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Abstract 

The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones 

for reconstructing the morphotectonic evolution of extensional geodynamic provinces, 

assessing their role in paleoenvironmental changes, and evaluating the resource potential of 

their basin fills. Our apatite fission-track and zircon (U-Th)/He data from the Samburu Hills 

and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a 

broadly consistent thermal evolution of both regions. Results of thermal modeling support a 

three-phased thermal history since the early Paleocene. The first phase (~65-50 Ma) was 

characterized by rapid cooling of the rift shoulders and may be coeval with faulting and 

sedimentation in the Anza Rift basin, now located in the subsurface of the Turkana 

depression and areas to the east in northern Kenya. In the second phase, very slow cooling or 

slight reheating occurred between ~45 and 15 Ma as a result of either stable surface 

conditions, very slow exhumation, or subsidence. The third phase comprised renewed rapid 

cooling starting at ~15 Ma. This final cooling represents the most recent stage of rifting, 

which followed widespread flood-phonolite emplacement and has shaped the present-day 

landscape through rift shoulder uplift, faulting, basin filling, protracted volcanism, and 

erosion. When compared with thermochronologic and geologic data from other sectors of the 

East African Rift System, extension appears to be diachronous, spatially disparate, and partly 

overlapping, likely driven by interactions between mantle-driven processes and crustal 

heterogeneities, rather than the previously suggested north-south migrating influence of a 

mantle plume. 

 

1. Introduction 

Continental rift systems are first-order tectonic features that record the early stages of 

continental break-up. In magmatically controlled rifts, long-wavelength crustal updoming and 
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the development of dynamic topography prior to the onset of volcanism and normal faulting 

underscore the role of mantle-driven, thermally controlled processes in the evolution of these 

regions [e.g., Crough, 1983; Ebinger and Sleep, 1998; Moucha and Forte, 2011]. In the East 

African Rift System (EARS), such changes in topography and relief have had far-reaching 

consequences, including impacts on atmospheric circulation patterns that in turn affect 

rainfall patterns, drainage systems, and surface processes [e.g, Levin et al. 2009; Sepulchre et 

al., 2006; Ebinger and Scholz, 2012; Wichura et al., 2010; 2015]. In addition, the interplay 

between extensional tectonics and superposed changes in climate has given rise to gateways 

and migration corridors for hominids and other mammals, thus fostering speciation [Bobe 

and Behrensmeyer, 2004; Bailey and King, 2011; Bailey et al., 2011].  

Uplift, volcanism, and normal faulting in the EARS are hallmarks of one of the largest 

magmatic extensional zones on Earth [Burke, 1996]. Comprised of the largely amagmatic 

western and the magmatic eastern branch, the ~5000-km-long EARS has generated a series of 

transiently linked and isolated rift basins [Tiercelin and Lezzar, 2002; Ebinger and Scholz, 

2012]. The areally extensive mantle anomaly that underlies the EARS [e.g., Simiyu and 

Keller, 1997; Ebinger and Sleep, 1998; Achauer and Masson, 2002] helps support average 

elevations of ~1000 m [Moucha and Forte, 2011]. As such, understanding the mechanisms of 

rifting and its spatiotemporal evolution are critical for exploring how geodynamic and surface 

processes are potentially linked with topographic development, magmatic evolution, and 

long-term environmental and biotic impacts in rift systems. Changes in each of these aspects 

over time throughout the EARS have been difficult to quantify, but valuable information has 

been obtained from the sedimentary and volcanic rift-basin strata [e.g., Frostick and Reid, 

1990; Morley et al., 1992; Pickford and Senut, 1994; Renaut et al., 1999; Odada and Olago, 

2002; Saneyoshi et al., 2006; Ebinger and Scholz, 2012; Tiercelin et al., 2012; Roberts et al., 

2012]. Unfortunately, many of the rift basins do not allow for a direct inspection of such 
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deposits, because old strata either lie below thick volcano-sedimentary sequences or areally 

extensive lakes [e.g., Flannery and Rosendahl, 1990; Cohen et al., 1993; Scholz et al., 1994; 

Hautot et al., 2000], or because differential faulting, uplift, and erosion along the rift flanks 

have been insufficient to expose such deposits. For these reasons, many studies of the 

spatiotemporal trends in rift-basin formation have relied on the combined analysis of 

geophysical data, field observations, and isolated drill-core data.  

Low-temperature thermochronometry, such as apatite fission-track and apatite and 

zircon (U-Th)/He dating, combined with thermal history modeling, constitute powerful 

alternative tools to investigate cooling as a proxy for tectono-thermal and climate-driven 

erosion processes in rift settings [Fitzgerald, 1992; Foster and Gleadow; 1992; 1996; van der 

Beek et al., 1998]. Thermochronology studies have been carried out throughout the EARS 

aimed at unraveling the history of basin formation, rift-shoulder exhumation, and different 

tectono-thermal episodes associated with mantle-plume activity. These studies have 

addressed the tectonic evolution of the western branch of the EARS in the Rwenzori 

Mountains [Bauer et al., 2010; 2012] and the Malawi and Rukwa rifts [van der Beek et al., 

1998; Roberts et al., 2012], and the evolution of the eastern branch in Ethiopia [Pik, 2008], 

northern Tanzania [Noble et al., 1997; Mbede, 2001], and Kenya [Wagner, 1992; Foster and 

Gleadow, 1992; 1996; Spiegel et al. 2007]. In the greater Turkana region and the western rift-

shoulder areas of northern Kenya (Fig. 1), these investigations have provided helpful 

constraints on the regional onset of Mesozoic and early Cenozoic rifting [Foster and 

Gleadow, 1996; Spiegel et al., 2007]. However, the spatial extent of the related tectono-

thermal events, the formation of older rift basins underlying the late Cenozoic rifts, and the 

role of their structures in influencing Miocene to Recent rifting is unclear.  

The onset of rifting in East Africa has been associated with a southward-directed 

migration of volcanism, which in turn has been inferred to be linked with the northward 
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motion of the African plate over a mantle plume [Ebinger and Sleep, 1998; Nyblade and 

Brazier, 2002]. Accordingly, the onset of tectonic activity in the eastern branch of the rift is 

also thought to have followed this temporal trend from Ethiopia to northern Tanzania 

[Nyblade and Brazier, 2002]. In contrast, Zeyen et al. [1997] proposed that the onset of 

extension was less systematic, and largely dictated by the spatially variable mechanical 

properties of the lithosphere and crust. The notion that rifting and volcanism did not follow a 

systematic, southward migration has been recently emphasized again by numerical modeling 

[Koptev et al., 2015] and by a synopsis of the age of volcanism in the different sectors of the 

EARS, from which a synchronous onset of volcanic activity in East Africa has been proposed 

[Michon, 2015]. Furthermore, studies of noble gases in East African lavas and xenoliths 

suggest the existence of separate plume heads in Ethiopia and Kenya [Halldórsson et al., 

2014]. As the Kenya Rift is located between the Tanzania and Turkana-southern Ethiopia 

extensional provinces, it constitutes an important link between different extensional sectors in 

the volcanically active eastern branch of the EARS and is thus in a crucial location to further 

test these ideas. 

Here we report 15 apatite (U-Th)/He (AHe), 13 apatite fission-track (AFT), and 5 

zircon  (U-Th)/He (ZHe) ages from basement rocks that were collected along three elevation 

transects at the Elgeyo escarpment and the Samburu Hills (Nyiru Range) on the eastern and 

western rift shoulders and steep rift flanks of basins in northern Kenya (Figs. 1 and 2). 

