strain relations and stress path
between the experimental results and model predic-
tion for an undrained test, which shows a good coin-
cidence.

 

 
 (a) Stress strain relation

 

 
 

(b) Stress path
Figure 1: A comparison of model simulations and test
data of the undrained behavior of dry-deposited Toy-
oura sand under different principal stress angle.



3 PREDICTING THE NON-COAXIAL
BEHAVIOUR IN SAND

As mentioned before, the proposed model features a
natural non-coaxial flow rule in Eq. (11) by including
an evolving fabric tensor into the yield function. This
flow rule can facilitate the explanation of non-coaxial
behaviour in sand. Indeed, according to Eq. (11), the
plastic strain increment involves a component that
does not align with the stress direction (the second
term of the right-hand side of the equation), and con-
sequently, the phenomenon of non-coaxiality may be
easily handled. The non-coaxial behaviour can be
caused by two cases: (a) the soil fabric and the loading
direction are initially not coaxial to each other; (b) the
changes of stresses and the soil fabric are not synchro-
nised. A typical example of case (b) can be found in a
typical rotational shearing test where the fabric tends
to align its major principal axes to be coaxial with
that of the loading direction, in an attempt to reach an
optimum internal rearrangement to bear the load. The
change of fabric is however always lagging behind the
stress change due to its passive nature, which leads to
non-coaxial stress and fabric tensor. Figure 2 demon-
strates an example of the model prediction of non-
coaxial behaviour for Toyoura sand under undrained
shear. In the figure, α(σ) is defined by the relative an-
gle between the direction of the major principal stress
σ1 and the vertical direction, while α(ε) is defined by
the relative angle between the major principal strain ε1
and the vertical direction. The difference between the
two angles, α(ε)− α(σ), serves as a measure of non-
coaxiality in sand and its variation with shear strain
in presented in Figure 2. There is a good qualitative
coincidence between the model simulations and the
experimental data.

We further note that there is only change of prin-
cipal values of fabric tensor during the development
of plastic strain when α = 0◦ and α = 90◦. The di-
rection of the fabric will align with the stress direc-
tion during the loading course for the two cases. The
predicted sand response is thus coaxial, which is con-
sistent with Gutierrez & Ishihara (2000). In all the
other cases, distinct different between α(ε) and α(σ)
in the order of average 4 to 5 degrees is found, in-
dicting a clear evidence of non-coaxiality. The differ-
ence becomes smaller after the peak when the fab-
ric tends to rotate towards the direction of stress. The
non-coaxial behaviour is expected to entirely disap-
pear at very large strain level. It is also observed that
the with b = 0 the test data show the α = 30◦ cases
gives the maximum difference, while our model pre-
diction points to the case of α = 45◦. The possible
reason may be that sand fabric in the tested samples is
not rigorously cross-anisotropic at the initial state. In
general, the current model captures the general trend
of α(ε) > α(σ) which is frequently observed in sand
(Yoshimine et al. 1998).

 

 

(a) b = 0

 

 
 

(b) b = 1

Figure 2: Test data and model simulations for the non-
coaxial behavior of Toyoura sand under undrained ro-
tational shear at b = 1 and b = 1 (b: intermediate prin-
cipal stress ratio).
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Figure 3: The finite element mesh used for simula-
tion of biaxial compression of Toyoura sand with (a)
smooth boundary and (b) rough boundary conditions.

4 MODELLING THE SHEAR LOCALISATION
IN SAND: THE ROLE OF FABRIC
EVOLUTION

Strain localization is frequently observed in sand and
is considered an important precursor related to major
geohazards such as landslides, debris flow and fail-
ures of relevant geo-structures. It is meanwhile recog-
nised that the fabric in sand, representing an impor-
tant internal structure, will constantly evolve during
the loading course. There have been no previous stud-
ies investigating the correlation between strain local-
isation in sand and the fabric and its evolution which
supposed to be extremely important towards better
understanding the phenomenon of strain localisation.
We employ the anisotropic sand model presented in
previous sections in conjunction with finite element
method to investigate the strain localisation in sand
under plane strain compression, highlighting the role
played by fabric evolution.

The proposed model has been successfully im-
plemented in the finite element package ABAQUS
through the user-material interface (UMAT) using an
explicit integration method (Zhao et al. 2005). The
implemented model is then used to investigate the
strain localisation for Toyoura sand under plain strain
compression treated experimentally by Tatsuoka et al.
(1990). The dimension of the plane strain sand sample
is h× w = 10.5cm× 4cm. The domain is disretized
by 42× 16 four-nodes plane strain elements. A con-
stant confining pressure is applied to the horizontal
direction of the sample and an incremental vertical
displacement is applied to the top end of the sam-
ple. Two types of boundary conditions are considered:
smoothed boundary (left figure in Figure 3) and rough
boundary (right figure in Figure 3). The bedding an-
gle α is indicated in the figure. The initial void ratio
distribution is assumed to be uniform throughout the
sample. We take the case of bedding angle of α = 45◦

as a demonstrative example.
Gao and Zhao (2013) have found that for such

a homogeneous sample with symmetric loading and
boundary conditions, the anisotropic fabric can serve
as a symmetry breaker triggering the strain localisa-
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Figure 4: Distribution of shear strain for α = 45◦

with smooth boundary at (a) the peak stress state
εh = 4.2%, (b) εh = 12% with evolving fabric and (c)
εh = 12% with constant fabric (εh = ∆h/h = global
vertical strain).

tion in the sample. Due to the non-coaxiality of the
fabric with respect to the stress, a non-coaxial strain
field is induced in each element with its major princi-
pal direction aligning with the an angle to the left of
the vertical direction, which triggers the occurrence
of localisation.

