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Abstract Many biological tissues develop elaborate folds
during growth and development. The onset of this fold-

ing is often understood in relation to the creasing and

wrinkling of a thin elastic layer that grows whilst at-

tached to a large elastic foundation. In reality, many

biological tissues are reinforced by fibres and so are
intrinsically anisotropic. However, the correlation be-

tween the fiber directions and the pattern formed dur-

ing growth is not well understood. Here, we consider the

stability of a two-layer tissue composed of a thin hyper-
elastic strip adhered to an elastic half-space in which are

embedded elastic fibers. The combined object is subject

to a uniform compression and, at a critical value of this

compression, buckles out of the plane — it wrinkles. We

characterize the wrinkle wavelength at onset as a func-
tion of the fiber orientation both computationally and

analytically and show that the onset of surface insta-

bility can be either promoted or inhibited as the fiber

stiffness increases, depending on the fibre angle. How-
ever, we find that the structure of the resulting folds is

approximately independent of the fiber orientation. We

also explore numerically the formation of large creases

in fiber-reinforced tissue in the post-buckling regime.
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1 Introduction

In recent years there has been considerable interest in

the pattern created by the growth of a thin elastic layer
attached to an elastic foundation [23]. The generic be-

haviour of such systems is to respond to a mismatch in

stresses between the two layers by wrinkling (so that

stress can be relaxed in the stiffer layer). However, the

development of this wrinkling pattern beyond the onset
of instability is surprisingly intricate: for large ratios of

layer µl to foundation µs stiffness, µl/µs & 10, a period-

doubling instability occurs [5,7,6] due to nonlinearities

in the substrate response. For small ratios of layer to
foundation stiffness, µl/µs . 10, the system instead lo-

calizes the deformation and a fold or crease develops.

For many biological systems, it is the latter scenario

that is of most interest; for example, the deep folding

patterns that are formed during the growth of brains
are believed to be partially caused by this instability

[11,13,17].

While the elastic instability of a growing multilayer

material gives rise to wrinkling and folding patterns

that appear similar to those observed in vivo, the ma-
terial that makes up the white matter of the brain

is known to be highly anisotropic, consisting of pre-

stretched, axonal fiber bundles [26,19]. It is not clear

whether and how this anisotropy might impact the rela-

tively simple elastic behaviour discussed above. Studies
in developing chick embryos [29] indicate that the fi-

brous structure is relatively passive and, further, that

the fiber orientation is a consequence of the folding pat-

tern, rather than its cause. Similarly, many other bio-
logical tissues are reinforced with collagen fibers, such

as tendons and ligaments [27], annulus fibrosus in the

spinal cord [18] and arterial walls [20,12,14].



2 P. S. Stewart et al.

substrate

Y

X

β β

initially
aligned

UNIFORM COMPRESSION

elastic

X = 50h
Y = −50h

Y = 0
Y = h

with two families of fibers

fibers

Fig. 1 Setup of the mathematical model.

In this paper we consider a model system that is

motivated by the various tissues in the brain during

development: a slab of homogeneous elastic tissue (rep-

resenting the white matter) is connected to a thin layer
of a stiffer tissue (representing the cerebral cortex). The

setup is shown schematically in Fig. 1 and is similar in

spirit to other models of cerebral cortex folding [1,23,

4]. In each region, we assume that the material is elastic

with reinforced fibers and a fiber pre-stretch. We study
the influence of the fiber orientation and of the pre-

stretch by direct computational simulations. We then

compare these results with those of a linear stability

analysis.

2 The model

In the reference configuration, the two-layer material
is described by the coordinates X = (X, Y, Z), shown

in Fig. 1, with the interface between the two layers is

denoted Y = 0. Deformation of the tissue to a new

configuration parametrized by current coordinates x =

(x, y, z), is described by the mapping x = χ(X, t), where
t is time, with corresponding deformation gradient ten-

sor F(X, t). Both layers of tissue are assumed hypere-

lastic, and can be described by strain energy functions

Wl(F) and Ws(F), for the upper layer and the sub-
strate, respectively. We assume that the deformation

occurs sufficiently slowly that inertial effects can be ne-

glected and that the strain lies in the (X, Y )-plane.