Following thermal modeling of our data using the HeFTy [Ketcham, 2005; Ketcham et al., 

2009] and QTQt software programs [Gallagher, 2009; Gallagher, 2012], we use the cooling 

histories to help elucidate the Cenozoic tectono-thermal evolution of the Kenya Rift 

shoulders and its implications for the overall structural evolution of the EARS.  

 

2. Geological setting and tectonic history 
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In Kenya, the EARS is characterized by asymmetric rift basins, central volcanoes, and 

high rift shoulders (up to ca. 2000 masl in western Kenya) bounded by escarpments where 

late Proterozoic crystalline basement rocks are exposed [Maboko, 1985; Smith, 1994; Smith 

and Mosley, 1993; Shackleton, 1993]. Our study area comprises the eastern shoulders of the 

northern Kenya Rift and the transition between the northern and central Kenya rifts along the 

western rift margin (Fig. 1). 

Geophysical data, stratigraphic information, and dated volcanic lava flows have 

furnished information on the early rifting history in northern Kenya, which began during the 

late Mesozoic [Foster and Gleadow, 1992; 1996; Morley et al., 1992; Wagner et al. 1992; 

Ebinger, 2000; Tiercelin et al., 2004; 2012]. These early episodes of extension affected areas 

between the Indian Ocean and the Lake Turkana region, leading to the accumulation of thick 

lacustrine, fluvial, and eolian strata in the NW-SE oriented Cretaceous Anza Rift (Fig. 1). In 

its central part, the buried Anza Rift was active during the late Cretaceous, whereas it 

continued to be active into the late Tertiary in the northern Lamu Embayment (Fig. 1), in the 

vicinity of the present-day coast of the Indian Ocean [Bosworth and Morley, 1994]. Farther 

west, the Anza Rift is inferred to transition into the eastern sectors of the Cretaceous Central 

African Rift Zone [Schull, 1988].  

Subsequent Cenozoic extension in northern Kenya is recorded in the Turkana-

Lokichar rift zone (Fig. 1b), but was preceded by volcanism at about 35 Ma, followed by 

Oligocene normal faulting and the formation of several halfgraben basins [Morley et al., 

1992]. These basins span the region between the Ugandan border and Lake Turkana (Fig. 1), 

and they host sedimentary fills 5 to 8 km thick that include intercalated volcanic rocks 

[Morley et al., 1992; Tiercelin et al., 2012]. However, apatite (U-Th)/He and fission-track 

data from the western rift flank (Cherangani Hills of northern Kenya) and from the present-

day eastern rift flank southeast of Lake Turkana (Figs. 1 and 2) only reveal clear episodes of 
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cooling during the late Cretaceous to Paleocene and during the late Neogene [Foster and 

Gleadow, 1996; Spiegel et al., 2007].  

Today, the northern Kenya Rift encompasses the wide, early Cenozoic Turkana-

Lokichar rift zone, but the Miocene to Recent manifestations of rifting are primarily located 

in the eastern sector of this extensional province, between approximately 1° and 4.5°N 

latitude. This region is characterized by the active, down-to-the-east halfgraben basin of the 

NNE-oriented Suguta Valley [Bosworth and Maurin, 1993; Saneyoshi et al., 2006; Melnick et 

al., 2012] and the northern sector of the NNE-oriented Elgeyo Escarpment farther west (Fig. 

1b). The rift floor in the Suguta Valley is at ~300 masl, whereas the antithetically faulted 

monocline on the eastern rift margin has an average elevation of ~1400 masl [Bosworth and 

Maurin, 1993]. There, the rift shoulder exposes gneissic Precambrian basement in the 

Samburu Hills, our first study site, which locally reach up to 1900 masl (Figs. 1 and 2). To 

the north of the Suguta Valley is the active Kino Sogo rift zone; this extensional sector 

transitions northward into the Chew Bahir Rift of southern Ethiopia, which is an integral part 

of the Main Ethiopian Rift (Fig. 1). 

The Elgeyo Escarpment, our second study site, is located along the western margin of 

the northern Kenya Rift and the northernmost sector of the NNW-oriented central Kenya Rift, 

where the escarpment transitions southward into the Mau Escarpment (Fig. 1b). The Elgeyo 

Escarpment is one of the most prominent fault-line escarpments of the Kenya Rift. In its 

southern sector, the escarpment is ~900 m higher than the adjacent Kerio sedimentary basin 

(Fig. 2). The Elgeyo Escarpment is related to a down-to-the-east normal fault, which exposes 

steeply eastward-dipping Proterozoic gneisses of the pan-African orogeny [Chapman et al., 

1978; Maboko, 1985; Hetzel and Strecker, 1994]. The Cenozoic faults along the Elgeyo 

Escarpment follow the gneissic foliation and change in strike where the foliation is cut by 

NW-striking Proterozoic dextral shear zones [Strecker et al., 1990; Shackleton, 1993]. These 
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reactivated shear zones influence the geometry and areal distribution of strata of the Kerio 

sedimentary basin [Mugisha et al., 1997]. The basement shear zones are overlain by arkosic 

sandstones, conglomerates and lacustrine shales of unknown age, and up to 150-m-thick, 14-

m.y.-old phonolites [Lippard, 1973; Ego, 1994; Supplementary Figure 1] that also cap the 

western rift shoulder. Faulting along the Elgeyo Escarpment in this sector postdates the 

emplacement of the middle Miocene phonolite flows and generated the westward-tilted 

Kamasia fault block to the east (Fig. 2), which in turn is delimited by a major down-to-the-

east normal fault to the east [e.g., Chapman et al., 1978]. The Kamasia Range thus forms the 

barrier between the Kerio Basin and the Baringo Basin farther east, which now hosts the 

active volcano-tectonic axis of this part of the Kenya Rift. 

 

3. Methodology 

We constrain the Cenozoic cooling of the Precambrian Mozambique Belt gneisses 

exposed on the western and eastern rift shoulders of the northern Kenya Rift and the 

northernmost sector of the central Kenya Rift using apatite fission-track thermochronology 

(AFT; apatite partial annealing zone, PAZ, ~60-~120°), apatite (U-Th-Sm)/He 

thermochronology (AHe, partial retention zone, APRZ ~40°-85°C) and zircon (U-Th)/He 

thermochronology (ZHe; ZPRZ ~120-~200°C (assuming that zircons remained in this 

temperature range for about 90 Myr [e.g. Reiners and Brandon, 2006; Wolf et al., 1998; 

Ketcham et al., 1999; Reiners, 2005]). We collected seven samples (KN83 through KN89) 

along a W-E oriented profile between 1300 and 1900 masl in the Samburu Hills (SH), on the 

eastern rift flank (Fig. 3, Tables 1, 2 and Supplementary table 1). On the western flank, we 

collected one steep profile across the northern Elgeyo Escarpment (NEE) and one across the 

southern Elgeyo Escarpment (SEE) (Fig. 2). The NEE profile comprises six samples (KN97 

through KN102) collected between 1280 and 1850 masl, and the SEE profile comprises five 
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samples (KN53, KN55, KN91, KN92, KN94) collected between 1350 and 1780 masl. The 

Elgeyo escarpment profiles are separated by ca. 50 km and were collected perpendicular to 

the main fault-line escarpment (Fig. 2). In addition, sample KN50 was collected between the 

two profiles and analyzed for AFT, although it was not used to help constrain the thermal 

modeling. 

Mineral separation and sample preparation for AFT, AHe, and ZHe analyses followed 

standard procedures [e.g. Dobson, 2006] and are briefly described below. Eighteen samples 

yielded enough apatite for AFT and AHe analysis, and six samples were analyzed with the 

ZHe method. 