4.1 Smooth boundary

Figure 4 shows the development of shear band in sand
sample with smooth boundary for the case of α= 45◦.
Evidently a single asymmetric shear band is initialed
around the peal global stress state and becomes in-
tensely localised at the post-peak stage. Its orienta-
tion is close to the zero extension direction defined by
(Roscoe 1958), which was termed by Tatsuoka et al.
(1990) as Type-b shear band (aligning close to the
bedding plane direction). When the fabric is fixed as a
constant (by setting kf = 0), a similar pattern of shear
band is found, however with more intensely concen-
trated shear strain within the band than considering
fabric evolution. This indicates the sand may adapt its
internal structure through the process of fabric evolu-
tion to alleviate the strain concentration.

4.2 Rough boundary

Figure 5 shows the evolution of shear bands for the
case of rough boundary, α = 45◦ and considering fab-
ric evolution. Strain localisation is found initiated be-
fore the peak global stress state. With rough boundary
conditions, a shear band orientating to a Type-a pat-
tern according to (Tatsuoka et al. 1990) (align close
to the perpendicular direction of the bedding plane)
develops substantially first, the failure of which is
governed by the Coulomb’s condition rather than the
zero-extension mechanisms in the smooth boundary
case. When εh reaches 5.8% (beyond the peak stress
state), the second Type-b shear band starts to develop
considerably while the first Type-a band continue to
intensity, which leads to an cross shape double bands
pattern at higher strain levels. The firstly occurring
Type-b band remains the dominant one between the
two. The overall shape of the two bands nevertheless
appears to be symmetric.
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Figure 5: Evolution of shear band for sand sample
under plane compression with α = 45◦ and rough
boundary at four strain levels (considering fabric evo-
lution): (a)εh = 2.8%; (b)εh = 5.8%; (c)εh = 8.4% and
(d)εh = 15.5%.
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Figure 6: Evolution of shear band for sand sample
under plane compression with α = 45◦ and rough
boundary at four strain levels (the fabric is fixed as a
constant): (a)εh = 2.2%; (b)εh = 4.5%; (c) εh = 7.8%
and (d)εh = 15.6%.

To highlight the effect of fabric evolution, a com-
parison case with fixed fabric is presented in Figure 6.
While the figure shows a similar occurrence sequence
that a Type-a shear band occurs first followed by a
Type-b shear band, the Type-a shear band appears to
be more dominant than in the previous evolving fab-
ric case which attracts the major localised strain in
the post-peak development of localisation. The Type-
b band only has limited development due to the in-
ability of self-adjusting through fabric evolution of
the sample. The final resultant double bands pattern
is hence a rather asymmetric cross-shape one.

4.3 Two competing mechanisms for shear band

Further investigations reveal that fabric evolution and
the structural constraint imposed by the boundary
conditions constitute two competing physical mech-
anisms governing the shear band formation. Fabric
evolution may help a soil sample to adjust within itself
to reduce non-coaxial response and render the sample
to resist the external load more optimally to relieve
strain localisation, while the structural constraint by
the boundary tends to exert more biased stress on the
sample which leads to intensified strain localisation
on the existing shear band(s). Detailed examination of
such quantities including the reaction force imposed
on the sample by the top/bottom boundary ends and

the evolution of anisotropic variable A confirms the
above explanations (Gao & Zhao 2013).

5 CONCLUSION

A sand plasticity model accounting for fabric
anisotropy and its evolution has been developed
within the Anisotropic Critical State Theory (ACST).
It was demonstrated the model possesses a natural
non-coaxial flow rule with the inclusion of fabric
anisotropy in the yield surface and could characterise
the non-coaxial behaviour in sand reasonably well.
The model has been further applied to the prediction
of strain localisation in sand under plane strain com-
pression wherein the important role of fabric evolu-
tion is highlighted.
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chanics. Géotechnique 20(2), 129–170.

Tatsuoka, F., Nakamura, S., Huang, C. & Tani, K. (1990).
Strength anisotropy and shear band direction in plane
strain tests of sand. Soils Found. 30(1), 35–54.

Yoshimine, M., Ishihara, K. & Vargas, W. (1998). Effects
of principal stress direction and intermediate princi-
pal stress on undrained shear behavior of sand. Soils
Found. 38(3), 179–188.

Zhao, J. & Guo, N. (2013). Unique critical state character-
istics in granular media considering fabric anisotropy.
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