The upper layer is modeled as a neo-Hookean mate-

rial of uniform thickness H with shear modulus µl and

bulk modulus Kl, i.e.

Wl = µl(λ
2

1 + λ
2

2 + λ
2

3 − 3) + 1
2Kl log J, (1)

where J = det(F) and λj are the principal values of

the left Cauchy-Green tensor F
T
F, where F = J−1/3F.

The material is modeled as a standard fiber-reinforced

material. That is, the substrate is modeled as a neo-

Hookean elastic half-space, in the region Y < 0. This

half space contains two families of fibers which are as-

sumed to contribute to the strain-energy density at the
lowest possible positive powers in the fiber strain. For

simplicity, we assume that the matrix and fibers ex-

perience the same deformation gradient, so the energy

of the substrate may thus be written using an additive
decomposition in the form Ws = ϕmWm+ϕfWf where

Wm = µs(λ
2

1 + λ
2

2 + λ
2

3 − 3) + 1
2Ks log J, (2)

Wf =

2
∑

i=1

f(I
(i)
4 ), f(η) =

µf

4
(η − λf

2)2. (3)

Here ϕf and ϕm represents the volume fractions of all

fibers and matrix, respectively, while

I
(i)
4 = (N(i))TFTFN(i), (i = 1, 2),

where the unit vector N(i) (i = 1, 2) is the direc-
tion in which fiber family i) is aligned in the refer-

ence configuration. We have therefore assumed that the

fibers are equal and opposite (with angle ±β with the

X-direction). Finally, λf is the fiber-prestress, which
is assumed constant. For λf < 1, the fibers are un-

der tension in the reference configuration. It should

be noted that this constitutive model allows the fibers

to bear compressive loading [15], which is usually ne-

glected when modeling tissues reinforced by collagen
fibers such as arteries [12].

We non-dimensionalize all lengths by the thickness

of the upper layer, H , and all moduli by µs, i.e. we take

µs = 1 without loss of generality. Using a Poisson ratio
for both layers of approximately 0.35 [8], we take the

bulk moduli Ks ≈ 3, Kl ≈ 3µl. The values of other

fixed parameters are based on those relevant for brain

tissues and are given in Table 1.

Growth of the material is mimicked by uniform com-
pression of the two-layer material parallel to the X di-

rection. The key parameter controlling this compression

is the end–shortening d = ∆L/L

2.1 Methods

The model is solved implicitly using an ABAQUS UMAT,

which for a given deformation gradient tensor F re-

quires both the corresponding Cauchy stress tensor σ
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variable symbol benchmark value
fiber volume fraction ϕf 0.1

matrix volume fraction ϕm 0.9
upper layer bulk modulus Kl 3µl=30
substrate bulk modulus Ks 3

upper layer shear modulus µl 10
fiber-stiffness µf 10

fiber pre-stretch λf 1.0

Table 1 Benchmark parameters used in the computational
simulations. All moduli are dimensionless

and a stiffness tensor C. The first Piola stress tensor for

the neo-Hookean component of each layer is computed

using a predictor-corrector method used previously by
[10], based on the nonlinear viscoelastic formulation of

[24]. For the substrate we then additively combine this

with the Piola stress obtained analytically from (3).

Given the first Piola stress tensor for each layer, we
then easily push forward to compute the total Cauchy

stress σ.

For computational purposes we consider a truncated

half-space in three spatial dimensions: the dimension-

less planar coordinates X , Y , Z satisfying −50 ≤ X ≤

50, −50 ≤ Y ≤ 0, 0 ≤ Z ≤ 1. Along Y = −50, we

apply a condition of no component of the displacement

perpendicular to the direction compression. We further

truncate the X direction by applying symmetry bound-
ary conditions along the centre of the domain (X = 0);

this reduces the computational cost of individual sim-

ulations. To ensure the deformations exhibit strain in

the (X, Y ) plane alone we impose no-displacement con-

ditions in the Z direction along Z = 0 and Z = 1.
We benchmark our numerical implementation by

considering the homogeneous compression of the two-

layer material. This deformation takes the simple form,

x = (λ1X, λ2,jY ), (j = l, s). In a state of simple com-
pression, both layers of the material must experience

zero normal stress on their interfaces perpendicular to

the direction of compression, which is possible only if

ϕm

(

2
3λ2

2,s −
1
3 (λ2

1 + 1)

