
 
 
 
 
 

Marín-Pareja, N., Cantini, M., Gonzalez-Garcia, C., Salvagni, E., Salmeron-

Sanchez, M., and Ginebra, M.-P. (2015) Different organization of type: collagen 

immobilized on silanized and nonsilanized titanium surfaces affects fibroblast 

adhesion and fibronectin secretion. ACS Applied Materials and Interfaces, 7(37), 

20667. (doi:10.1021/acsami.5b05420) 

 

 

 

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 

 

 

http://eprints.gla.ac.uk/111456/ 
     

 
 
 
 
 

 
Deposited on: 02 November 2015 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/111456/
http://eprints.gla.ac.uk/111456/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


 1 

Different Organization of Type I Collagen 

Immobilized on Silanized and Non-Silanized 

Titanium Surfaces Affects Fibroblast Adhesion and 

Fibronectin Secretion 

Nathalia Marín-Pareja1§, Marco Cantini2§, Cristina González-García2, Emiliano Salvagni1, 

Manuel Salmerón-Sanchez2, Maria-Pau Ginebra1*. 

1Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and 

Metallurgy, Universitat Politècnica de Catalunya. BarcelonaTech (UPC), Av. Diagonal 647, 

08028 Barcelona, Spain  

2Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow 

G12 8LT, UK 

 

* Corresponding author. E-mail: maria.pau.ginebra@upc.edu; telephone: +34934017706; mobile 

phone +34638033329 

 

 

 



 2 

ABSTRACT: 

Silanization has emerged in recent years as a way to obtain a stronger and more stable 

attachment of biomolecules to metallic substrates. However, its impact on protein conformation, 

a key aspect that influences cell response, has hardly been studied. In this work we analyzed by 

AFM the distribution and conformation of type I collagen on plasma treated surfaces before and 

after silanization. Subsequently, we investigated the effect of the different collagen 

conformations on fibroblasts adhesion and fibronectin secretion by immunofluorescence 

analyses. Two different organosilanes were used on plasma-treated titanium surfaces, either 3-

chloropropyl-triethoxy-silane (CPTES), or 3-Glycidyloxypropyl-triethoxy-silane (GPTES). The 

properties and amount of the adsorbed collagen was assessed by contact angle, XPS, OWLS and 

AFM.  

AFM studies revealed different conformations of type I collagen depending on the silane 

employed. Collagen was organized in fibrillar networks over very hydrophilic (plasma treated 

titanium) or hydrophobic (silanized with CPTES) surfaces, the latter forming little globules with 

a beads-on-a-string appearance, whereas over surfaces presenting an intermediate hydrophobic 

character (silanized with GPTES), collagen was organized into clusters with a size increasing at 

higher protein concentration in solution. 

Cell response was strongly affected by collagen conformation, especially at low collagen 

density. The samples exhibiting collagen organized in globular clusters (GPTES-functionalized 

samples) favored a faster and better fibroblast adhesion, as well as better cell spreading, focal 

adhesions formation and more pronounced fibronectin fibrillogenesis. In contrast, when a certain 

protein concentration was reached at the material surface the effect of collagen conformation was 

masked, and similar fibroblast response was observed in all samples. 
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1. INTRODUCTION 

An appropriate cellular response to implant surfaces is essential for a good in vivo 

performance. Dental implants interact both with bone and gingival tissues. Whereas bone 

integration is essential to ensure a good mechanical fixation of the implant, the good integration 

with the mucosal tissue of the gingiva is critical to guarantee a good biological sealing which 

avoids bacteria colonization of the dental implant.1–3 Surface functionalization with extracellular 

matrix (ECM) proteins has proven to be a good strategy to provide cellular attachment sites.4–6 

Recently, the immobilization of type I collagen, the main constituent of the gingival tissue, on 

implant surfaces has been described as a route to improve fibroblast response and to accelerate 

the healing processes of the gingival mucosal tissue.7–9 

The chemistry of the underlying substrate (particularly as it affects wettability and surface 

charge) has a significant effect on the structural features of the adsorbed protein layer.10–12 

Interfacial electrostatic and hydrophobic interactions can be large enough to significantly alter 

the density, conformation, orientation and mobility of the proteins that make up the adsorbed 

layer.13,14 Several studies have shown the effect of surface chemistry on the adsorption of ECM 

proteins such as fibronectin,15,16 fibrinogen17 and  laminin,18 and how alterations in protein 

adsorption can influence fibroblast response.19,20 At the same time, surface-induced alterations in 

protein structure can greatly influence the nature of the ligands and other ECM signals presented 

to the cells.21 Several studies using alkanethiol self-assembled monolayers with different 
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functional groups (CH3, OH, COOH, and NH2) have been performed to determine the effects of 

surface properties on cell response.11,19,22,23 Most of these studies examine the effect of surface 

chemistry on wettability and subsequent effects on protein adsorption and cell adhesion by the 

number of adherent cells, morphology, and immunofluorescent staining after several hours of 

incubation.  

More specifically, the effect of substrate surface chemistry on the adsorption of collagen from 

solution has been addressed in other studies, concluding that the amount of adsorbed collagen 

and its structure is particularly influenced by the wettability of the surface.10–12,24–27 Besides 

physisorption, covalent binding of proteins through the use of silanes has emerged in recent 

years as an attractive way to functionalize metallic substrates.28,29 In this strategy, a pre-treatment 

of the surface is performed, in order to facilitate the formation of covalent bonds between the 

protein and the substrate. Organosilanes exhibit a “tail” capable of binding the hydroxyl groups 

present on the metal surface and, in the other end, a “head” functional group for binding the 

desired molecules. The advantage of this approach, compared to physisorption, is that it may 

offer a stronger and more stable attachment of biomolecules.7,8,29–33 Previous studies have 

demonstrated through several analytical techniques (XPS,  fluorescence labeling), that collagen 

immobilized on silanized titanium surfaces exhibited a significantly higher stability than 

physisorbed collagen, suggesting that covalent binding was occurring at the metal surface.29 In 

addition to producing more stable bonds and affecting the amount of immobilized protein, the 

novel surface chemistry is expected to affect the conformation of the protein.  