 

3.1. Apatite fission-track analysis 

AFT samples were analyzed with a Leica DMRM microscope at the University of 

Potsdam. Approximately 20 good-quality grains per sample were randomly selected and 

dated using the external detector method and the zeta calibration technique [Hurford, 1983] 

(see Table 1.). The pooled age is reported (±1σ) when samples pass the Chi-squared test 

(P(χ
2
) ≥ 5%) [Galbraith, 1981]; for KN50, the central age is reported because the sample 

failed this test. We also report confined track-length distributions of seven AFT samples (see 

details in Table 1). 
252

Cf irradiations were performed (see Supplementary material) to obtain 

a larger number of horizontally confined tracks for track-length measurements [e.g. Donelick 

et al, 2005]. The angle between the confined tracks and the crystallographic c-axes was 

routinely measured. The size of the etch-pit diameter parallel to the c-axis (Dpar) was also 

determined, as it is a kinetic parameter used in thermal history modeling [Donelick et al., 

1999; Ketcham et al., 1999] At least four Dpar values were measured per crystal; the data 

were corrected following Sobel and Seward [2010]. 
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3.2. Apatite (U-Th-Sm)/He analysis 

The AHe method is based on the accumulation of alpha particles produced by U, Th 

and Sm series decay [Ehlers and Farley, 2003]. Ages are corrected for alpha ejection near the 

margins of the crystal assuming a homogenous distribution of U, Th, and Sm [Farley et al., 

1996; Ehlers and Farley, 2003]. Samples were analyzed at the Scottish Universities 

Environmental Research Center (SUERC) following the procedure described by Foeken et al. 

[2006]. We analyzed between 1 and 3 apatite crystals of similar radius per sample 

(Supplementary Table 1). Corrections for He recoil loss were made following the procedures 

of Farley and Stockli [2002]. The correction factor (Ft) was calculated based on the retention 

and stopping distance of the alpha particle in the crystal and the size of each grain analyzed. 

The reproducibility of the 
3
He spike was determined from three daily measurements against 

an accurately known 
4
He standard. Standard 

4
He abundance measurements have within–run 

precision of better than 0.1% (1σ) and between-run precision of 0.2% (1σ) [Persano et al., 

2002]. 

U, Th and Sm analyses were performed on a VG plasma Quad PQ2+ICP-MS. After 

4
He analysis, each crystal was dissolved and spiked with ~0.45 ng 

230
Th and 0.20 ng 

235
U 

with approximately 2 ml of HNO3. Total analytical uncertainty on all ages was approximately 

1-3% (1σ), which is dominated by the uncertainty in the U and Th spike concentrations [e.g., 

Dobson, 2006; Foeken et al., 2006], He determinations, blank corrections, and uncertainties 

on grain-size measurements for α-correction. 

 

3.3. Zircon (U-Th)/He analysis 

The (U-Th)/He analysis of zircons is also based on the accumulation and diffusion of 

alpha particles produced by the decay of U and Th. After mineral-separation at the University 

of Potsdam, we used the facilities at SUERC following analytical procedures described by 
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Foeken et al. [2006] and Dobson [2006]. Seven samples with 1 to 3 single-crystal aliquots 

each were analyzed. With respect to the Ft correction, we followed procedures described in 

Farley and Stockli [2002], and we again assumed a uniform distribution of U and Th. Total 

analytical uncertainty is dominated by the uncertainty in the U and Th spike concentrations 

[Dobson, 2006; Foeken et al., 2006], He determinations, and blank corrections.  

 

 3.4. Age-elevation relationships (AERs) and thermal history modeling 

The relationship between thermochronologic ages and elevations of different samples 

along an elevation profile are commonly used to determine rates and amounts of exhumation 

[e.g., Dobson et al., 2009; Foeken et al., 2006]. However, the thermal structure of the 

uppermost crust could be influenced by topography, erosion, faulting, and advection [e.g., 

Ehlers and Farley, 2003; Gallagher, 2005], which complicate direct interpretations of the 

slope of age-elevation plots [e.g., Valla et al., 2010; van der Beek et al., 2010].  

To determine the Cenozoic cooling history recorded by samples within our age-

elevation profiles, we used two different thermal modeling approaches. We performed 

forward and inverse Monte Carlo modeling of time-temperature paths combining AFT and 

ZHe data using the HeFTy 1.8.2 software [Ketcham, 2005] for individual samples, and we 

used the QTQt software [Gallagher et al. 2009; Gallagher, 2012] to derive integrated cooling 

constraints from multiple samples within an age-elevation transect. AHe data were not used 

for modeling due to the high dispersion of single-grain ages, as discussed in section 4. 

The HeFTy program is effective for assessing the thermal history of a single sample. 

The output reflects the goodness of fit of the models, which allows for testing different 

cooling histories. However, the program has not yet been adapted for modeling multiple 

samples within an elevation profile. In contrast, the QTQt program is well suited for the latter 

task. Therefore, we use the HeFTy results to determine approximate constraints that can be 
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applied during QTQt modeling of the complete profile. 

To resolve the Cenozoic thermal history of the rocks along each profile, we tested two 

contrasting thermal history scenarios: monotonic cooling versus Neogene reheating and 

cooling. We used the HeFTy and QTQt programs to predict time-temperature paths for these 

two scenarios that are consistent with our AFT age and track-length distribution data and our 

ZHe ages. Additionally, we used geological constraints, such as the initiation of volcanism 

north of the study area [Morley et al., 1992; Ebinger and Sleep, 1998], to provide some 

brackets on possible cooling paths.  

 

4. Results 

4.1. Apatite fission-track dating results 

The apatite fission-track cooling ages are shown in Table 1.  Over the 400-m 

elevation range of the Samburu profile (SH), samples KN89, KN85, and KN83 yielded ages 

ranging from 39.4 ± 3.0 Ma to 50.3 ± 8.0 Ma. Although the elevation difference is small, this 

section provides the best relief and outcrop conditions in the area. Mean track lengths from 

samples KN83 and KN85 are 12.2 and 11.9 µm, respectively; sample KN89 did not yield a 

meaningful number of track lengths (n=2, Table 1). Samples from the northern Elgeyo 

transect (NEE, 4 samples) yielded ages ranging from 26.2 ± 3.0 Ma to 38.8± 3.0 Ma, with 

mean track lengths of 11.2 to 11.8 µm that were measured from 3 out of the 4 samples 

(KN99, KN100, and KN102).  

The southern Elgeyo transect comprises six samples with an age range between 4.6 ± 

1.0 Ma and 9.2 ± 2.0 Ma. No confined track lengths were found in those samples. In 

comparison to the AFT ages of the NEE and SH profiles, the young AFT ages of this transect 

together with the lack of a clear increase in age with elevation may be related to reheating as 

a result of nearby fluorite mineralization associated with the emplacement of Miocene lava 
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flows. The fluorite mineralization shows ENE to E-trending growth fibers in the plane of the 

steeply E-dipping foliation [Aljabri, 1992; Hetzel and Strecker, 1994; Ogola et al., 1994]. As 

fluorite mineralization involves temperatures between 120 and 260°C [e.g., Richardson and 

Holland, 1979], AFT ages were likely at least partially reset, and therefore we do not use 

those data to model the tectono-thermal history in this part of the study area.   

 

4.2. Apatite (U-Th-Sm)/He results 

We report 54 single-grain AHe ages from 15 samples (Supplementary Table 1). In 

most samples, several single-grain AHe ages are older than the AFT age from the same 

sample, and only a few aliquots yield younger AHe ages (Supplementary Table 1, Fig. 3). 

With respect to calibration and operation of the analytical machines, Ft corrections on 

potential non-ideal geometries, and grain-size measurement uncertainties, none can explain 

independently the dispersion of the data.  Below we consider other possibilities. 