(λ1λ2,s)5/3
+ Ks

log(λ1λ2,s)

λ1λ2,s

)

,

+ 4ϕf sin2 β
λ2,s

λ1
f ′
(

λ2
1 cos2 β + λ2

2,s sin2 β
)

= 0, (4a)

µl

2
3λ2

2,l −
1
3 (λ2

1 + 1)

(λ1λ2,l)5/3
+ Kl

log(λ1λ2,l)

λ1λ2,l
= 0. (4b)

Given a compression in the X direction, λ1, the stretches

in the Y direction for each layer are determined by (4a)

and (4b) (cf. the Poisson effect in a uniaxially stretched

bar). The resulting substrate stretch λ2,s (determined
from 4a) is plotted in Fig. 2 as a function of the applied

compression λ1. The corresponding results of our sim-

ulations are shown as open circles and are seen to be in

0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

λ1

λ2,s

incompressible
compressible

computation

Fig. 2 Normal stretch induced in the substrate, λ2,s, by
a homogeneous uniaxial deformation λ1 in the X direction.
Here, the predictions of (4a) are shown for both compress-
ible (solid curve) and incompressible (dashed curve) mate-
rials; the results from numerical simulations are shown for
the compressible case only (circles). In each case the fibers
are horizontal (β = 0), and other parameters are as listed in
Table 1.

excellent agreement with that predicted by (4a). Note

that if both materials are assumed incompressible, we

have λ2,l = λ2,s = 1/λ1 (shown as the dashed curve in

Fig. 2).

Next, we consider the stability of a small perturba-

tion to this state of simple compression. Computation-

ally, we apply the compression in three distinct stages
[25]: first, we uniformly displace the material boundary

at X = 50 towards X = 0 by 0.5% of the ultimate com-

pression, d; second, we apply a sinusoidal perturbation

to the upper interface as a prescribed displacement, us-

ing a combination of cosine modes with an integer num-
ber of wavelengths N across the domain, where the total

amplitude of the free surface at X = 0 is denoted Ainit;

third, the material is compressed to the full value of the

displacement d. In addition, we consider the stability
of the homogeneous state by constructing an analytical

model similar to the work of Biot [2,3]; this is discussed

in Appendix A.

3 Results

We begin by considering the onset of (wrinkling) in-

stability as a function of the fiber properties, before
progressing to consider the development of large ampli-

tude creases. Benchmark parameters for our model are

listed in Table 1.



4 P. S. Stewart et al.

12 12.5 13 13.5 14 14.5 15
0

0.1

0.2

0.3

0.4

0.5

0.6

12 12.5 13 13.5 14 14.5 15
−4

−2

0

2

4

6

8

A κ

dc computed amplitude
κ(d)

d(%)

Fig. 3 Amplitude of the final surface pattern A as a function
of the applied displacement d. Computed points are shown as
filled blue circles (joined by line segments to illustrate the
trend). The curvature of A = A(d) at a given d, denoted κ,
is interpolated from the computed points and is shown as
a dashed curve. The open circle and vertical line show the
computed compression at which maximal curvature should
occur, d = dc; the cross shows the critical compression pre-
dicted on the basis of the linear theory. Here β = π/4 and
other parameters are as in Table 1.

3.1 Onset of surface patterning

We investigate the onset of patterning using an initial
surface perturbation of wavenumber k with total am-

plitude Ainit = 0.05 and measure the final amplitude of

the pattern A. Changes to the initial amplitude made

no appreciable difference to the computational results.
To quantify the onset of wrinkling instability on the

surface of the tissue, we illustrate a typical example by

plotting the amplitude of the surface pattern, A, as a

function of the applied displacement, d, in Fig. 3 for

initial fiber angle β = π/4. This plot can be approx-
imately divided into two parts: an inner curve in the

region 0 < d < dc, where the growth of the perturba-

tion is very small (approximately linear in d), and an

outer curve in the region d > dc, where the amplitude
increases rapidly behaving like (d−dc)

1/2 close to onset.

