
Multi-Subband Ensemble Monte Carlo Simulation
of Si Nanowire MOSFETs

Luca Donetti∗, Carlos Sampedro∗, Francisco Gámiz∗, Andrés Godoy∗, Francisco J. Garcı́a-Ruı́z∗,
Ewan Towie‡, Vihar P. Georgiev†, Salvatore Maria Amoroso‡, Craig Riddet‡ and Asen Asenov†‡
∗Nanoelectronics Research Group, Universidad de Granada, 18071 Granada, Spain. e-mail: donetti@ugr.es

†Device Modelling Group, University of Glasgow, Glasgow, Scotland, UK
‡Gold Standard Simulations Ltd, Glasgow G12 8QQ, Scotland, UK

Abstract—The need for an accurate simulation of non-planar
devices such as FinFETs and nanowire based FETs, including a
full quantun treatment of transversal two-dimensional confine-
ment, motivated the development of a three-dimensional Multi-
Subband Ensemble Monte Carlo (MS-EMC) simulator. Here
we describe the last improvements of such simulator including
better convergence properties and statistical improvements for
the computation of the drain current. The simulator is employed
to study MOS devices based on Si nanowires with lateral sizes of
a few nanometers. The results show the importance of a proper
two-dimensional treatment of quantum confinement, which can
be achieved with our simulator.

I. INTRODUCTION

Multi-Subband Ensemble Monte Carlo (MS-EMC) simula-
tors have been extensively employed to study the behavior of
planar devices, either traditional or SOI based MOSFETs [1],
[2], [3]. This approach considers a semi-classical transport
description while taking into account quantum confinement by
solving the one-dimensional Schrödinger equation on different
slices of the device along the transport direction. Compared
to full quantum methods such as Non Equilibrium Green’s
Functions it allows a lower computational cost and an accurate
and straightforward treatment of the scattering mechanisms.
In principle, MS-EMC simulators do not take into account
directly quantum effects in the transport direction such as
tunneling: however, they can be added separately [4], [5].

Nowadays, three-dimensional devices with two-dimensional
carrier confinement are of special interest for the optimization
of upcoming CMOS technological generations: FinFETs, tri-
gate or gate-all-around FETs. However, the existing Multi-
Subband tools can only afford the study of planar devices.
Non-planar structures are usually simulated employing quan-
tum corrected approaches (such as Density Gradient) which
need a proper calibration, or by assuming that the height
of a FinFET is much larger that its width so that a planar
approximation with a double-gate structure can be employed.
In any case, for channels with a very small cross section, a
fully quantum two-dimensional treatment is mandatory and
therefore both approaches are not suitable. For this reason,
we developed a MS-EMC simulator which couples the 2D
solution of the Schrödinger equation in different device cross
sections with the 3D solution of Poisson equation and 1D
simulation of ballistic transport employing the Monte Carlo
technique [6].

In this paper we first describe the 3D MS-EMC simulator
we developed, then we employ it to study MOS devices based
on 〈110〉 Si nanowires with lateral size in the range from 2 nm
to 6 nm.

II. SIMULATOR DEVELOPMENT

The general structure of our simulator is the same as the
existing Multi-Subband simulators [1], [2], [3]: solvers for the
Poisson and Schrödinger equations are coupled to an Ensemble
Monte Carlo simulator in order to achieve a self-consistent
solution. The difference and the increased complexity given
by three-dimensional device structures deal with the dimen-
sionality of the problem: a 3D Poisson equation is needed, the
device cross sections in which Schrödinger equation is solved
are 2D and, finally, the transport is reduced to 1D [6]. After
a self-consistent state is reached, a steady state simulation
is performed to compute the drain current: it runs until the
estimated error of the current is below an user-specified limit.