Because prominent zonation in U and Th can also affect AHe ages, we examined the 

distribution of induced tracks in the micas of AFT samples that were also analyzed with the 

AHe method to assess the variability of the U distribution within single grains. Many of the 

samples contained numerous grains with pronounced U zoning, often with U-rich rims, 

although U-rich cores relative to the rims are required to explain ages that appear too old. 

Two samples (KN53, KN55) were also characterized by very high crystal-dislocation 

densities. During AFT analysis, such crystals were not analyzed. However, these 

characteristics can help explain the high age dispersion within the AHe data.  

Particularly in the case of slowly cooled apatites, differing amounts of radiation 

damage reflected by variable effective uranium (―eU‖) have been invoked to explain widely 

dispersed AHe ages [e.g., Flowers, 2009] or AHe ages that are older than AFT ages [e.g., 

Green et al., 2006; Hansen and Reiners, 2006, Gautheron et al., 2009]. Higher eU in apatite 
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leads to more radiation damage, higher He retentivity, and hence a higher effective closure 

temperature and a greater accumulation of He for a given cooling history [Flowers et al., 

2007]. Alternatively, variations in the effective diffusion domain size could influence the 

closure temperature of the crystal [Gautheron et al., 2009]. To explore these possibilities, we 

plotted AHe age versus eU and versus grain size. However, the ages do not show a clear 

correlation with either parameter (Supplementary Fig. 2).  

 Radiation damage and variable eU problems are commonly discussed in cases with 

AHe ages that are much older (>100 Ma) [e.g. Flowers, 2009] than those in this study. 

However, prolonged residence time at a low temperature (i.e. ~80-100°C) prior to late burial 

heating has been shown to exert a strong influence on 
4
He retentivity and hence on the 

effective closure temperature [Fox and Schuster, 2014]. In our study, the basement rocks are 

~500-m.y.-old and are related to the Panafrican orogeny [Maboko, 1985; Smith, 1994]. 

Between these early tectonic processes and the initiation of Cenozoic rifting [e.g.Foster and 

Gleadow, 1996; Spiegel et al., 2007], the samples remained at a relatively constant position 

below the surface (~3 km). This thermal history is quite analogous to the Grand Canyon [Fox 

and Schuster, 2014], suggesting that AHe results from there are applicable to our study. The 

extremely long residence time of samples at depths of a few km led to a variable and large 

amount of accumulated radiation damage, which caused higher 
4
He retentivity and hence 

anomalously old AHe ages. Such a scenario provides a better explanation for the old ages in 

our study than variations in grain size, eU, zonation, or analytical problems. 

 

4.3. Zircon (U-Th)/He results 

  We analyzed a subset of samples from each of our three elevation profiles for ZHe. 

From the Samburu Hills profile, we analyzed samples KN85 and KN83. Two aliquots from 

sample KN85 provide a ZHe mean age of 50.6 ± 5.2 Ma. From sample KN83, the 
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anomalously young age (1.5 Ma) is paired with very low He and high U and Th 

concentrations. Induced tracks in the external detector from occasional zircons included in 

the AFT grain mount of the same sample show that many of these zircons are strongly zoned 

and have U-rich rims. Therefore, data from this sample was not plotted in the age-elevation 

plot and not used for thermal modeling (Fig. 3a).  From the Northern Elgeyo Escarpment 

profile, samples KN97 and KN102 yielded ZHe ages of 59.7 ± 6.1 Ma (single aliquot) and 

mean age of 55.9 ± 5.6 Ma  (three aliquots), respectively. A fourth aliquot of sample KN102 

was discarded due to the low reproducibility of the age (Table 2). From the Southern Elgeyo 

Escarpment profile, samples KN91, KN92, and KN94 (Fig. 3c) have mean ages of 53.9 ± 5.5 

Ma (two aliquots), 42.2 ± 4.3 Ma (two aliquots), and 56.7 ± 5.8 Ma (three aliquots), 

respectively.  

   

4.4. Thermal history modeling of elevation transects 

We performed thermal modeling on the NEE and SH transects. Thermal models that 

incorporated the AHe data were incompatible with the AFT data.  Because of the large AHe 

age dispersion, low reproducibility of ages, and strongly likelihood of variable 
4
He retentivity 

(as discussed previously), we decided to base the thermal modeling and our interpretations on 

only the AFT and ZHe data.  (See Supplementary Table 1 and Supplementary Figure 2).  

Our general approach was to first model an individual sample from an elevation 

profile (sample KN85 from profile SH, elevation 1600 m, and sample KN102 from profile 

NEE, elevation 1852 m, Fig. 3) using the HeFTy program.  The HeFTy modeling results 

were used as the basis for defining a common thermal history of the samples [e.g. Prenzel et 

al. 2013] along the vertical profile. Next, we used QTQt to model the 3 samples from the SH 

profile simultaneously and the 4 samples from the NEE profile simultaneously. Monotonic 

cooling and reheating paths were tested with both programs. Constraint boxes were first 
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defined to observe preferential cooling paths of the analyzed samples. In subsequent runs, the 

constraint boxes were shifted to examine the reliability of inflection points representing 

changes in modeled cooling rates and to allow for reheating. 

Input parameters for modeling included AFT data (age, c-axis non-projected track 

lengths, and Dpar values), the ZHe data, and present-day surface temperatures. Acceptable-fit 

paths (goodness of fit >0.05) from the HeFTy models of individual samples were considered 

for interpretation. 

 

4.4.1. Thermal modeling of data from the Samburu Hills 

For our thermal modeling of the Samburu Hills (SH) data, we first ran models with 

monotonic cooling paths using both the HeFTy and QTQt programs (Figs. 4a and 4b). We 

defined a first constraint box with a temperature range from 135 to 15°C for HeFTy (Fig. 4a) 

and for QTQt (Fig. 4b) over a time range from 15 Ma to the present. Second constraint boxes 

were defined between ~130 and 30°C at ~30 to 20 Ma. Third constraint boxes were defined 

between 230 and 160°C at ~75 to 45 Ma to be compatible with the AFT and ZHe cooling 

ages. HeFTy models always end with a temperature constraint at the present-day ranging 

from 25 to 15°C. The QTQt models end at present-day temperatures from 0° to 50°C.  

A second set of models was run to test if the thermochronologic ages are compatible 

with either a reheating event during the Paleogene, the onset of volcanism in the late Eocene- 

early Oligocene, or early exhumation. The track-length distribution of sample KN85 (Fig. 4a) 

suggests that reheating could be possible. Geologically, reheating could be associated with 

volcanism prior to or during the early stages of rifting. To allow for this possibility, we 

reduced the temperature limits of the second boxes to 100°C and 10°C, thus permitting paths 

to reach lower temperatures at an earlier phase in the cooling history and extending the 

duration of this interval to between 40 and 20 Ma (Fig. 4c). Other constraints were similar to 
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the first run. 

Well fitting HeFTy models for monotonic cooling of sample KN85 (Fig. 4a) suggest 

that a first episode of relatively rapid cooling (12°C/Myr) occurred from ~60 to 50 Ma. 

Subsequently, very slow cooling (~1.5°C/Myr) took place from ~45 Ma to ~15 Ma, followed 

by cooling to the present. As the model results are not well constrained over this final 

timeframe, we refrain from interpreting this cooling trend further. Because the model results 

rely on the calculating paths through the lowest temperature part of the PAZ and below the 

PAZ, where not much control on the thermal history exists, it is not known if cooling may 

have accelerated or not. 

 Using QTQt, we obtained results for the entire profile (Fig. 4b) that are broadly 

similar to the HeFTy results obtained for sample KN85 (Fig. 4a). Rapid cooling from about 

65 to 50 Ma (~10°C/Myr) is followed by slow reheating (< 1°C/Myr) from ~40 to ~20 Ma. 