In the neighbourhood of this change, we note that the

function A = A(d) is highly curved. We therefore com-

pute the curvature κ = A′′(d)/[1 + (A′)2]3/2 and plot

this as the dashed curve in Fig. 3. The critical value of
d at the changeover, d = dc, is taken to be the value

that maximizes κ and is shown as an open circle on

the example illustrated in Fig. 3. The results of an ana-

lytical linear stability analysis (Appendix A) predict a
slightly different critical compression, shown as a cross

in Fig. 3. We hypothesise that this difference arises due

to either finite-size effects or the difficulty in determin-

ing the exact point of bifurcation from the numerical

computations.

The bifurcation diagram shown in Fig. 3 is qualita-

tively similar to that found throughout the parameter

space. The key parameter that varies is the value of dc.
Fig. 4 illustrates that the value of dc depends on both

the wavenumber of the imposed perturbation and the

initial fiber orientation. In particular, the results ob-

tained with perturbations with either N = 4, N = 5 or
N = 6 wavelengths across the computational domain

are shown in Fig. 4(a). These correspond to the three

most unstable modes in all cases tested and demon-

strate that instability occurs through wrinkling with

a well-defined wavelength. In each case, the analytical
theory (Appendix A) gives a prediction for dc at a given

wavenumber k (though since this calculation assumes

an infinite domain, k is allowed to vary continuously).

The analytical predictions for each initial fiber angle are
shown as solid curves in Fig. 4(a) and demonstrate ex-

cellent agreement with the computations. Furthermore,

we note that the fiber orientation β has a significant ef-

fect on the value of the critical compression at which

wrinkling occurs: dc changes by ≈ 50% as β increases
from 0 to π/2.

For each fiber orientation β the predicted onset curve,

dc(k), exhibits a local minimum: there is a smallest

compression at which a wrinkled solution with grow-

ing amplitude exists. The wavenumber at this minimum
critical compression is denoted k0 and is expected to be

the wavenumber that is observed at the onset of wrin-

kling as the compression d is increased. To quantify how

this wavenumber varies with the fiber angle, we plot k0

as a function of β in Fig. 4(b) for several fiber stiff-

nesses µf . Variations in the initial fiber angle result in

a range of admissible onset wavenumbers kmin < k0 <

kmax. Each curve in Fig. 4(b) is non-monotonic in β

and the curves are similar in shape but with different
amplitudes; the minimal critical wavenumber (kmin) is

attained with fibers aligned to the direction of com-

pression (β = 0) while the maximal critical wavenum-

ber is attained with an intermediate inclination angle
β ≈ 1.18. This non-monotonic behavior as function of

the fiber angle is a typical feature of fiber-reinforced

materials and is also found in reinforced cylindrical

shells [16]. An interesting feature of Fig. 4(b) is the rel-

atively modest changes in the selected wavenumber as
the fiber angle and stiffness change. Even with very stiff

fibers (µf = 20), the onset wavenumber k0 only varies

by a maximum of 13.4% from the value predicted in

the absence of the fibers. Another interesting feature
of Fig. 4(b) is that the curves for different µf inter-

sect for a particular value of β = βc ≈ 0.3846 with

corresponding critical wavenumber k0 = kc ≈ 0.5516
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Fig. 4 (a) Critical compression required for instability, dc, as a function of the wavenumber of the initial perturbation k for
µf = 10. The results of simulations (open circles) compare well with the predictions of the analytical theory (solid curve).
Note that at a given value of β, dc, is minimized at k = k0; we therefore expect wrinkles with this wavenumber to emerge at
the onset of instability as d is increased. (b) Theoretical prediction of the wavenumber at onset, k0, as a function of the fiber
angle β for several values of the fiber-stiffness µf = 1, 10, 20, 50. Other parameters are as listed in Table 1. The horizontal
dashed line corresponds to wavenumber at onset in the absence of fibres, ϕm = 1, ϕf = 0.

(marked on Fig. 4b); for β = βc the critical value of the

wavenumber is independent of the fibre stiffness. To ex-

plain this observation we consider the critical threshold
for wrinkling with two families of fibers setting µf = 0

but holding the volume fraction of each family of fibers

fixed at ϕf = 0.05. In this case we compute the criti-

cal compression for instability as k0 ≈ 0.5515, almost

indistinguishable from the critical compression where
the curves in Fig. 4(b) cross, kc. Hence, for the fiber

angle βc the components of the stress due to the fibers

cancel identically, mimicking a homogeneous material.

