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1. Introduction

Distributive laws between monads were originally defined by Beck in [1] and correspond to monad struc-
tures on the composite of the two monads. They have found many applications in mathematics as well as 
computer science; see e.g. [8,10,18,25,26].

Recently, distributive laws have been used by Böhm and Ştefan [4,6] to construct new examples of 
duplicial objects [13], and hence cyclic homology theories. The paradigmatic example of such a theory is 
the cyclic homology HC(A) of an associative algebra A [11,24]. It was observed by Kustermans, Murphy, 
and Tuset [17] that the functor HC can be twisted by automorphisms of A. The aim of the present paper 
is to extend this procedure to any duplicial object defined by a distributive law.

Given a distributive law χ we define in Section 3.1 the category F(χ) of its factorisations. The main 
technical results are the definition of a monoidal structure on F(χ) (Lemma 3.2 and Proposition 3.3), 
a characterisation of the comonoids in F(χ) (Proposition 3.5), and the definition of actions of F(χ) on 
the category of admissible data (septuples in [4]) which turns the latter into an F(χ)-bimodule category 
(Theorem 3.8 and Corollary 3.9).

The remainder of the paper is devoted to examples. We begin by considering factorisations of distributive 
laws on Eilenberg–Moore categories, interpreting these as flat connections (Section 4.1). In particular, we 
present the twisting of cyclic homology in this framework (Section 4.2). We then describe examples arising 
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from Hopf algebras (Section 4.3). The final examples are concerned with BD-laws, braidings (Section 4.4), 
and quantum doubles of Hopf algebras (Section 4.5).

Throughout this paper, A,B, C . . . are categories, A, B, C, . . . are functors, and Greek letters are used to 
denote natural transformations. We use ◦ to denote composition of morphisms and vertical composition of 
natural transformations. The composition of functors and the horizontal composition of natural transforma-
tions will be denoted simply by concatenation. The identity morphism, functor and natural transformation 
is denoted by id. However, we denote the horizontal composition α idAβ by αAβ.

2. Preliminaries

In this section, we recall basic definitions and results that are needed later.

2.1. (Co)monads

Let A be a category.

Definition 2.1. A comonad on A is a triple C = (C, Δ, ε) where C is an endofunctor on A, and Δ: C −→ CC

and ε: C −→ idA are natural transformations such that

CΔ ◦ Δ = ΔC ◦ Δ, εC ◦ Δ = idC = Cε ◦ Δ,

that is, the two diagrams

C
Δ

Δ

CC

CΔ

CC
ΔC

CCC

C
Δ

Δ

CC

Cε

CC
εC

C

commute.

In other words, a comonad is a comonoid (or coalgebra) in the monoidal category [A, A] of endofunctors 
on A (with composition as tensor product). Dually, a monad on a category C is a monoid (algebra) in [C, C].

2.2. Module categories

Next, we recall the notion of a module category (also known as an M-category) over a monoidal category 
(M, ⊗, 1), see e.g. [2]. For the purpose of this paper, all monoidal categories and their module categories 
are strict, and by abuse of notation we will write M to refer to the whole triple (M, ⊗, 1).

Definition 2.2. A left module category for M is a pair (C, �) where C is a category and �: M × C −→ C is 
a functor such that we have functorial identities

1 � P = P and X � (Y � P ) = (X ⊗ Y ) � P

for all objects X, Y in M and P in C. We call � the left action of M on C.

Dually, one defines a right module category (D, �). A bimodule category is a triple (C, �, �) where (C, �)
and (C, �) are right respectively left module categories and the actions commute, i.e. for all objects X, Y
in M and P in C we have
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X � (P � Y ) = (X � P ) � Y,

again functorially in X, Y and P . We immediately have the following.

Lemma 2.3. Let (C, �) and (D, �) be left respectively right module categories. Then C × D is a bimodule 
category with actions given by

X � (P,Q) � Y = (X � P,Q � Y )

for all objects X, Y in M, P in C and Q in D.

2.3. Eilenberg–Moore categories

The comonads we are mostly interested in arise as restrictions of monads to their Eilenberg–Moore 
categories in the sense of [21]:

Definition 2.4. Let (C, �) be a left module category for a monoidal category M, and let B = (B, μ, η) be a 
monoid in M. The Eilenberg–Moore category of B, denoted by CB, is the category whose objects are pairs 
(X, α), where X is an object of C and α: B � X −→ X is a morphism in C such that the diagrams

(B ⊗B) � X

μ�idX

B � (B � X)
idB�α

B � X

α

B � X
α

X

1 � X
η�idX

B � X

α

X

commute. The morphisms f : (X, α) −→ (X ′, α′) are morphisms f : X −→ X ′ in C such that the diagram

B � X

α

idB�f
B � X ′

α′

X
f

X ′

commutes.