The model reveals a slight acceleration of cooling (~3°C/Myr) at ~15 Ma as part of a final 

continuous cooling episode, which has lasted to the present. Acceptable fits also permit an 

isothermal path without reheating from as early as ~50 Ma to as late as ~20 Ma. Despite 

some potential reheating of the uppermost samples within the transect between 40 and 20 Ma, 

the thermal histories for the different samples in the SH appear to have experienced similar t-

T paths and are consistent with previous studies in the region (e.g., Foster and Gleadow, 

1992; 1996). Acceptable fits for the reheating model using HeFTy (Fig. 4c) follow a 

broader swath than for the monotonic cooling model (Fig. 4a). The best fitting path shows 

that reheating is plausible. This scenario (Fig. 4c) shows rapid cooling (~10°C/Ma) from 55 

to 40 Ma. Cooling was followed by a ~20 Ma interval at a near-constant temperature. A 

short-lived early Miocene pulse of reheating to temperatures as high as 100°C could have 

occurred, although a broad range of other paths that do not include reheating lie within the 

acceptable-fit envelope. Final cooling occurred from ~15 Ma to the present.  
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The QTQt reheating model results for the entire profile in the reheating scenario (Fig. 

4d) show similar changes in the cooling rates. A first rapid cooling from ~65 to 50 Ma, 

reheating from ~50 to 35 Ma of ~2°C/Myr (particularly for the uppermost samples in the 

profile), then slow cooling from 35 to ~15Ma, and final cooling from ~15 Ma until the 

present (Fig. 4d). These results are quite similar to the previous QTQt modeling scenario 

(Fig. 4b). 

From these two sets of models (monotonic cooling and reheating) and the general 

geologic context of the region, we conclude that reheating is permissible, but not required by 

the thermochronologic data. The differences between the two models suggest that the 

magnitude and timing of such a reheating event can only be loosely constrained (Figs. 4c and 

4d). 

 

4.4.2. Thermal modeling of data from the Northern Elgeyo Escarpment 

Thermal models were run for the Northern Elgeyo Escarpment (NEE) profile in a 

similar manner as described above for the Samburu Hills profile. For the HeFTy (Fig. 5a) and 

QTQt (Fig. 5b) monotonic cooling models of sample KN102, the first constraint boxes were 

set to 160 to 10°C at 15 Ma to the present day. Second constraint boxes were set to ~150 to 

30°C at 40 to 20 Ma for HeFTy and for QTQ, based on the AFT ages, sedimentary evidence 

in the hanging wall, and volcanic flows on top of the footwall. Third constraint boxes were 

set to 220 to 160°C at 75 to 40 Ma, based on an early to middle Tertiary regional extension 

with minor strain, which is also associated with the latest stages of extension of the Anza Rift 

in the north [Foster and Gleadow, 1996]. Again, HeFTy models always end with a constraint 

at the present-day surface temperature, ranging from 25 to 15°C, and QTQt models terminate 

at present-day temperatures ranging from 0° to 50°C 

The second reheating model used similar constraints as the monotonic model, but 
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with slight changes in the time-temperature limits of the boxes. The second constraint box 

shows the most pronounced change, extending the range of temperatures from 120 to 10°C 

over a time range from 49 to 20 Ma in the HeFTy and QTQt models (Figs. 5b and 5d). This 

additional constraint permits reheating (by allowing for cooling to lower temperatures at an 

earlier period), which could be due to basaltic volcanism in the region starting in the 

northwest sector of Lake Turkana at ~37 Ma [i.e., Zanettin et al., 1983; McDougall and 

Brown, 2009] and farther south during the early Miocene (Samburu Basalts, ~20-11 Ma) 

[Hackmann et al. 1990] (Supplementary Figure 1). 

 HeFTy results for the monotonic cooling model for sample KN102 (Fig. 5a) display 

similar cooling paths as modeled for sample KN85 in the Samburu Hills (Fig. 4a). Rapid 

cooling (>20°C/Ma) from ~55 to 50 Ma is followed by very slow cooling (1.5°C/Myr) from 

45 to 10 Ma, and finally moderate cooling of > 2.0°C/My until the present (Fig. 5a). 

QTQt results from the entire profile at the Elgeyo Escarpment are broadly consistent 

with the HeFTy results, also showing rapid (>20°C/Myr) cooling from ~60 to 55 Ma. But 

rather than very slow cooling from ~50 to 15 Ma, the results show reheating (Fig. 5b). This 

reheating is followed by final cooling (~3°C/Ma) from 15 Ma to the present. 

The HeFTy thermal model involving reheating (Fig. 5c) shows many similarities to 

the HeFTy model of monotonic cooling (Fig. 5a). The best fit of the reheating model exhibits 

relatively fast cooling rates (~15°C/Ma) from ~60 to 50 Ma and moderately fast cooling from 

~50 to 30 Ma. Slight reheating follows from ~30 to 10 Ma; this reheating is followed by rapid 

cooling to the surface until the present. As observed for sample KN85 from the Samburu 

Hills (Figs. 4a, 4c), the broad envelope of the acceptable cooling paths shows that this model 

is not as tightly constrained as the monotonic cooling scenario (Fig. 5a). The second QTQt 

model has constraint boxes that were set between 160 to 10°C at 15 to 0 Ma, 120 to 10°C at 

40 to 20 Ma, and 220 to 160°C at 75 to 45 Ma. The results show reheating constrained to a 
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shorter time window between ~35 and 10 Ma, even if the result looks forced by the constraint 

(Fig. 5d). For the remaining time windows, the QTQt modeling results agree with those from 

HeFTy.  

 

4.4.3. Unconstrained thermal modeling of elevation profiles 

In addition, we ran QTQt models for both regions without using any constraint boxes 

(Figs. 4e and 5e) to explore best fitting thermal histories when the program is set to freely 

search for acceptable solutions. The results do not differ substantially from the results of the 

constrained model runs described above.  These results overall show that between periods of 

rapid cooling, the Samburu Hills profile may have experienced limited reheating, while the 

Northern Elgeyo Escarpment is likely to have experienced reheating. Ultimately, the 

modeling results are consistent, independent of the choice of the constraint boxes. Therefore, 

the input data, i.e. the ages and track lengths, guide the basic shape of the paths, rather than 

the user-defined constraint boxes. Other modeling results, including scenarios with short 

pulses of reheating, are provided in the supplementary material (Supplementary Figure 3) 

Overall, results of the modeling with single (HeFTy) and multiple (QTQt) samples 

suggest a similar thermal history for the eastern and the western flanks of the northern and 

central Kenya Rift sectors, with clear periods of rapid cooling between ~65 and 50 Ma and 

from ~15 Ma to today, with either stable temperatures or reheating in between (Figs. 4 and 

5).  

 

5. Discussion 

Our new thermochronological data and thermal modeling results from the Samburu 

Hills and the Elgeyo Escarpment of Kenya define three Cenozoic stages of thermal evolution: 

(1) rapid cooling between ~65 and ~50 Ma, (2) subsequent slow cooling or slight reheating 
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during the Oligo-Miocene, and (3) renewed rapid cooling after 15 Ma. Below, we address 

these different cooling stages with respect to rift evolution in Kenya and within the broader 

context of regional extensional processes in East Africa. 

 

5.1. Paleocene to Eocene (65 – 50 Ma) rapid cooling 

Our HeFTy and QTQt thermal modeling of samples from the Samburu Hills elevation 

profile on the eastern side of the rift valley and from the Elgeyo Escarpment on the western 

side yielded similar results, documenting rapid, early Cenozoic regional cooling (> 50°C) 

between ~65 and 50 Ma (Figs. 4 and 5). These results are in good agreement with previous 

modeling of apatite fission track and length parameters from samples collected in the 

Cherangani Hills and the basement rocks SE of Lake Turkana, which revealed 60 to 70°C of 

cooling between approximately 60 and 50 Ma [Foster and Gleadow, 1996; Spiegel et al., 

2007]. This cooling appears to have been coeval with renewed extension and tectonic 

subsidence in the Anza Rift [i.e., Morley et al., 1999b; Bosworth and Morley, 1994; Morley, 

2002], which is inferred to have been associated with flexural upwarping of rift flanks in that 

region [Foster and Gleadow, 1996]. 