We expect that the value of βc will be a function of the
volume fraction of each fiber family ϕf . It should also

be noted that with no pre-stretch, for some angles β

the fibers are compressed and thus may buckle, which

would change the elastic properties of the substrate,
but this possibility is not considered in this study.

In Fig. 5, we show the effect of the fiber stiffness
on the critical compression. As expected, as the fibers

become stiffer, the critical compression for wrinkling

decreases for β = 0 and increases for β = π/2. Note

that for µf = 50 (for other parameters listed in Table

1), the difference in the critical compression required
is very large which shows the importance of fibers in

providing a stabilization or destabilization mechanism

based on the fiber angle. We conclude that the fiber

stiffness and orientation both influence the critical onset
compression dc for wrinkling instability, but that the

onset wavelength is approximately independent of the

fiber orientation Fig. 5.

To further assess the range of admissible wavenum-

bers for a particular fiber stiffness, Fig. 6(a) illustrates

the maximal and minimal admissible wavenumbers of
the instability (as β varies) for different values of the

fiber stiffness µf . The range of admissible wavenumbers

expands as the fiber stiffness increases, but the variation

in surface wavelength remains small for these parame-

ter values. For example, for µf = 20 and µl = 10 (all
other parameters as in Table 1) the maximal observed

wavelength (for β ≈ 1.18) is only 1.15 times the min-

imal observed wavelength (for β = 0). With no fiber

pre-stretch (λf = 1), under certain conditions (for ex-
ample when the fibers are initially aligned along the di-

rection of compression, β = 0) the fibers become highly

compressed in the homogeneous state. However, axonal

fibers in the brain grow under tension [31], which we in-
corporate into our model by decreasing the pre-stretch

factor λf , as shown in Fig. 6(b). As the fiber pre-stretch

increases the range of admissible wavenumbers is dimin-

ished, reducing the possible variation in surface wave-

length due to the fibers. In summary, Fig. 6 illustrates
that the range of admissible wavenumbers driven by the

fibers is small and further contracted by increasing the

fiber pre-stretch parameter.

3.2 Large-amplitude simulations

We now consider the nonlinear growth of these small-

amplitude wrinkles into folds and creases. Under uni-

form compression, a surface can exhibit two modes of
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compression required for the onset of instability. Parameters are as listed in Table 1.
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patterning: a crease or a fold [22]. To capture the non-
linear growth in this system, we extend the procedure

outlined in §3.1 to larger compressions. Across the pa-

rameter space a unified picture emerges, as illustrated

in Fig. 7 for β = π/4. As compression increases with d >

dc, the wrinkled surface grows in amplitude (Fig. 7a)
and stress builds up in the region around the local

surface minima. As the compression continues, the tis-

sue surface forms a cusp at the trough of the wrinkle

and the interface makes contact with itself at d ≈ 0.4
(Fig. 7b) at the local minimum of the trough. The no

penetration conditions are enforced using ‘hard’ con-

tact implemented in ABAQUS. Under further compres-

sion, the contact region ‘zips up’ and forms a crease
(Fig. 7c). The qualitative behavior of the system was

found to be independent of the initial fiber orientation

(not shown), although the critical compression required

for self-contact varies within a small range. In all cases

tested we observe a wrinkle-to-crease transition in this
system. A similar wrinkle-to-crease transition was pre-

viously observed by [28].

4 Discussion

Motivated by the folding of the cerebral cortex dur-

ing neural development, we considered the instability of
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Fig. 7 Nonlinear growth of the fold for increasing compression to large compressions, showing the profile of the free surface
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the von Mises stress: (a) d = 0.24; (b) d = 0.4; (c) d = 0.48. Here β = π/4, with other parameters given as in Table 1.

a two-layer continuum (mimicking the grey and white
matter) under a uniform compression. This model ex-

plicitly included discrete families of elastic fibers within

the substrate. Our aim was to characterize the influence

of these fibers on the surface instability and folding.

Each layer of tissue was modeled as a compressible neo-
Hookean material, although our computational formu-

lation extends easily to more sophisticated tissue mod-

els [9]. Throughout this study we have ignored both

plastic deformation and viscoelastic relaxation of the

tissue since the measured relaxation times for soft tissue
(seconds) are typically much faster than the timescale

of growth (weeks/months).