To improve the convergence properties of the self-consistent
Schrödinger-Poisson-Monte Carlo loop, we implemented an
adaptive damping scheme that uses a heuristic method to adjust
the relaxation parameter. The potential computed by solving
the Poisson equation is not fed directly to the Schrödinger
equation; instead, the difference between the potential and
its “old” value from the previous iteration is multiplied by
a dynamically computed factor and then added to the “old”
potential. Thus, if we denote ϕi,j,k,n the “corrected” potential
at step n for mesh point i, j, k and ϕi,j,k,n the solution of
Poisson equation at step n, we have:

ϕi,j,k,n = ϕi,j,k,n−1 + un(ϕi,j,k,n − ϕi,j,k,n−1) (1)

The fractional update parameter, un, is computed as:

un =
un−1

1−∆n−1/∆n−2

]umax

umin

(2)

where ∆n = maxi,j,k(ϕi,j,k,n − ϕi,j,k,n−1) and the value of
un is restricted to a range [umin, umax] specified by the user.
In this way, the convergence to a self-consistent state is both
faster and more robust.

Then, to improve the MC statistics for the sub-threshold
regime of the transistor without an unnecessary increase of
the number of simulated particles, we employed a variance
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Fig. 1. Structure of the simulated devices.

reduction technique [7] with non-uniform weights for the
simulated super-particles depending on the total energy. For
each subband, an energy limit, based on the height of the
barrier, is chosen; then the weights of the low- and high-energy
particles are computed to obtain a given number of particles
in the whole device. Since the transport is ballistic, the total
energy of a particle is constant so there is no need for particle
splitting, merging, or re-sampling.

Finally, we employed a parallel eigenvalue solver for
Schrödinger equation in the 2D device cross sections, which is
the computationally most expensive portion of the approach,
especially for the larger devices. Parallelization of the Monte
Carlo part is planned as the next step.

III. DEVICE STRUCTURE AND RESULTS

The structure of the simulated devices is shown in Figure 1:
Si nanowires with square cross section W between 2 nm
and 6 nm and gate length Lg = 20 nm. The channel is
oriented along the [110] crystallographic direction (x axis)
and the lateral sides are along [11̄0] and [100] directions (y
and z axis, respectively). The thickness of the SiO2 oxide is
Tox = 0.8 nm, the doping density is ND = 2× 1020 cm−3

in the source and drain regions (with Gaussian profile) and
NA = 1× 1014 cm−3 in the channel; the metal gate work
function is 4.3 eV. We simulated ballistic ID-VG curves with
VS = 0, VD = 50 mV and VG in the range 0.1 V to 0.7 V.

Figure 2 shows the electron distribution in different cross
sections in the middle of the channel or near the source
contact. For the wider device (W = 6 nm) and low bias the
charge is essentially confined to the center of the nanowire;
only at high values of VG the carrier concentration peak
splits and the highest charge density is obtained near the top
and bottom interfaces (Figure 2(e)). This anisotropy can be
explained by examining the contributions of the 6 conduction
valleys of Si, whose degeneracy is broken by confinement into
a 4-fold (∆4) and a 2-fold (∆2) sets (Figure 3) with different
masses my and mz . Due to these masses, electrons in ∆2

valleys are expected to be closer to the top and bottom sides
of the nanowire, while those in ∆4 valleys tend to stay closer
to the lateral sides. Due to the larger confinement masses,
∆2 valleys have, in general, lower energy sub-bands and,
as a consequence, a larger population. Therefore, the charge
peaks are located near the top and bottom Si/SiO2 interfaces
(Figure 2(e)). However, in the source and drain regions, for

W = 6 nm the sub-band energy difference is quite small,
so that the larger degeneracy compensates for this and the
population of ∆4 and ∆2 valleys is approximately the same.
Indeed, in Figure 2(f), we can see that in this case the electron
charge is distributed near the whole perimeter of the nanowire
with peaks corresponding to the corners.