Now observe that the monoid B defines a comonad B̃ = (B̃, Δ̃, ̃ε) on A = CB where B̃ is defined on 
objects and morphisms by

B̃(X,α) = (B � X,μ � idX), B̃(f) = idB � f,

and Δ̃, ε̃ are defined on objects (X, α) by

B � X = B � (1 � X)
idB�(η�idX)

B � (B � X) B � X α−→ X

respectively.
In particular, every category C is in an obvious way a module category over [C, C]. In this case, our 

definition of Eilenberg–Moore category of a monad B on C is the same as the usual definition [19, p. 139].
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2.4. Distributive laws

Next we define distributive laws. Note that we consider them between (co)monads and arbitrary endo-
functors as is common in the computer science literature, see e.g. [25].

Definition 2.5. Let T = (T, Δ, ε) be a comonad on A and let C be an endofunctor on A. A distributive 
law between the comonad T and the endofunctor C is a transformation χ: TC −→ CT such that the two 
diagrams

TC

ΔC

χ
CT

CΔ
CTT

TTC
Tχ

TCT

χT

TC
χ

εC

CT

Cε

C

commute. We denote this by χ: T −→ C. Analogously, we define a distributive law χ: T −→ C between an 
endofunctor T and a comonad C. A comonad distributive law χ: T −→ C is a transformation χ which is a 
distributive law between endofunctors and comonads in both ways.

Dually, we can define distributive laws involving monads; distributive laws from a monad to a comonad 
are usually called mixed distributive laws.

One application of distributive laws is to lift endofunctors to Eilenberg–Moore categories: let B be a 
monad on a category C and θ: B −→ D be a distributive law. We define a functor D̃: CB −→ CB as follows. 
On objects we define

D̃(X,α) = (DX,Dα ◦ θX)

and we define D̃f = Df on morphisms. The distributive law θ lifts to give one θ: B̃ −→ D̃ where B̃ is the 
comonad described in Section 2.3. If D is part of a comonad D = (D, Δ, ε), and θ is a mixed distributive 
law B −→ D, then D̃ is part of a comonad

D̃ = (D̃,Δ, ε)

and θ lifts to a comonad distributive law θ: B̃ −→ D̃.
See [1,7] for more details on distributive laws.

2.5. The categories of χ-coalgebras

Let T =
(
T,ΔT , εT

)
and C =

(
C,ΔC , εC

)
be comonads on A, and let χ: T −→ C be a distributive law.

Definition 2.6. A right χ-coalgebra is a triple (M, X , ρ) where X is a category, M : X −→ A is a functor and 
ρ: TM −→ CM is a natural transformation such that the diagrams

TM
ΔTM

ρ

TTM
Tρ

TCM

χM

CM
ΔCM

CCM CTM
Cρ

TM
εTM

ρ

M CM
εCM
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commute. A morphism of right χ-coalgebras between (M, X , ρ) and (M ′, X ′, ρ′) is a pair (ϕ, F ), where 
F : X −→ X ′ is a functor and ϕ: M −→ M ′F is a natural transformation such that the diagram

TM
Tϕ

ρ

TM ′F

ρ′F

CM
Cϕ

CM ′F

commutes. We define composition of morphisms by

(ϕ′, F ′) ◦ (ϕ,F ) = (ϕ′F ◦ ϕ, F ′F )

and we define identity morphisms by id(M,X ,ρ) = (idM , idX ). We denote the category of right χ-coalgebras 
by R(χ).

Dually, we define the category L(χ) of left χ-coalgebras (N, Y, λ).

2.6. The construction of Böhm and Ştefan

Finally, we recall the construction of duplicial functors from a comonad distributive law χ: T −→ C on a 
category A due to Böhm and Ştefan.

Definition 2.7. The category of admissible data over χ is the product category

S(χ) := R(χ) × L(χ).

Admissible data are called admissible septuples in [4].

To every admissible datum (M, X , ρ, N, Y, λ) there is an associated duplicial functor X −→ Y defined by

D•(M,X , ρ,N,Y, λ) = NT •+1M

which is given objectwise by taking the bar resolution of M with respect to the comonad T, and then 
applying the functor N . If Y is an abelian category, we can apply the duplicial functor to an object X in X
resulting in a duplicial object in Y of which we can take the cyclic homology.

This construction, which unifies and generalises the definition of the cyclic homology of associative 
algebras and Hopf algebras, is detailed in [4,6].