Even if some efforts have been devoted to study the effect of some surface properties on the 

morphology of adsorbed collagen (type I and IV) and cell response,11,27,34–36 the influence of 

silanized titanium surfaces on type I collagen conformation and their subsequent effect on 
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fibroblast behaviour have not been addressed yet. In this study, we focus specifically on how 

silanization, which is aimed at obtaining a stronger bonding between collagen and the surface, 

influences the distribution and conformation of type I collagen, and in turn affects fibroblasts 

adhesion and fibronectin secretion. We used several methods to prepare substrates with 

systematic variations in surface chemistry and examined the properties and amount of the 

adsorbed collagen with contact angle, XPS, OWLS and AFM. Fibroblast adhesion and 

fibronectin fibrillogenesis were also evaluated through immunofluorescence analyses.  

 

2. MATERIALS AND METHODS 

2.1. Titanium preparation  

The samples used in this study were commercially pure Grade 2 Titanium (Ti) discs with 9 

mm diameter and 2–3 mm thickness (Zapp AG, Ratingen-Germany). The surface was finished 

and polished with 1200 and 4000 grit silicon carbide paper, and subsequently with colloidal 

silica (0.06 μm). Then, the discs were immersed in a sodium hydroxide – acetone solution 

(Sigma–Aldrich, Madrid-Spain), and washed in an ultrasonic bath for 5 min, followed by further 

cleaning by ultrasonication in cyclohexane, isopropanol, ethanol, deionized water (Mili-Q Plus) 

and acetone (Sigma–Aldrich, Madrid, Spain) to remove organic and inorganic impurities. After 

drying the samples with N2 gas, the polished surfaces were activated in an O2 plasma cleaner 

(PDC-002, Harrick Scientific Corporation, USA) for 5 minutes (PL). This treatment effectively 

removes contaminants and forms reactive hydroxyl groups on the surface, beneficial for further 

chemical modification. 

 

2.2. Silanization 
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The clean plasma-pretreated Ti surfaces were silanized using two different oragnosilanes, 

either 3-chloropropyl-triethoxy-silane (CPTES), or 3-Glycidyloxypropyl-triethoxy-silane 

(GPTES). The samples were divided in two groups, and immersed for 1 h at room temperature 

(RT) in a pentane solution containing either  i) 0.05 M of N-N Diisopropyl-ethyl-amine (DIEA) 

and 0.5 M of CPTES, which has a chlorine (-Cl) as a functional group; or ii) 0.5 M of GPTES, 

which has an epoxy group (-CHCH2O) as a functional group. All chemicals were purchased 

from Sigma-Aldrich, Madrid-Spain.  Afterwards, the silanized samples were ultrasonicated 

successively in iso-propanol, ethanol, deionized water (Mili-Q Plus) and acetone to remove non-

covalent surface bound adsorbed molecules, and dried with N2 gas.  

 

2.3. Collagen immobilization  

Type I collagen was immobilized on the plasma-pretreated samples and on the samples 

silanized either with CPTES or GPTES. Type I Collagen, obtained from bovine pericardium as 

described elsewhere37, was dissolved in acetic acid 0.05 M, and the pH adjusted to c.a. 6 with 

sodium hydroxide 0.01 M. Solutions with different concentrations of collagen (between 2.5 to 

150 µg/mL) and same pH ≈ 6 were prepared to evaluate the evolution of collagen immobilization 

as a function of collagen concentration. The samples were immersed into these solutions, during 

different adsorption times, to evaluate the effect of these conditions onto collagen morphology 

over the surface. After removing the samples from the solution, they were rinsed twice with a 

0.05 M acetic acid solution to remove excess of adsorbed collagen, and dried under N2 flow. The 

nomenclature used throughout the article to identify the different surfaces studied is summarized 

in Table 1. 

Table 1. Nomenclature for modified Ti Surfaces 
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Groups Sample description 

Ti Commercially pure Ti, untreated (just polished) 

Activated 

PL Polished Ti treated with oxygen plasma cleaner 

Silanized 

PL-CP PL followed by silanization with CPTES 

PL-GP PL followed by silanization with GPTES 

Collagen coated 

PL-col PL with collagen (physisorption) 

PL-CP-col PL-CP with collagen (covalent immobilization) 

PL-GP-col PL-GP with collagen (covalent immobilization)  

  

2.4. Surface Characterization 

2.4.1 Contact angle 

To determine the wettability of the different substrates, static contact angle measurements were 

performed using the Sessile Drop method38 in a contact angle video based system OCA15plus 

Video-Based Contact Angle System (Dataphysics, Germany) and analyzed with the SCA20 

software (Dataphysics Instruments GMBH, Germany). The liquid used for contact angle 

measurements was Milli-Q water (MilliQ, Millipore, Germany) at RT. Samples were introduced 

in a water vapor saturated chamber and 3 μL drops were deposited at random over the substrate 

surface. Contact angles were measured immediately after drop deposition. Three readings were 

taken on each test specimen and the experiment was performed in triplicate for each condition.  

 

2.4.2 Surface analysis by X-ray photoelectron spectroscopy (XPS) 
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The samples were analyzed by XPS after plasma treatment and subsequent silanization with 

CPTES or GPTES. XPS was performed with a SPECS system equipped with an Al anode XR50 

source operating at 150 W and a Phoibos 150 MCD-9 detector XP. Samples were directly fixed 

onto the sample holder with double-sided carbon tape. Spectra were recorded with pass energy of 

25 eV at 0.1 eV steps at a pressure below 6 × 10−9 mbar and binding energies were referred to the 

C 1s signal. The binding energies were corrected by referencing the adventitious C 1s peak 

maximum at 284.8 eV for all the specimens used in this study. Measured intensities (peak areas) 

were converted to normalized intensities by atomic sensitivity factors from which atomic 

compositions of surfaces were calculated. The average values obtained from three substrate 

replicates are reported. 