We used a simple model for the elastic fibers, assum-

ing that they are homogeneously distributed across the

white matter layer with constant shear modulus and

pre-stress factor, initially aligned in an equal and op-
posite manner at some constant angle to the direction

of compression. The model was solved using a combi-

nation of numerical simulations (§3) and analytic the-
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ory (Appendix A), yielding a unified picture: the ho-

mogeneously compressed state becomes unstable above

a critical compression, exhibiting a wrinkling instabil-

ity whose amplitude grows as the compression increases

(Fig. 3). The onset wavelength of this instability varies
within a narrow window as a function of the initial fiber

orientation (Fig. 4) expanding as a function of increas-

ing fiber stiffness (Fig. 6a), but contracting as a func-

tion of increasing fiber prestress (Fig. 6b). Hence, fibers
distributed homogeneously throughout the material do

not significantly influence the folding pattern on the

surface. However, the presence of fibers does have a

significant effect on the critical compression at which

instability is observed. Note that localized variation in
fiber properties (such as U-fibers connecting regions in

the same portion of the cortex) could have an influence

the folding in a particular region; consideration of this

possibility is deferred to future work.

As compression increases, the surface wrinkle grows

in amplitude with a localized increase in stress at the
trough (Fig. 7a). At some critical compression the sur-

face exhibits a wrinkle-to-crease transition (Fig. 7), where

the interface forms a cusp (discontinuous curvature)

at the trough of the wrinkle; for further increases in

the compression the contact surface enlarges from the
trough forming a crease similar to those observed in

single layer materials [22], but distinct from the elabo-

rate surface folds observed when the upper layer is pre-

stressed [25,30]. We therefore suggest that the transi-
tion between large amplitude creasing and folding may

be driven by residual stress in the upper layer which

could possibly be generated through differential growth

of the two cortical layers.
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A Linear theory

Following [2], we consider of the linear stability of the two-
layer material under uniform compression. For simplicity, we
assume that the deformation is two-dimensional, similar to
the analysis of [7] for a single material. We assume that both
constituent phases are compressible neo-Hookean solids as
described in the main text. The homogeneous basic state is
given by (4) in the main paper. We perturb this state by
expanding the deformed configuration in both layers (where
the subscripts l and s denote the upper layer and the sub-
strate, respectively, using the convention of Sect. 2) about
the homogeneous state in the form,

x
(1)
l = ((1 − d)X, λ2,lY ) + ǫUl(X, Y ), (0 <Y < H), (5a)

xs = ((1 − d)X, λ2,sY ) + ǫUs(X, Y ), (Y < 0), (5b)

respectively, where ǫ ≪ 1 is a small parameter.

Substituting this deformation into the strain energy for
the upper layer (1), and applying the Euler-Lagrange equa-
tions results in governing equations of the form

axxUl,XX + ayyUl,Y Y + axyVl,XY = 0, (6a)

bxxVl,XX + byyVl,Y Y + bxyUl,XY = 0, (6b)

where the constants take the form

axx = λ2,l[(λ1λ2,l)
1/3µl(

5
9

+ 2
9
λ2
1 + 5

9
λ2
2,l)

+ Klλ1λ2,l − Klλ1λ2,l log(λ1λ2,l)], (6c)

axy = λ1((λ1λ2,l)
1/3µl(

5
9
−

1
9
λ2
1 −

1
9
λ2
2,l)

+ Klλ1λ2,l − Klλ1λ2,l log(λ1λ2,l))], (6d)

ayy = µlλ
2
1λ2,l[(λ1λ2,l)

1/3], (6e)

bxx = µlλ1λ2,l[(λ1λ2,l)
1/3], (6f)

bxy = λ2,l[(λ1λ2,l)
1/3µl(

5
9
−

1
9
λ2
1 −

1
9
λ2
2,l)

+ Klλ1λ2,l − Klλ1λ2,l log(λ1λ2,l)], (6g)

byy = λ1[(λ1λ2,l)
1/3µl(

5
9

+ 5
9
λ2
1 + 2

9
λ2
2,l)

+ Klλ1λ2,l − Klλ1λ2,l log(λ1λ2,l)]. (6h)