3. Theory

3.1. The category of factorisations F(χ)

Throughout this section, let T =
(
T,ΔT , εT

)
and C =

(
C,ΔC , εC

)
be comonads on a category A, and 

let χ: T −→ C be a distributive law. The main definition of the present paper is the following:

Definition 3.1. A factorisation of χ is a triple (Σ, σ, γ) where Σ is an endofunctor on A, and σ: T −→ Σ and 
γ: Σ −→ C are distributive laws satisfying the Yang–Baxter condition; that is, the hexagon
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ΣTC
Σχ

ΣCT γT

TΣC

σC

Tγ

CΣT

TCΣ
χΣ

CTΣ Cσ

commutes. A morphism α: (Σ, σ, γ) −→ (Σ′, σ′, γ′) of factorisations is a natural transformation α: Σ −→ Σ′

which is compatible with T and C in the sense that the diagrams

TΣ Tα

σ

TΣ′

σ′

ΣT
αT

Σ′T

ΣC

γ

αC Σ′C

γ′

CΣ
Cα

CΣ′

commute. There are identity morphisms id(Σ,σ,γ) = idΣ, and composition of morphisms is given by the 
vertical composite. This defines the category of factorisations which we denote by F(χ).

Similarly, we define factorisations of a monad or mixed distributive law.

3.2. The monoidal structure

We define a functor

⊗:F(χ) ×F(χ) −→ F(χ)

as follows. On objects we define

(Σ, σ, γ) ⊗ (Σ′, σ′, γ′) = (ΣΣ′,Σσ′ ◦ σΣ′, γΣ′ ◦ Σγ′)

and for two morphisms α, β we define α⊗β to be αβ, the horizontal composite of the natural transformations.

Lemma 3.2. The assignment ⊗ is a well-defined functor.

Proof. Firstly, ⊗ is well-defined on objects if Σσ′ ◦ σΣ′ and γΣ′ ◦ Σγ′ satisfy the Yang–Baxter condition. 
Consider the following diagram

ΣΣ′TC
ΣΣ′χ

ΣΣ′CT Σγ′T

ΣTΣ′C

Σσ′C

ΣTγ′

ΣCΣ′T
γΣ′T

TΣΣ′C

TΣγ′

σΣ′C

ΣTCΣ′
ΣχΣ′

ΣCTΣ′ ΣCσ′

γTΣ′

CΣΣ′T

TΣCΣ′ σCΣ′

TγΣ′

CΣTΣ′ CΣσ′

TCΣΣ′
χΣΣ′

CTΣΣ′ CσΣ′

The left square commutes by naturality of σ and the right square commutes by naturality of γ. The inner 
hexagons commute by the Yang–Baxter conditions. Therefore, the outer hexagon commutes, so the required 
condition is satisfied.
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Secondly, let

α: (Σ, σ, γ) −→ (Γ, κ, ν) and β: (Σ′, σ′, γ′) −→ (Γ′, κ′, ν′)

be morphisms in F(χ). Consider the diagram

TΣΣ′ TαΣ′

σΣ′

TΓ′Σ′

κΣ′

TΓβ
TΓΓ′

κΓ′

ΣTΣ′

Σσ′
αTΣ′

ΓTΣ′

Γσ′

ΓTβ
ΓTΓ′

Γκ′

ΣΣ′T
αΣ′T

ΓΣ′T
ΓβT

ΓΓ′T

The bottom-left square commutes by naturality of α, the top-right square commutes by naturality of κ, and 
the two remaining inner squares commute since α and β are compatible with T . Therefore, the outer square 
commutes and α⊗ β is compatible with T . A similar argument shows that α⊗ β is compatible with C. It 
is clear that ⊗ respects composition of morphisms and identity morphisms. Therefore, ⊗ is well-defined on 
morphisms. �

Let 1 denote the trivial factorisation (idA, idT , idC).

Proposition 3.3. The triple (F(χ), ⊗, 1) is a strict monoidal category.

Proof. It is clear that T ⊗ 1 = 1 ⊗ T = T for all factorisations T . Consider the products of factorisations

((Σ, σ, γ) ⊗ (Σ′, σ′, γ′)) ⊗ (Σ′′, σ′′, γ′′)

= (ΣΣ′,Σσ′ ◦ σΣ′, γΣ′ ◦ Σγ′) ⊗ (Σ′′, σ′′, γ′′)

= (ΣΣ′Σ′′,ΣΣ′σ′′ ◦ Σσ′Σ′′ ◦ σΣ′Σ′′, γΣ′Σ′′ ◦ Σγ′Σ′′ ◦ ΣΣ′γ′′)

and

(Σ, σ, γ) ⊗ ((Σ′, σ′, γ′) ⊗ (Σ′′, σ′′, γ′′))

= (Σ, σ, γ) ⊗ (Σ′Σ′′,Σ′σ′′ ◦ σ′Σ′′, γ′Σ′′ ◦ Σ′γ′′)

= (ΣΣ′Σ′′,ΣΣ′σ′′ ◦ Σσ′Σ′′ ◦ σΣ′Σ′′, γΣ′Σ′′ ◦ Σγ′Σ′′ ◦ ΣΣ′γ′′).