 

2.4.3 Optical Waveguide Lightmode Spectroscopy (OWLS) 

To measure the amount of adhered collagen on each of the modified titanium surfaces, the 

adsorption process at the solid/liquid interface was assessed using an OWLS instrument 

(OWLS2400 MicroVacuum, Budapest- Hungary). This technique detects changes in the 

effective refractive index occurring within a sensor and are converted into adsorbed mass using 

the de Feijter’s formula.39 The optical grating coupler sensor chip consisted of SiO2 as base 

substrate, coated with TiO2. Prior to measurements, the TiO2-coated sensor waveguides were 

subjected to oxygen plasma and silanized as described above. To obtain a stable baseline, the 

clean sensor was incubated at RT in a 10 mM HEPES buffer solution supplemented with 150 

mM NaCl until the signal was stabilized. Temperature was equilibrated at 37°C until the signal 

was stabilized. Afterwards, the collagen solution was injected and left in contact with the 

waveguide for 10 minutes and overnight, to monitor collagen adsorption at different time points 
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and collagen concentrations. Subsequently the waveguide was rinsed with acetic acid to remove 

unbound collagen, after which HEPES buffer solution was injected until signal stabilization. The 

uncoupling angles, RTM and RTE, were recorded and converted to refractive indices (NTM, 

NTE) by the manufacturer supplied software. The experiment was performed in triplicate for 

each condition. 

 

2.4.4 AFM 

The NanoScope III AFM from Digital Instruments (Santa Barbara, CA, USA) was used in the 

tapping mode in air to follow the collagen adsorption profile and the morphology of the adsorbed 

protein layer. Si cantilevers from Veeco (Manchester, UK) were used, with a force constant of 

2.8 N/m and a resonance frequency of 75 kHz. The phase signal was set to zero at the resonance 

frequency of the tip. The tapping frequency was 5-10% lower than the resonance frequency. 

Drive amplitude was 200 mV and the amplitude set-point was 1.4 V. The ratio between the 

amplitude set-point and the free amplitude was kept equal to 0.7. Several AFM images were 

analyzed using the NanoScope software (version 1.4 of 2011) to observe the topography of 

uncoated titanium surfaces, as well as of collagen coated samples.  

AFM was used to evaluate how the different treatments performed on the titanium surfaces 

affect the morphology of adsorbed collagen. Each treatment can influence both the dynamics of 

adsorption and the distribution of collagen upon adsorption. Therefore, several protein 

concentrations (between 2.5 to 150 μg/mL) were evaluated, setting the immersion time at 10 

minutes. With these studies we want to determine the minimal collagen concentration necessary 

in each case to observe the collagen distribution and conformation and to follow the dynamics of 

protein adsorption on the surfaces. Particle analysis was performed using the NanoScope 
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software (version 1.4 of 2011) to identify the presence, size and distance of clusters on the 

collagen coated surface. 

 

2.5. Cell Adhesion Studies  

2.5.1. Cell Culture 

 Prior to culture, all samples were immersed in a 1% bovine serum albumin solution (BSA, 

Sigma-Aldrich) in phosphate buffered saline (PBS, Invitrogen) for 30 minutes to avoid 

unspecific protein binding. Human dermal fibroblasts (HDFs) were incubated on the samples at a 

concentration of 5000 cells/sample with serum-free medium (Dulbecco’s modified Eagle’s 

medium, DMEM)) supplemented with 1% L-glutamine, 1% penicillin/streptomycin at 37 °C 

with 5% CO2 for 4 hours. Fourth to sixth passage cells were used in all experiments. All the 

experiments were performed twice, with three samples per group. Cell adhesion and spreading 

on the different Ti surfaces were evaluated by immunostaining, as detailed in the following 

sections. Additionally, cell proliferation was assessed in the samples that had been previously 

immersed in 150 μg/mL collagen solution.  HDF cells were seeded on the tested surfaces at a 

density of 32 × 103 cells/cm2 and incubated for 4 h in serum-free medium. Then, the medium was 

replaced with serum-containing one (10% FBS) and the cells were cultured for 1, 3 and 7 days. 

Untreated titanium discs were used as a control. Cell number was evaluated by lactate 

dehydrogenase assay as detailed elsewhere29.  

 

2.5.2. Immunofluorescence 

 After 4 hours of culture, the culture medium was removed and unattached cells were washed 

away from the surface with PBS. Cells were fixed with 3 % paraformaldehyde in PBS for 30 min 
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at 4 ⁰C, and washed three times with PBS. After permeabilizing with 0.1% Triton-X in PBS for 5 

min at RT and blocking with DPBS/BSA 1 % at RT for 30 min, samples were incubated with a 

primary antibody for 1 hour at RT; the antibody used to analyze vinculin expression was anti-

vinculin (mouse) (hVIN-1, Sigma-Aldrich) 1:400 in DPBS/BSA 1% and to analyze fibronectin 

expression was anti-fibronectin (rabbit) (polyclonal, Sigma-Aldrich) 1:400 in DPBS/BSA 1%. 

Samples were washed twice with DPBS/Tween 20. A combination of secondary antibody (Cy3-

conjugated goat anti-mouse or antirabbit, respectively, Jackson ImmunoResearch) and phalloidin 

(1:100) (BODIPY FL, Life Technology) was added and incubated by 1 hour at RT. Finally, after 

washing the samples with DPBS/Tween 20 three times, a mounting with Vectashield solution 

containing DAPI (Vector Laboratories) was performed.  

 

2.5.3. Analysis of cell images 

Cells were visualized and photographed using a fluorescence microscope (NIKON, Japan) and 

analyzed using the ImageJ software. To determine cell density, 4 images at low magnification 

(4X) were acquired per sample, which covered the entire area of the sample. Morphological 

parameters were assessed at higher magnification (20X, 40X and 60X). A minimum of 3 

representative images were acquired per sample, this giving a minimum of 9 images per each 

experimental condition. Cell area and circularity were measured on a minimum of 5 cells per 

image. The length and number of early fibronectin fibrils were analyzed by adapting a published 

procedure for the analyses of focal adhesion number, size and length.40,41 Images of fibronectin 

expression were analyzed and only features with an eccentricity higher than 0.95 were 

considered and identified as fibrillar-like structures. 
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2.6. Statistical analysis 

The experiments for the physical and chemical characterization of the samples were performed 

in triplicate. Cell culture experiments were performed twice, with three replicates per group. 