 

5.2. Eocene through middle Miocene monotonic slow cooling or reheating 

Our results show that very slow cooling or reheating occurred between ~45 and 15 

Ma in the Samburu Hills and at the Northern Elgeyo Escarpment, with temperatures ranging 

between ~60° and 90°C from the Eocene through the middle Miocene. Similar results were 

reported by Foster and Gleadow [1996] and Spiegel et al. [2007], with very slow cooling 

along both the western (Cherangani Hills) and eastern (Ndoto Mountains) rift shoulders from 

the Eocene through the middle Miocene.  

The models show that minor reheating is likely to have occurred from Eocene to 
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middle Miocene time (~45 to 15 Ma) for the Northern Elgeyo Escarpment samples, and is 

permitted, but not required for the Samburu Hills samples over a similar time interval. The 

Miocene phonolites are too young to explain this reheating. However, for the Northern 

Elgeyo Escarpment, reheating is compatible with geological interpretations of the early 

Cenozoic rifting phase in the Kerio Basin (Fig. 1a) based on seismic reflection data [Mugisha 

et al., 1997; Hautot et al., 2000]. The seismic reflection data document an early (as of yet 

undated) stage of tectonically controlled basin subsidence beneath the Neogene Kerio Basin 

followed by regional thermal basin subsidence and sedimentation within a sag basin [Morley 

et al., 1992; Mugisha et al., 1997; Morley, 1999a; Hautot et al., 2000]. Thermo-chronological 

and geophysical evidence for protracted subsidence in this sag basin is corroborated by 

regional pinch-outs of fluvial and organic-rich lacustrine sediments exposed along the Elgeyo 

Escarpment [Morley et al, 1992; Mugisha, 1997; Ego, 1994; Renaut et al., 1999] and the 

regional extent and thickness of the overlying <14.5 Ma phonolites that cover the present-day 

eastern and western rift shoulders [Lippard, 1973]. Alternatively, reheating could have been 

associated with the thermal impact of a mantle plume beneath the Tanzanian Craton since the 

Eocene-Oligocene [Ebinger and Sleep, 1998; George et al., 1998; Pik et al., 2008].   

In this context, it is interesting that our thermochronologic data obtained from the 

Samburu Hills on the eastern rift shoulder exhibit a similar cooling history as samples from 

the Cherangani Hills on the western rift shoulder [Foster and Gleadow, 1996; Spiegel et al., 

2007] (Fig. 6), with reheating permitted, but not required. Due to their locations on the rift 

shoulders, neither area was affected by reheating related to subsidence and sedimentation 

within a sag basin. Thermal impacts of a mantle plume beneath the Tanzanian Craton since 

the Eocene-Oligocene [Ebinger and Sleep, 1998; George et al., 1998; Pik et al., 2008] remain 

a possibility, but clearly did not strongly influence the thermal evolution of the area as 

recorded in our samples. 
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5.3. Middle Miocene – Recent renewed cooling 

Our thermal modeling shows a renewed, rapid cooling event starting at ~15 Ma in the 

Samburu Hills and the northern Elgeyo Escarpment, with rocks cooling from temperatures of 

~60°C in the Samburu Hills and from ~90°C at the northern Elgeyo Escarpment. This 

accelerated cooling is compatible with the tectono-magmatic and sedimentary evolution of 

the northern and central Kenya rifts. Extensional faulting and the generation of transfer faults 

guided by foliation and inherited brittle shear zones in the Proterozoic basement gneisses 

affected the <14.5-m.y.-old phonolites as well as undated lacustrine shales, arkosic 

sandstones, and conglomerates [Hetzel and Strecker, 1994; Ogola et al., 1994; Ego, 1994], 

now exposed on the rift shoulders at the Elgeyo escarpment (Fig. 6). These processes were 

responsible for the formation of a second rift basin superposed on the Paleogene basin (Fig. 

6). This younger basin has the geometry of a down-to-the-east halfgraben, which hosts the 

present-day Kerio Basin. The Neogene phase of extension generated an additional 2 km of 

sedimentary and volcanic fill in addition to the 4 km of basin deposits that had been deposited 

during Paleogene rifting, with the corresponding bounding fault being located farther west 

[Mugisha et al., 1997; Morley, 1999; Hautot et al., 2000], (Fig. 6). 

 

5.4. Regional implications for rifting in East Africa 

Our thermochronological results from the Elgeyo and Samburu sites in the northern 

and central Kenya Rift sectors agree with the well-documented, regionally widespread 

Paleogene episode of extension in the Turkana region [Morley et al., 1992; Foster and 

Gleadow, 1996; Morley et al., 1999; Morley, 2002; Tiercelin et al., 2012]. East of the 

present-day Elgeyo Escarpment, Paleogene normal faulting and coeval sedimentation along 

the proto-Kerio Basin had been previously inferred based on a pronounced negative Bouguer 



 
©2015 American Geophysical Union. All rights reserved. 

gravity anomaly, reflecting a thick sedimentary fill, thought to be incompatible with the 

amount of Neogene extension and tectonic basin subsidence [Morley et al., 1992; Mugisha et 

al., 1997]. As neither currently available geophysical, geological, nor thermo-chronological 

data suggest similar coeval Paleogene extension processes in the central and southern sectors 

of the Kenya Rift, it appears that early Cenozoic rifting in Kenya was focused in the greater 

Turkana region [i.e., Morley et al., 1992; Foster and Gleadow, 1992; Foster and Gleadow, 

1996; Morley, 1999; Spiegel et al., 2007], the Anza Rift, where Mesozoic extensional faults 

were reactivated [i.e., Morley et al., 1999b; Bosworth and Morley, 1994], and regions as far 

south as the transition between the central and northern Kenya rifts (this study). 

 Thermo-chronologic data from other sectors of the EARS reveal spatially disparate 

and diachronous cooling histories (Fig. 7). Approximately 300 km to the southeast of the 

Elgeyo region, the Pangani Rift of northern Tanzania is the closest manifestation of 

Paleocene-Eocene extensional processes in the southern continuation of the eastern branch of 

the EARS. Apatite fission-track data indicate that a phase of rapid cooling began during the 

late Cretaceous and continued throughout the Paleogene [Noble et al., 1997; Mbede, 2001], 

although no thermal modeling was performed to better constrain the timing. In the western 

branch of the EARS, the Rwenzori Mountains and the Albertine Rift of Uganda have a 

distinctly different late Cretaceous to Cenozoic thermal history, with very slow cooling of < 

0.5°C/Myr from the late Cretaceous through the middle Eocene (70 to 40 Ma), and faster 

cooling (~1 to 4°C/Myr) from the middle Eocene at least through the Oligocene [Bauer et al., 

2013]. The Malawi Rift in Tanzania (western branch of the EARS) records a broadly similar 

history as the Rwenzoris Mountains over that time interval, with slow cooling from the 

Cretaceous through the Paleocene, and more rapid cooling (~0.5 to 1°C/Myr) starting after 

~40 Ma [van der Beek et al., 1998].  