In a similar manner for the substrate (3), the extra consti-
tutive model for the fibers increases the complexity of the
coefficients, but the governing equations retain their overall
structure in the form

cxxUs,XX + cyyUs,Y Y + cxyVs,XY = 0, (6i)

dxxVs,XX + dyyVs,Y Y + dxyUs,XY = 0, (6j)

where the constants take the form,

cxx = λ2,s[ϕm((λ1λ2,s)1/3(5
9

+ 2
9
λ2
1 + 5

9
λ2
2,s)

+ Ksλ1λ2,s − Ksλ1λ2,s log(λ1λ2,s)) (6k)

+ 4λ3
1λ2,sϕf cos2 βf ′(q) + 8λ5

1λ2,sϕf cos4 βf ′′(q)], (6l)

cxy = λ1[ϕm((λ1λ2,s)1/3(5
9
−

1
9
λ2
1 −

1
9
λ2
2,s)

+ Ksλ1λ2,s − Ksλ1λ2,s log(λ1λ2,s))

+ 16λ3
1λ3

2,sϕf cos2 β sin2 βf ′′(q)], (6m)

cyy = λ2
1λ2,s[(λ1λ2,s)1/3ϕm + 4λ1λ2,sϕf sin2 βf ′(q)

+ 8λ3
1λ2,sϕf cos2 β sin2 βf ′′(q)], (6n)

dxx = λ1λ2,s[(λ1λ2,s)1/3ϕm + 4λ1λ2,sϕf cos2 βf ′(q)

+ 8λ1λ3
2,sϕf cos2 β sin2 βf ′′(q))], (6o)

dxy = λ2,s[(ϕm((λ1λ2,s)1/3(5
9
−

1
9
λ2
1 −

1
9
λ2
2,s)

+ Ksλ1λ2,s − Ksλ1λ2,s log(λ1λ2,s))

+ 16λ3
1λ3

2,sϕf cos2 β sin2 βf ′′(q)], (6p)

dyy = λ1[ϕm((λ1λ2,s)1/3(5
9

+ 5
9
λ2
1 + 2

9
λ2
2,s)

+ Ksλ1λ2,s − Ksλ1λ2,s log(λ1λ2,s))

+ 4λ1λ3
2,sϕf sin2 βf ′(q) + 8λ1λ5

2,sϕf sin4 βf ′′(q)], (6q)

where

q = λ2
1 cos2 β + λ2

2,l sin2 β. (6r)

In both regions we look for solutions which are periodic in
X , with wavenumber k, and exponentially decaying in Y < 0,
in the form

Uj(X, Y ) = Uj(kY ) sin(kX) exp(kajY ), (j = l, s) (6s)

Vj(X, Y ) = V j(kY ) cos(kX) exp(kajY ), (j = l, s). (6t)
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Substitution into (6a) results in a quartic polynomial with
four roots al,m (m = 1, · · · , 4) applicable to the cortex layer.
Similarly, substitution into (6i) results in a quartic polyno-
mial for the white matter, where we can immediately neglect
the two roots with positive real part since these do not decay
as Y → ∞, leaving two roots as,1 and as,2. The polynomi-
als themselves are very long and cumbersome, so we do not
reproduce them here for brevity. We hence compute the cor-
responding eigenvectors vj,m = (Uj , V j) (j = 1, 2) in both
regions and then express the displacement vectors in both
regions as an eigenfunction expansion in the form

Us = A1v1 exp(as,1Y ) + A2v2 exp(as,2Y ), (Y < 0) (6u)

Uc = A3v3 exp(al,1Y ) + A4v4 exp(al,2Y )

+ A5v5 exp(au,3Y ) + A6v6 exp(al,4Y ), (0 < Y < 1),
(6v)

as a function of the vector of amplitudes a = (A1, . . . , A6).
On the interface between the two layers (Y = 0) we im-

pose continuity of displacement and continuity of normal and
tangential stress. Similarly, on the upper surface of the cortex
(Y = 1) we impose conditions of no normal and tangential
stress. These can be combined into a matrix equation for the
coefficients in the form Ma = 0. Finally, we compute the crit-
ical compression required for the onset of instability as the
value dc for which det(M) = 0.
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