Results are displayed as mean ± SD. ANOVA-Tables with multiple comparison Fisher's test 

were used to determine statistically-significant (p-value < 0.05) differences between the means 

of the different groups. 

 

 

3. RESULTS AND DISCUSSION 

3.1. XPS 

XPS analyses of the different titanium surfaces are summarized in Table 2. The samples were 

analyzed after each reaction step, and untreated pure titanium (Ti) was included as a control. A 

strong decrease in the carbon content was observed after plasma treatment (PL) compared to the 

untreated titanium (Ti), ascribed to the removal of organic contaminants from the atmosphere.38 

The amount of oxygen increased, consistent with surface cleaning and oxidation. The presence 

of Na was attributed to contamination caused by the use of NaOH as a cleaning agent, and it 

decreased after activation and silanization. The presence of small amounts of Si in the Ti and PL 

samples was due to contamination from the polishing with silicon carbide; whereas the 

significant increase of Si in the silanized samples (PL-CP, PL-GP), and Cl in the PL-CP, together 

with a decrease in the levels of Ti is indicative of the formation of a silane layer and a good 

coverage of the metal surface. As expected, C content increased also in the silanized samples due 

to the presence of the alkyl chain of the organosilanes, whereas Ti levels decreased in 

comparison to plasma-treated samples. 
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Table 2: XPS characterization. Atomic percentages of the untreated (Ti), plasma-treated (PL) and 

silanized samples (PL-CP and PL-GP). Numbers in brackets indicate standard deviation. 

Sample 
Element (atomic %) 

C1s N1s O1s Si2p Cl2p Ti2p Na1s 

Ti 33.2 (3.3) 0.1 (0.1) 27.8 (1.6) 0.2 (0.2) 0.0 3.5 (0.3) 35.1 (1.3) 

PL 10.0 (3.7) 1.6  (0.4) 48.0  (2.3) 2.1 (1.0) 0.2 (0.1) 16.9 (0.7) 21.5 (3.6) 

PL-CP 21.6 (2.0) 0.6 (0.4) 49.5 (0.6) 4.8 (0.3) 2.3 (0.1) 11.4 (1.3) 9.5  (0.6) 

PL-GP 15.6 (2.8) 0.8 (0.4) 53.9 (0.8) 3.4 (0.6) 0.4 (0.0) 13.4 (1.3) 12.4 (2.8) 

 

The deconvolution of the high-resolution XPS curve of O1s (Fig. 1 and Table 3) shows the 

evolution of this peak before and after silanization. At least 4 contributions to this peak were 

identified. O2- at a binding energy (BE) of 529.9 (peak 1), OH at a BE of 531.0 (peak 2), the 

combination of H2O/Ti-O-Si at a BE of 532.2 (peak 3). Moreover, another contribution at around 

533 eV was attributed to Si-O-Si (peak 4) bonds.42,43 PL-CP and PL-GP samples showed an 

increase in the peak 3 at a binding energy of 532.2 eV, assigned to the Ti-O-Si bonds, thus 

proving covalent bonding between the organosilane and the metal surface.29,43,44 The percentages 

corresponding to hydroxyl groups (peak 2, ≈ 531 eV) decreased significantly after silanization. 

In order to compare relative surface coverage among samples the ratios between peaks 3 and 4 

over peaks 1 and 2 (ratio(3+4)/(1+2)) were evaluated. The atomic percentages of peaks 3 and 4 

species in the PL-CP sample, as well as the ratio(3+4)/(1+2) were higher than in the PL-GP sample 

thus suggesting a higher silanization coverage for PL-CP surfaces (Table 3).  
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Figure 1: High resolution spectra of the O1s peak obtained for the plasma-treated and silanized 

samples 

Table 3: Atomic percentage of species present in the O1s peak of the samples treated with 

plasma and silanized 

O1s peak deconvolution 
PL PL-CP PL-GP 

O1s  general percentage 

Peak Bond BE (eV) 
48 49.5 53.9 

Sub peaks percentage 

1 O2- 529.9 ± 0.2 25.2 24.8 34.5 

2 OH- 531.0 ± 0.1 17.9 5.0 7.2 

3 H2O / Ti-O-Si 532.2 ± 0.2 4.9 17.4 10.3 

4 Si-O-Si 533.2 ± 0.1 0  2.3 1.9 

3+4/1+2      -------------- 0.7 0.3 

 

3.2 Contact angle 
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The water contact angle was measured to assess the influence of wettability on the morphology 

that collagen adopts on the different Ti surfaces. Untreated Ti samples had a contact angle close 

to 50º, which was strongly reduced after PL treatment, the surface becoming highly hydrophilic 

(Fig. 2). The increase in the hydrophilicity of the PL samples can be attributed to the hydroxyl 

groups introduced on the Ti surfaces and to the removal of the adsorbed contaminants such as 

hydrocarbons which tend to increase the hydrophobicity of the surface.45 After the silanization 

processes, the surfaces became more hydrophobic due to the presence of alkyl chains with 

hydrophobic properties in the organosilanes. This effect was more pronounced for PL-CP than 

for PL-GP. The hydrophobic character of silane depends on different factors; such as the 

organofunctional group of each silane and the conditions used for their deposition, which may 

result in a monolayer or a polymerized layer deposition.46 In the case of organofunctional group, 

the chlorine (Cl) present in CPTES has a hydrophobic character, whereas the epoxy group 

present in GPTES is more hydrophilic due to the presence of an oxygen that can establish 

hydrogen bonds with water at the surface. Moreover, silanized GPTES surfaces resulted in a 

lower amount of silane molecules than silanized CPTES surfaces as shown by XPS 

measurements (Table 2 and 3).  This can partially leave free OH- groups to interact with water 

leading to lower contact angles. After collagen immobilization, all surfaces presented 

intermediate contact angle values, which are slightly higher for the collagen silanized samples. 