Sedimentologic, geomorphic, and geochronologic studies from different sectors of the 
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EARS also suggest diachronous, yet partly overlapping rift-related exhumation in East Africa 

(Fig. 7). For example, the Lake Rukwa region of the western branch and the rift basins west 

of Lake Turkana record an Oligocene onset of rifting [Morley et al., 1992, 1999; Roberts et 

al., 2012]. Our new data from the Elgeyo Escarpment combined with field observations by 

Chapman et al. [1978] and geophysical data from the Kerio Basin [Mugisha et al. 1997] also 

suggests an earlier onset of extensional processes in this región, while the present-day 

morphologic characteristics of northern and central Kenya rifts are the result of renewed 

normal faulting after 12 Ma, coeval with extension recorded in the Central Tanganyika Basin 

[Chapman et al., 1978; Baker et al., 1988; Strecker et al., 1990], and the Albertine and 

southern Kenya rifts record the formation of extensional basin fills after approximately 9 and 

7 Ma, respectively [Crossley, 1979; Pickford and Senut, 1994; Lezzar et al., 1996].  

At first sight, the regional data regarding extension the EARS summarized in Fig. 7 

suggest an earlier onset of extension based on thermochronological data compared to 

stratigraphic information. This is probably an artifact, because sediments and volcanic rocks 

associated with Paleogene rifting have subsided, and coeval removal of rift-related deposits 

from exposed fault blocks and rift-shoulder areas precludes inspection of the early 

sedimentological vestiges of rifting. This problem is well emphasized by the Paleogene onset 

of rifting in the Kenyan Kerio Valley, where eroded sedimentary deposits from rift-shoulder 

areas have only been imaged by geophysical techniques [Mugisha et al., 1997].  

In any case, the available thermochronologic and geologic data reveals a spatially 

disparate and diachronous evolution of Cenozoic rifting in East Africa, with clear differences 

in the onset of rifting in the western and eastern branches of the EARS. This spatiotemporal 

pattern of extension is inconsistent with tectonic models of rifting in East Africa that are 

based on a southward-directed migration of volcanism and cogenetic extension [McConnell, 

1972; Ebinger and Sleep, 1998; Ebinger et al. 2000; Nyblade and Brazier, 2002; Morley, 
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2010]. In light of the pronounced geophysical anomalies, evidence for mantle advection, and 

the evolution of dynamic topography associated with regional domal uplift [i.e., White and 

McKenzie, 1989; Simiyu and Keller, 1997; Prodehl et al., 1997; Achauer and Masson, 2002; 

Mechie et al., 1997; Sepulchre et al., 2006; Moucha and Forte, 2011; Wichura et al., 2015], 

the timing of extension throughout East Africa likely reflects a large-scale, mantle-driven 

process that generated differential stresses [e.g., Crough, 1983; Zeyen et al., 1997] and the 

formation of rift basins in areas characterized by pronounced lithospheric and crustal-scale 

anisotropies and weaknesses [i.e., Ashwal and Burke, 1989; Ebinger and Sleep, 1998; Smith 

and Mosley, 1993; Smith, 1994]. As such, our new data from the Kenya Rift, combined with 

the synopsis of geological and thermo-chronological studies in East Africa, is compatible 

with recent numerical modeling results [Koptev et al., 2015] that predict a regionally 

overlapping initiation of amagmatic and magmatic rifting sectors in East Africa following the 

asymmetric impingement of a single mantle plume [i.e., Halldórsson et al., 2014] at the base 

of the lithosphere of the eastern sector of the Tanzania Craton.   

 

6. Conclusions 

 Our new AFT and ZHe data from both escarpment and rift shoulders from the 

northern and central sectors of the Kenya Rift help to define two distinct stages of rapid 

cooling from ~65 to 45 Ma and from ~15 Ma to the present day, separated by a long phase of 

near-isothermal conditions or minor reheating. The initial stage of rapid cooling likely 

reflects the initiation of Cenozoic rifting, followed by a period of relative quiescence, and 

then renewed rift activity since the middle Miocene. While our thermal modeling results are 

consistent with those reported from the northern Kenya Rift and the Pangani Rift (e.g., the 

eastern branch of the EARS), they contrast markedly with those reported from the western 

branch (Rwenzori Mountains, and the Rukwa and Malawi rifts). As such, we suggest that the 
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spatiotemporal evolution of rifting in the EARS is compatible with the impact of mantle 

upwelling, ensuing crustal uplift, and extensional fracture propagation guided by crustal 

heterogeneities, rather than being related to the southward progression of mantle-plume 

activity. 
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Table 1. Apatite Fission Track (AFT) data from the Kenya Rift
a
 

Sample 
Latitu

de 

Lon
gitu
de 

ele
v 

Lithol
ogy 

Xl 
Rho-S

 

x10
6
 

NS 
Rho-I

 

x105 
NI 

P(χ
2
) 

% 

RhoD 
x10

6
 

ND Age
b
 ±1σ 

Dpar 
mean 

Dpar 
SD 

n 
len
gth
s 

Mean 
length 

SD 
Analy

st 

  (°N) (°E) 
m 
asl 

                  Ma Ma       µm µm   

Central Elgeyo Escarpment 

KN50 35.5 0.6 
126

0 
gneiss 20 1.497 279 2.873 1454 3 1.222 4978 43.2 3 2.3 0.2 0 - - AB 

Southern Elgeyo Escarpment 

KN53 35.6 0.3 
161

6 
gneiss 20 2.173 68 0.566 2612 82 1.185 4978 5.7 1 2.3 0.2 5 13.2 3.6 AB 

KN55 35.6 0.3 
144

0 
gneiss 20 4.108 99 1.057 3849 100 1.136 4978 5.4 1 2.3 0.2 0 - - AB 

KN90 35.6 0.4 
139

5 
gneiss 18 1.583 32 0.393 1289 100 1.365 5713 6.3 1 1.9 0.2 0 - - AB 

KN91 35.6 0.3 
177

6 
gneiss 20 0.965 40 0.356 1086 100 1.359 5713 9.2 2 2.0 0.2 0 - - AB 

KN92 35.6 0.3 
158

3 
gneiss 23 1.880 44 0.346 2392 97 1.353 5713 4.6 1 1.9 0.2 0 - - AB 

KN94 35.6 0.3 
138

9 
gneiss 20 1.497 279 2.873 1454 100 1.347 5713 6 1 2.2 0.3 0 - - AB 

Northern Elgeyo Escarpment 

KN97
c
 35.6 0.7 

128
9 

gneiss 20 1.340 95 1.326 960 66 1.438 5713 26.2 3 2.1 0.2 0 - - 
AB, 
VT 

KN99 35.5 0.7 
148

0 
gneiss 17 2.281 45 0.555 1850 89 1.426 5713 38 2 2.2 0.1 65 11.2 2.1 

AB, 
VT 

KN100 35.5 0.7 
155

9 
gneiss 16 3.107 269 4.271 1957 99 1.420 5713 36 3 2.2 0.2 56 11.8 1.87 AB 

KN102
c
 35.5 0.7 

185
2 

gneiss 20 1.404 193 2.102 1289 10 1.407 5713 38.8 3 2.1 0.2 101 11.2 2.0 
AB, 
VT 

Samburu Hills 

KN83 36.9 2.0 
148

7 
gneiss 20 2.087 327 3.228 2114 30 1.401 5713 39.4 3 2.1 0.3 40 12.2 1.9 

AB, 
VT 

KN85
c
 36.9 2.0 

160
1 

gneiss 20 1.836 195 1.836 1289 100 1.389 5713 38.7 3 2.2 0.2 100 11.9 1.9 
AB, 
VT 

KN89 36.9 2.0 
185

2 
gneiss 11 0.574 56 1.144 281 100 1.371 5713 50.3 8 1.7 0.3 2 12.4 0.2 AB 

                     

a
 Sample preparation and analysis similar to that used by Sobel & Strecker (2003). All apatites were etched in 5.5 mol Nitric acid for 2o seconds at 21°. Samples analized  with a Leica DMRM microscope with 

drawing tube located above a digitalizing tablet  and a kinetek computer-controlled stage driven by the Ftstage program (Dimitru, 1993). Analysis was performed with reflected and transmited light at 1250x 
magnification. Samples were irradiated  at Oregon State University. Following irradiation, the mica external detectors were etched with 21°C, 40%hydroflouric acid for 45 minutes. The pooled age is reported for 
samples with P(χ2) grater than (less than) 5% as they pass (fail) the χ2 test. Age errors are presented as one sigma, calculated using the zeta calibration method (Hurford and Green, 1983), AB:369.5±7.9, 
unpublished, 2012. 

b
 Pooled age is reported for most of the samples, exept for sample KN50, central age is reported 

c     252
Cf irradiations on additional grain mount of the sample 
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Table 2. (U-Th)/He ages of Zircon (ZHe) 
in The Kenya Rift. 