On the contrary, for the W = 3 nm device, the charge is
always located at the center of the channel, as we can see
in Figures 2(a), (b), and (c): quantum effects keep the mobile
charge away from the silicon-insulator barrier for both ∆4 and
∆2 valleys. The electric field from the gate (for realistic values
of the gate bias for the considered oxide thickness) cannot
overcome such repulsion produced by quantum confinement.

The use of the aforementioned weighting scheme based
on the total energy of the super-particles allows us to obtain
reasonable low levels of statistical noise in the sub-threshold
region of all the considered devices for currents as low as
1× 10−4 µA, with a number of simulated particles in the
device Np = 5× 104 regardless of the applied bias (Figure 4).
The simulation time (after self-consistence is reached) needed
to achieve the results shown in Figure 4 depends on the device
size and applied bias: it ranges from 30 ps for the highest gate
bias to 1 ns for the widest device at VG = 0.1 V.

An almost ideal electrostatic behavior is obtained, as ex-
pected for gate-all-around devices with a lateral size in the
order of a few nanometers and an oxide thickness of 0.8 nm.
Indeed, the fitted values of the sub-threshold swing range
from ∼ 62 mV/dec for the narrowest device (W = 2 nm) to
∼ 68 mV/dec for the widest one (W = 6 nm). By comparing
the ID-VG curves of Figure 4, we can observe an increase of
the threshold voltage Vt as the nanowire width decreases. This
observation can be quantified by computing the value of Vt for
each curve by locating the maximum of the second derivative
of ID as a function of VG. The results are shown in Figure 5,
where a strong increase of Vt can be observed for small values
of W due to quantum confinement effects: as the device cross
section shrinks, the quantized sub-band levels raise. If we
represent ID as a function of the overdrive voltage, VG − Vt,
as in Figure 6(a), we can see that the curves corresponding
to the nanowires up to W = 4 nm collapse. This means that,
for these structures, the current is almost independent of the
nanowire size, and it only depends on the applied overdrive
voltage. This is confirmed by the inset of Figure 5 where the
current corresponding to VG = Vt is plotted as a function of
the nanowire lateral size. We can observe that such current
is almost constant up to W = 4 nm: this agrees with the
fact that for thinner nanowires the charge is not distributed
along the nanowire sides, but it is accumulated only near the
center. On the contrary, for the wider nanowires the current ID
grows with the nanowire size; as one would expect when the
charge distribution is located along the nanowire sides. Indeed,
when ID is normalized by the nanowire perimeter (4W ) as in
Figure 6(b) we can see that the curves corresponding to the
wider nanowires (4 nm, 5 nm and 6 nm) are now collapsing,
contrarily to the previous case. This behavior is also confirmed
by the inset of Figure 5: for the larger values of W the current
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Fig. 2. Charge distribution (in cm−3) in device cross sections for two different nanowire widths — 3nm for (a), (b), and (c), 6nm for (d), (e), and (f) —
and two different applied biases — 0.3V for (a) and (d), 0.6V for (b), (c), (e), and (f). In (a), (b), (d), and (e) the cross section is taken in the middle of
the channel, while (c) and (f) are in the source.
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is (approximately) proportional to W .

IV. CONCLUSION

This paper describes the improvements in our ballistic
MS-EMC simulator for 3D devices and shows the results
obtained for 〈110〉 square Si nanowire devices, highlighting
the importance of a full quantum description in the device
cross section plane. Quantum confinement effects play a major
role in devices with dimensions such as the ones considered
in this paper: a transition is observed between two regimes
where, depending on the nanowire lateral size, the charge can

0.1 0.2 0.3 0.4 0.5 0.6 0.7
10−5

10−4

10−3

10−2

10−1

100

101

SS=68mV/dec

SS=62mV/dec

VD = 50mV

VG (V)

I D
(µ
A
)

2.0 nm

2.5 nm

3.0 nm

3.5 nm

4.0 nm

5.0 nm

6.0 nm
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be considered distributed along the channel sides or only in
its center.
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