This finding is consistent with the presence of hydrocarbon chains and hydrophilic functional 

groups in the collagen molecules,47 and with the fact that underlying silanes can be partially 

exposed on the surface. 



 16 

 

Figure 2. Contact angle of the different modified titanium surfaces before and after collagen 

immobilization. 

 

3.3  AFM 

AFM analysis showed representative images of the evolution of collagen morphology on the 

different surfaces (Fig. 3). All images of collagen-coated samples were compared to the non-

coated samples (Fig. 3 a, b and c). The dynamics of collagen adsorption was different on each 

surface, as revealed by the minimum concentration needed to clearly detect collagen on the 

surface after 10 min of adsorption. On PL-GP surfaces, collagen was adsorbed from solutions of 

lower concentrations, indicating a faster dynamics of protein adsorption. At 5 µg/mL, the 

presence of collagen on the surface is already clear. On the other hand, the minimum 

concentration at which collagen was visible on the surface was 15 µg/mL for PL and 25 µg/mL 

for PL-CP. Moreover, adsorbed collagen adopted different morphologies on the surfaces: on PL 

and PL-CP samples collagen formed fibrillar nanonetworks, whereas on PL-GP samples 

interconnected globular clusters were observed. In the case of PL-CP samples these fibres have a 

beads-on-a-string morphology. Analyses of particle size and distribution for PL-GP surfaces at 
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this minimum concentration revealed an average spacing between clusters of 75.99±0.43 nm; on 

the other hand, no regular structures could be identified on PL-CP and PL samples. 
 

 
Figure 3. Evolution of the morphology of collagen adsorbed on chemically modified titanium 

surfaces, PL (upper row), PL-GP (second row) and PL-CP (bottom row), after 10 min immersion 

in collagen solutions with increasing concentrations, as observed by height signal in tapping 

mode AFM. . The red box indicates the minimal collagen concentrations where collagen was 

clearly visible on Ti surfaces, corresponding to 15µg/mL for PL (g), 5µg/mL for PL-GP (h) and 

25µg/mL for PL-CP (i). All images have the same lateral size (500nm) and the same height 

range (max: 7nm, min: -5nm). Distinct morphologies are observed on the different surfaces, 

smooth collagen fibres on PL (white arrows), rougher fibres showing a beads on a string 

morphology on PL-CP surfaces (yellow arrows), and globular clusters on PL-GP surfaces (red 

arrows).     
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At low concentrations, collagen molecules were difficult to visualize (Fig 3.d, e and f). As 

concentration increased, the increase of adhered collagen gradually led to coverage of the entire 

surfaces (Fig. 3.j, k and l). On PL (Fig. 3 d, g and j, white arrows) and PL-CP sample (Fig.3 f, i 

and l, yellow arrows) the thickness of fibres increased with the increase of concentration and on 

PL-GP samples the globular clusters enlarged and tended to connect to each other (Fig. 3 e, h 

and k, red arrows). Increasing concentration to 150 µg/mL and the immersion time to 16 hours 

(ON: overnight) led to an increase in the length and thickness of the fibres on treated plasma and 

silanized CPTES samples (Fig.3 m and o), whereas on silanized GPTES samples the globular 

aggregates became lengthened and connected (Fig.3 n). Multiple layers of protein are likely to be 

formed.  

Some parameters that have been shown to influence the morphology of immobilized 

biomolecules are surface chemistry and wettability.10–12,24–26 In our case, both highly hydrophilic 

PL samples and highly hydrophobic PL-CP samples induced the formation of a network of 

collagen nanofibres.  In the case of hydrophilic PL surfaces, collagen formed smoother fibres, 

whereas on hydrophobic CPTES surfaces collagen fibres displayed a beads-on-a-string 

appearance. This effect has been described in other studies in which the same globular 

aggregates were observed for collagen type I fibrils immobilized on hydrophobic as compared to 

hydrophilic surfaces.24,25,48,49  

On the other hand, on surfaces of intermediate wettability (PL-GP) collagen was adsorbed in 

globular aggregates. Similar behaviour was observed in previous studies where the conformation 

of other proteins, such as fibronectin and collagen type IV, was evaluated in relation to the 

degree of hydrophobicity of the surfaces. In those studies, protein distribution varied from 

fibrillar on hydrophobic surfaces to globular aggregates on surfaces with intermediate 
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hydrophobicity (ac ≈ 50 °) due to introduction of OH- groups on the surface.15,23,50 Adamczak et 

al. reported that the foils of poly(L-lactide-co-glycolide), less hydrophobic than polystyrene, 

were covered with a granular layer of type I collagen, while collagen formed elongated structures 

on polystyrene.36 

Previous studies have highlighted the effect of other parameters on collagen conformation, 

such as the hydrodynamic flow at which the protein is deposited onto the surface,51,52 anisotrpic 

chemical patterns53, or nanotopography12,25. Thus, Li et. al. obtained a parallel fibre arrangement 

when type I collagen was adsorbed on tantalum surfaces under a constant flow, and a random 

collagen network in the absence of flow.54 In the present study collagen was deposited by 

immersing chemically homogeneous samples with similar roughness (RMS roughness < 1 nm) 

in the collagen solution, and therefore, the absence of hydrodynamic flow, anisotropic chemical 

or topographical cues is consistent with the organization of collagen into non-oriented networks.  

 

3.4 OWLS 

The OWLS studies were used to determine the amount of collagen bound on each surface, 

depending on the initial collagen concentration in solution. Adhered collagen was quantified on 

plasma-treated (PL) and silanized titanium surfaces (PL-CP, PL-GP) after 10 minutes (Fig. 4a 

and b) or 16 hours (Fig. 4c), using either the minimum collagen concentration in solution visible 

in AFM studies (Fig. 4) (15µg/mL for PL, 5µg/mL for PL-GP and 25µg/mL for PL-CP) (Fig. 