        
Sample Latitude Longitude elev U  Th 4He Ft 

Corrected 
age 

error 
(1σ) 

mineral 

   (°N) (°E) m asl (ng) (ng)  (cc)   Ma Ma   

 Southern Elgeyo 

KN91 35.611 0.302 1776 6.7 91.9 6.87E-07 0.85 70.5 7.2 Zircon 
 

KN91 35.611 0.302 1776 7.0 88.5 3.48E-07 0.85 37.3 3.8 Zircon 
 

KN92 35.611 0.302 1583 14.0 34.2 1.07E-07 0.78 30.4 3.1 Zircon 
 

KN92 35.611 0.302 1583 5.1 18.7 9.63E-08 0.74 54.0 5.5 Zircon 
 

KN94 35.611 0.302 1389 9.5 41.7 1.74E-07 0.82 39.6 4.1 Zircon 
 

KN94 35.611 0.302 1389 6.0 23.9 2.29E-07 0.82 89.8 9.2 Zircon 
 

KN94 35.611 0.302 1389 9.1 42.3 1.74E-07 0.79 40.8 4.2 Zircon 
 

Northern Elgeyo 

KN97 35.552 0.660 1289 3.6 7.5 5.03E-08 0.83 59.7 6.1 Zircon 
 

KN102 35.539 0.660 1852 15.9 28.6 1.83E-07 0.84 54.9 5.6 Zircon 
 

KN102 35.539 0.660 1852 0.3 0.9 5.79E-09 0.82 58.9 6.1 Zircon 
 

KN102 35.539 0.660 1852 8.6 18.5 1.64E-07 0.81 81.3 8.3 Zircon 
 

KN102 35.539 0.660 1852 13.7 32.7 1.94E-07 0.82 54.1 5.5 Zircon 
 

Samburu Hills 

KN85 36.875 2.032 1600 1.7 1.5 9.06E-09 0.78 50.8 5.2 Zircon 
 

KN85 36.875 2.032 1600 1.3 1.0 6.54E-09 0.81 50.5 5.2 Zircon 
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Figure captions 

 

 

Figure 1. A. Location of the East African Rift System. Black box denotes study region in the 

northern and the northern sector of the central Kenya Rift. White stars denote location of 

sampling traverses. Grey lines denote political boundaries; B. Digital elevation model 

including an overview of southern Ethiopia, the northern Kenya Rift, and northernmost 

sectors of the central Kenya Rift. 
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Figure 2. Digital elevation model of the study area and location and elevation of 

thermochronology sampling transects. Circles denote each thermochronologic sample 

analyzed with sample names as labels. A, study area, including Samburu Hills (SH), Northern 

Elgeyo Escarpment (NEE) and Southern Elgeyo Escarpment SEE); B, Samburu Hills region; 

C, Elgeyo Escarpment. Profiles on right show schematic elevation transects and simplified 

geology along the SH, NEE, and SEE sampling transects.  
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Figure 3. Age-elevation plots of the thermochronologic data. White circles denote AHe ages 

(not interpreted in the thermal modeling). Red circles represent AFT ages and blue diamonds 

denote ZHe ages; (a) Samburu Hills (SH), (b) Northern Elgeyo Escarpment (NEE), (c) 

Southern Elgeyo Escarpment (SEE). 
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Figure 4. Thermal modeling results for the Samburu Hills (SH) samples. A and C: Time 

temperature model for sample KN85 from the Samburu Hills (SH) using HeFTy software 

[Ketcham, 2005] with acceptable (yellow) and good (purple) time-temperature pathway 

envelopes and best-fit shown with black line. The modeling scheme in A only permits 

monotonic cooling while C permits reheating between 40 and 20 Ma. B and D: Time- 

temperature histories derived from QTQt modeling, with time-temperature constraints in B 
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similar to those in A and with constraints in D similar to those in C. E: Time-temperature 

history paths derived from QTQt with no constraint boxes; red box defines the limits of the 

modeling, 0° - 220°C and 0-80 Ma. Blue and red lines correspond to the uppermost and 

lowermost sample, cyan and magenta lines correspond to 95% confidence intervals for 

uppermost and lowermost samples, respectively. 
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Figure 5. Thermal modeling results for the northern Elgeyo Escarpment (NEE) samples. A 

and C: Time temperature model for sample KN102 from the Northern Elgeyo Escarpment 

(NEE) using HeFTy software with acceptable (yellow) and good (purple) time-temperature 

pathway envelopes and best-fit shown with black line; A requires monotonic cooling while C 

permits reheating between 35 and 15 Ma. B and D: Time-temperature histories derived from 

QTQt modeling, with time-temperature constraints in B similar to those in A and with 
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constraints in D similar to those in C. E: time-temperature history paths derived from QTQt 

with no constraint boxes; red box defines the limits of the modeling, 0° - 220°C and 0 – 80 

Ma. 
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Figure 6. Cartoon of the structural and thermal evolution of the Kenya Rift along the Elgeyo 

Escarpment of the Kerio Valley in the transition between the central and northern Kenya rifts. 

Episodes of cooling occurred from ~65 to 50 Ma and from 15 to 0 Ma. Tectonic quiescence 

or minor reheating occurred between ~45 and 15 Ma. From bottom to top, circles denote the 

approximate position of the analyzed samples from ca. 50 Ma to present-day (surface). Blue 

band represents the inferred position of the partial retention zone for ZHe (PRZ), red band 

represents the apatite fission-track partial annealing zone (PAZ). 
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Figure 7. A. Locations of thermochronological and geological studies throughout the EARS. 

Thermochronological study sites are color coded: Pik et al., 2008 (red), Bauer et al., 2013 

(yellow), Foster and Gleadow, 1996 and Spiegel et al., 2007 (cyan), Wagner et al., 1992 

(magenta), van der Beek et al., 1998 (blue) and MBede, 2001 (orange). White outlines denote 

political boundaries. B. Chronogram depicting the onset of rapid cooling from 

thermochronology studies (red) and known extensional periods from structural constraints 

and basin stratigraphy (blue) in East Africa, compiled from different sources: (1) Morley et 

al., 1992; (2) this study; (3) Spiegel et al., 2007; (4) Bauer et al., 2013; (5) Mugisha et al., 

1997; (6) Crossley, 1979; (7) Foster et al., 1997; (8) MBede, 2001; (9) Roberts et al., 2012; 

(10) van der Beek et al., 1998; (11) Pickford and Senut, 1994; (12) Lezzar et al., 1996; (13) 

Pik et al, 2008; (14) Foster and Gleadow, 1996; (15) Noble et al., 1997. Arrows indicate 

onset of extension, although the length of the arrows does not always reflect the full length of 

extensional processes at the particular location. Thermochronology study sites indicate onset 

of cooling inferred to represent tectonically controlled exhumation by normal faulting. 