4a), or 25 µg/mL (Fig. 4b), or 150 µg/mL collagen solution (Fig. 4.c). 
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Figure 4. Quantification of the amount of type I collagen immobilized on the different 

modified Ti surfaces through OWLS. Amount of immobilized collagen after 10 minutes, with 

the minimum collagen concentration in solution for each surface: 15µg/mL on PL, 5µg/mL on 

PL-GP and 25µg/mL on PL-CP (a). Amount of immobilized collagen after 10 minutes, with a 

collagen concentration in solution of 25 µg/mL on all surfaces (b). Amount of immobilized 

collagen after 16 hours, with a collagen concentration in solution of 150 µg/mL on all surfaces 

(c). The experiment was performed in triplicate for each condition (n=3). Bars indicate standard 

deviation. Different symbols within each graph stand for statistically significant differences (p < 

0.05).   
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At the minimal collagen concentrations in solution identified through AFM, PL = 15µg/mL, 

PL-GP = 5µg/mL and PL-CP = 25µg/mL (Fig. 4.a), the surface densities of adsorbed collagen 

were 138.5 ± 3.4 ng/cm2, 134.5 ± 5.2 ng/cm2 and 143.1 ± 4.2 ng/cm2, respectively. These results 

indicate that a similar amount of collagen adhered to all samples, although the initial collagen 

concentrations in solution were different and support the AFM ability to identify collagen 

adsorption at the lowest concentration of the solution. Although very similar, these amounts are 

statistically different (p-value < 0.05), and the tendency of the adsorbed collagen follow the order 

PL-GP < PL < PL-CP. 

After immersing also PL-GP and PL samples in a collagen solution with the higher 

concentration of 25µg/mL for 10 minutes (the concentration used for PL-CP previously), the 

amount of adsorbed collagen increased on both surfaces, more evidently on PL-GP (216.3 ± 7.5 

ng/cm2) than on PL (186.9 ± 4.8 ng/cm2). Therefore, when the same collagen concentration in 

solution was used, the amount of adsorbed protein was in the order PL-CP < PL < PL-GP, i.e. 

with more collagen adsorbed on GPTES surfaces than on CPTES ones. These observations are in 

agreement with the AFM results, which suggested higher adsorption of collagen I on PL-GP 

compared to PL and the other silanized surface PL-CP. 

Comparing the two silanes, apparently the collagen reaction was more efficient with silanized 

GPTES samples, because this required a much lower collagen concentration in solution to 

achieve the same amount of protein adhered on silanized CPTES samples. It is important to bear 

in mind that one end of the organosilane molecules must bind to the hydroxyl groups at the 

surface of the metal, whereas the other end binds to the collagen molecule through the specific 

functional group. Thus, in a first step the hydroxyl groups present at the metal surface will act as 
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nucleophiles towards the Si, liberating the ethoxy leaving group in solution. Once silanized, the 

surfaces will therefore present an available functional group suitable for further chemical 

modification. Then, in a second step, the nucleophiles present in type I collagen (eg. -SH, -OH, -

NH) will perform a nucleophilic attack towards the “head” functional groups of CPTES 

(substitution reaction) or GPTES (substitution reaction and epoxide ring opening) at specifc pHs, 

thus accomplishing the covalent binding. However, since collagen type I molecules can be 

solubilized in solution only starting from acid pH and tend to precipitate when pH approaches 

neutrality. On the other hand, in order to undergo a nucleophilic attack, organosilanes require 

different working pH conditions depending on the nature of the functional group they bear. 

Specifically, CPTES and GPTES are able to undergo nucleophilic attack at various pHs that 

range from close to neutrality to basic conditions. Therefore, the best pH compromise for 

collagen solubilization and nuecleophilic attack towards both organosilanes was found to be 

between 6 and 7. For the employed working conditions, GPTES resulted to be more efficient 

than CPTES, probably due to the more favourable epoxide ring opening reaction over the 

nucleophilic substitution that takes place in the case of chlorine in CPTES.55 Additionally, the 

CPTES substitution reaction produces HCl, which decreases the pH of the solution. Under acidic 

pH, the nucleophilic groups of collagen will be protonated, making the nucleophilic attack of 

silane less efficient.   

Finally, when collagen was adsorbed overnight from a solution of concentration 150 µg/mL 

(Fig. 3c), the adsorbed mass increased on silanized samples (PL-GP = 742.7 ± 17.4 ng/cm2 and 

PL-CP = 1080.1 ± 25.0 ng/cm2) as compared to the plasma-treated ones (649.8 ± 10.0 ng/cm2), 

suggesting that the collagen bond with silanized surfaces was more efficient and stronger than 

with the OH groups of the samples treated only with plasma.7,8,30,32,33 After overnight exposure, a 
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good correlation was found between the amount of immobilized collagen and the hydrophobicity 

of the substrate (Fig. 2), as reported in previous studies.10,11,19,23,25,28 Additional factors that could 

explain the smaller amount of collagen immobilized in the PL-GP surface are the lower 

silanization coverage eventually limiting the amount of collagen that can be adsorbed from 

higher concentration solutions and that the epoxy organofunctional group of GPTES is 

susceptible to hydrolyzation when exposed to acidic aqueous solutions in the long term.56 Since 

the reaction between silanes and collagen is performed at a pH ≈ 6, it is possible that some 

GPTES molecules undergo hydrolysis, consequently hampering further collagen bonding.  

 

3.5 Fibroblast behaviour as a function of collagen organization and concentration 

3.5.1 Fibroblast Adhesion  

Figures 5 to 8 show the results for the percentage of attached cells, cell spreading and 

circularity, as well as some morphological features, like actin cytoskeleton, vinculin and 

fibronectin expression, of the fibroblasts adhered on the modified titanium surfaces prepared 

under the same conditions used for the OWLS studies (Fig. 4).  

When the amount of adsorbed protein was similar due to adsorption from different minimal 

collagen concentrations in solution, PL-GP-col samples showed a higher percentage of adhered 

cells (69.5 ± 20.4 %) (Fig. 5a), with greater spreading area (412 ± 57 µm2) (Fig. 5b) than PL-col 

(37.6 ± 11.5 % and 295 ± 62 µm2) and PL-CP-col samples (34.1 ± 10.1% and 331 ± 58 µm2). 

The analysis of circularity showed that better spreading on PL-GP-col surfaces was due to cell 

elongation, as indicated by lower circularity compared to the other surfaces (Fig. 5c). 

Additionally, developed actin filaments were clearly observed only in the cytoskeleton of cells 

adhered onto PL-GP-col samples (Fig.6 a, b and c). 
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Considering that under this condition, the adsorbed amount of collagen was similar, and even 

lower on PL-GP-col surfaces where collagen displayed globular clusters as opposed to the fibres 

on the other two surfaces, one could infer that the influence of the morphology adopted by the 

collagen prevailed over the amount of adhered protein. In a previous study, a similar fibroblast 

behaviour was reported on collagen-coated polystyrene and poly(L-lactide-co-glycolide), 

although the conformations adopted by collagen on these surfaces were different,36 and the 

amount of collagen immobilized on each surface was not discussed.  Elliot et al. reported that the 

spreading area of the smooth muscle cells (SMCs) was greater on collagen coated OH-

terminated surfaces than CH3-terminated surfaces. The first presented a smooth film of collagen 

with occasional large fibres, while the second one formed larger collagen fibres with underlying 

smaller collagen fibrils.11 In our case, it seems that the globular organization of type I collagen 

on PL-GP-col favoured the adhesion and response of fibroblast-like cells, as confirmed by the 

higher number of adhered cells, which were more elongated and presented a better development 

of their cytoskeleton; this suggests that PL-GP-col substrates favor a specific conformation of the 

collagen molecule that enhances fibroblast adhesion. In fact, it is known that when proteins 

adsorb on a surface they adopt a given orientation that will determine the part that is in contact 

with the surface and the part that is exposed to the cells56. Additionally, after adsorption proteins 

can suffer conformational changes which alter their native structure.57,58 This, coupled with the 

fact that the conformation of adsorbed proteins depend on surface chemistry, can influence the 

domains exposed to integrins, affecting cell adhesion.59,60 
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Figure 5. Percentage of attached cells (a), cell area (b) and circularity (c) of fibroblasts cultured 

on titanium samples biofunctionalized (PL-col, PL-GP-col and PL-CP-col) with the minimum 

collagen concentrations in solution (15µg/mL-10min for PL, 5µg/mL-10min for GP and 

25µg/mL-10min for CP), 25µg/mL-10min for all surfaces and 150µg/mL-ON for all surfaces. 

Groups identified by the same letters are not statistically different (p > 0.05), comparison 

between samples within the same condition. 
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Figure 6. Actin cytoskeleton of fibroblasts cultured on biofunctionalized titanium samples PL-

col, PL-GP-col and PL-CP-col with collagen concentrations of 15µg/mL-10min on PL(a), 

5µg/mL-10min on GP (b) and 25µg/mL-10min on CP (c), 25µg/mL-10min on all surfaces (d, e 

and f) and 150µg/mL-ON on all surfaces (g, h and i).  

When collagen was adsorbed from solutions with the same concentration (25 µg/mL) for 10 

minutes on all samples, cell response remained better on PL-GP-col samples in terms of 

percentage of adhered cells  (81.8 ± 119.6 %) with respect to PL-col (50.6 ± 17.8 %) and PL-CP-

col (34.1 ± 10.1 %) samples. This result is consistent with the previous ones, given that the final 

collagen concentration on PL-GP-col is increased much more respect to the other samples. 

Again, well-developed actin filaments were observed only in cells adhered onto PL-GP-col 

samples (Fig.6 d, e and f). No significant difference in circularity or cell area was observed 

between PL-GP-col (469 ± 99 µm2) and PL-col (415 ± 101 µm2) samples, while cells adhered on 
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PL-CP-col samples, where the lowest amount of adhered collagen was found, showed the lowest 

response in terms of all cellular parameters. 

Finally, when collagen was adsorbed from a 150 µg/mL solution overnight, the percentage of 

adhered cells increased and was higher on PL-GP-col (106.0 ± 24.7%) and PL-CP-col (96.3 ± 

13.0 %) samples than on PL-col (85.1 ± 22.8 %). Similarly, cell spreading area was higher on 

collagen covalently adhered on silanized PL-CP-col (1845 ± 1046 µm2) and PL-GP-col (1696 ± 

743 µm2) samples than on collagen physisorbed on PL-col (1461 ± 508 µm2).  The effect of the 

different conformations and distributions of collagen obtained on the two silanized surfaces 

seems to be masked by the increase of adsorbed collagen. Although the two silanized samples 

presented a significant difference in the amount of adsorbed collagen (1080 ng/cm2 on PL-CP-col 

compared to 743 ng/cm2 on PL-GP-col), they induced a similar cell response, thus suggesting 

that over a certain protein density at the surface there is no further effect over the adhered cells, 

at least in the range of the studied concentrations. This further confirms that collagen 

organization plays a positive role on PL-GP-col samples. Concerning the actin cytoskeleton 

(Fig.6 g, h, and i), all surfaces promoted good cell spreading, with well-developed actin 

filaments in the cell cytoskeleton. It is also important to note that, under these conditions, the cell 

area was three times larger than the one of cells adhered on samples with lower amounts of 

adsorbed collagen (Fig. 5b); moreover, circularity was consistently lower (Fig. 5c), indicating 

enhanced cell elongation on all surfaces due to the higher amount of adsorbed protein. This 

indicates that when the amount of adsorbed protein is high enough, cells respond better in terms 

of adhesion, as demonstrated in other studies.61 The extent of cell spreading and elongation is an 

important parameter for the biocompatibility of substrates, being crucial for subsequent 

behaviours such as proliferation and cellular activation, production and remodelling of the 
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ECM.6,62 Therefore, the use of a high concentration of collagen is justified to obtain a better cell 

response. Proliferation studies over the course of 7 days revealed similar trends for the three 

surfaces (Supporting Information, Figure S1). 

 

3.5.2. Focal points formation and fibronectin fibrillogenesis  

Vinculin and fibronectin expression can be observed in Figures 7 and 8 for all the evaluated 

conditions: minimal collagen concentrations, 25µg/mL for 10min and 150µg/mL overnight for 

all surfaces. When the amount of adsorbed collagen was similar, at the minimal solution 

concentrations (Fig. 7 a, b and c), some cells with developed focal points could be observed only 

on PL-GP-col surfaces, confirming that this surface enhances the early adhesion of fibroblasts. 

Similarly, fibroblasts secreted fibronectin and started to organize it into fibres only on PL-GP-col 

surfaces (Fig. 8 a, b and c, and Supporting Information, Figures S2 and S3). The presence of 

fibronectin fibres at the cell filopodia has been attributed to early secretion and organization of 

fibronectin by cells15,23,63 and is related to cell capacity to secrete and organize an early matrix, 

which eventually affects the biocompatibility of a surface.64 On the other hand, on PL-col and 

PL-CP-col surfaces, fibronectin expression was observed only inside the cell and no fibres were 

formed. When collagen concentration in solution was increased to 25ug/mL-10min for all 

samples (Fig. 7 d, e and f), the formation of focal points and organization of small fibronectin 

fibrils was again observed only for fibroblasts adhered on PL-GP-col samples (Fig. 7e). The 

assembly of fibronectin matrix is the initial step which orchestrates the assembly of other ECM 

proteins and promotes cell adhesion, migration and signaling.65 Our study demonstrates that type 

I collagen regulates the beginning of the short fibronectin fibres formation, which is the initial 

step of the extracellular fibronectin matrix assembly. Surfaces that provide for a better cell 
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adhesion, such as PL-GP-col, allow also for a faster organization of secreted fibronectin. 

Moreover, fibronectin has domains for interaction with other ECM proteins, including 

collagen.65–67 Studies performed by Dzamba et al. also reported that the α1(I) chain of collagen 

contains a binding fibronectin region between aminoacids residues 757 and 791, which has an 

influence on the assembly of fibronectin into fibrils.68 

 

Figure 7. Vinculin expression of fibroblasts cultured on titanium samples biofunctionalized (PL-

col, PL-GP-col and PL-CP-col) with collagen concentrations of 15µg/mL-10min for PL(a), 

5µg/mL-10min for GP (b) and 25µg/mL-10min for CP (c), 25µg/mL-10min for all surfaces (d, e 

and f) and 150µg/mL-ON for all surfaces (g, h and i). Focal points and stress fibres indicated by 

arrows. 
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Figure 8. Fibronectin expression of fibroblasts cultured on titanium samples biofunctionalized 

(PL-col, PL-GP-col and PL-CP-col) with collagen concentrations of 15µg/mL-10min for PL(a), 

5µg/mL-10min for GP (b) and 25µg/mL-10min for CP (c), 25µg/mL-10min for all surfaces (d, e 

and f) and 150µg/mL-ON for all surfaces (g, h and i). Early fibril formation indicated by arrows. 

Higher magnification of the fibronectin fibrils are shown in Supporting Information, Figure S2. 

The results obtained so far suggest that at low collagen concentrations protein conformation on 

PL-GP-col samples favours cell adhesion and matrix formation; we hypothesize that the cluster 

organization of collagen provides the adequate signals which stimulate matrix formation activity 

of fibroblast cultured on PL-GP-col samples. Particularly, the globular organization of collagen 

upon immobilization on this surface likely presents binding sites for the main collagen integrins 

of dermal fibroblasts (α1β1, α2β1)69 in a conformation that allows integrin clustering and focal 
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adhesion formation even at low protein concentrations. Interestingly, the distance between the 

globular clusters on PL-GP-col samples is in range of 70 nm, which has been indicated as the 

critical local inter-ligand spacing for integrin clustering and cell adhesion.70 Hence, GPTES 

silanization seems to be the treatment that provides an adequate collagen conformation for 

enhanced fibroblast response. 

However, for longer immersion times and higher collagen concentration, a similarly good cell 

response, in terms of focal adhesion points (Fig.7 g, h, and i) and fibronectin fibrillogenesis 

(Fig.8 g, h, and i, and Supporting Information Figures S2 and S3), was observed on all samples. 

The increase of adsorbed collagen seems in this case to mask the effect of the different collagen 

morphologies. 

 

4. Conclusions 

The collagen morphology on each of the studied surfaces was dependent on the degree of 

surface hydrophobicity. PL (hydrophilic) and PL-CP samples (hydrophobic) showed collagen 

organization in fibrillar networks. In the case of PL-CP, fibres were in turn formed by little 

globules, adopting a beads-on-a-string appearance, and increased in thickness with increasing 

collagen concentration, which was attributed to the high hydrophobicity of this type of surface.  

On the other hand, PL-GP samples, with an intermediate hydrophobic character, induced 

collagen organization into clusters which increased in size with increasing protein concentration 

in solution. 

The amount of collagen adhered on modified titanium surfaces was dependent on surface 

chemistry and the duration of the immersion into the protein solution. For lower collagen 

concentrations in solution (<25µg/mL) and 10 minutes of immersion, the amount of collagen 
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was higher on PL-GP surfaces than on PL-CP and PL surfaces. The differences between these 

surfaces were the functional groups that interact with the collagen. GPTES silane has an epoxy 

as a functional group, while CPTES silane has a chlorine and samples treated with plasma have 

hydroxyl groups on their surfaces, which appears to influence the kinetics of the adsorption. 

Conversely, for high collagen concentration (≈150µg/ml) and long immersion time, the amount 

of adhered collagen is higher on PL-CP than on PL-GP samples, probably due to the nature of 

the reaction kinetics  and because the epoxy group of GPTES silane is prone to hydrolyzation in 

acid medium in the long term.  

The samples where collagen was organized in globular clusters (PL-GP samples) supported a 

faster and better fibroblast adhesion, as well as better cell spreading, focal adhesions formation 

and more pronounced fibronectin fibrillogenesis. Collagen is likely to be immobilized on these 

surfaces in a conformation that enhances cell response. When higher amounts of collagen were 

adsorbed, the effect of the morphology of collagen on fibroblast response was partially masked. 

 

Supporting Information Available: Figures S1, S2 and S3. This material is available free of 

charge via the Internet at http://pubs.acs.org. 
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