These are equal so ⊗ is an associative tensor product (observe that all equalities are functorial). �
Remark 3.4. If we ignore set theoretic issues, we can define a 2-category

dist := Cmd(Cmd(CATop)op)

where CAT is the 2-category of categories, functors and natural transformations, Cmd denotes taking the 
2-category of comonads, and op denotes reversal of 1-cells. The 0-cells of this 2-category are comonad 
distributive laws χ and we have

F(χ) = dist(χ, χ)
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which is a strict monoidal category. This gives another proof of Proposition 3.3. See [22,3] for the definition 
of Cmd.

3.3. (Co)monads as (co)monoids in F(χ)

By definition, a pair of morphisms

Δ: (Σ, σ, γ) −→ (Σ, σ, γ) ⊗ (Σ, σ, γ), ε: (Σ, σ, γ) −→ 1

is a pair of natural transformations Δ: Σ −→ ΣΣ and ε: Σ −→ 1 that are compatible with the distributive 
laws σ and γ. This gives us the following characterisation of comonoids in F(χ).

Proposition 3.5. A factorisation (Σ, σ, γ) is a comonoid in F(χ) if and only if Σ is part of a comonad and 
σ, γ are distributive laws of comonads.

Dually, a factorisation (Σ, σ, γ) is a monoid in F(χ) if and only if Σ is part of a monad and σ, γ are 
mixed distributive laws between monads and comonads.

Corollary 3.6. Let χ: idA −→ idA be the trivial distributive law given by the identity. Then (T, Δ, ε) is a 
comonad on A if and only if (T, idT , idT ) is a comonoid in F(χ), and (B, μ, η) is a monad on A if and only 
if (B, idB , idB) is a monoid in F(χ).

3.4. Module categories for F(χ)

We define a functor �: F(χ) ×R(χ) −→ R(χ) as follows. On objects we define

(Σ, σ, γ) � (M,X , ρ) = (ΣM,X , γM ◦ Σρ ◦ σM)

and on morphisms we define α � (ϕ, F ) to be the pair (αϕ, F ).

Proposition 3.7. The assignment � is a well-defined functor.

Proof. Consider the diagram

TΣM

σM

ΔT ΣM
TTΣM

TσM
TΣTM

σTM

TΣρ
TΣCM

σCM

TγM
TCΣM

χΣM

ΣTM

Σρ

ΣΔTM
ΣTTM

ΣTρ
ΣTCM

ΣχM

CTΣM

CσM

ΣCTM
γTM

ΣCρ

CΣTM

CΣρ

ΣCM

γCM

ΣΔCM
ΣCCM

γCM
CΣCM

CγM

CΣM
ΔCΣM

CCΣM
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The top-left and bottom rectangles commute by the distributive law axioms, the middle-left rectangle com-
mutes because (M, X , ρ) is a right χ-coalgebra, the top-right diagram commutes by the Yang–Baxter con-
dition, and the remaining squares commute by naturality of σ, γ. Therefore, the outer rectangle commutes.

Consider the triangle

TΣM

εT ΣM

σM ΣTM
ΣεTM

Σρ
ΣCM

ΣεCM

γM
CΣM

εCΣM

ΣM

The middle triangle commutes because (M, X , ρ) is a right χ-coalgebra, and the other two inner triangles 
commute by the distributive law axioms. Therefore, the outer triangle commutes. This shows that � is 
well-defined on objects.

Let (ϕ, F ): (M, X , ρ) −→ (M ′, X ′, ρ′) and α: (Σ, σ, γ) −→ (Σ′, σ′, γ′) be morphisms of right χ-coalgebras 
and factorisations, respectively. Consider the diagram

TΣM

σM

TαM
TΣ′M

σM ′

TΣ′ϕ
TΣ′M ′F

σ′M ′F

ΣTM

Σρ

αTM Σ′TM

Σ′ρ

Σ′Tϕ
Σ′TM ′F

Σ′ρ′F

ΣCM
αCM

Σ′CM
Σ′Cϕ

Σ′CM ′F

The top-left square commutes since α is compatible with T , the top-right square commutes by naturality 
of σ, the bottom-left square commutes by naturality of α, and the bottom-right square commutes since 
(ϕ, F ) is a right χ-coalgebra morphism. Thus the outer square commutes, which shows that α� (ϕ, F ) is a 
right χ-coalgebra morphism.

It is clear that � respects identities and composition of morphisms (because the vertical and horizontal 
compositions of natural transformations are compatible with each other), so � is well-defined on mor-
phisms. �

Dually, we also define a functor

�:L(χ) ×F(χ) −→ L(χ).

Theorem 3.8. The category R(χ) is a strict left module category for F(χ), with left action given by the 
functor �. Furthermore, the category L(χ) is a strict right module category for F(χ), with right action 
given by the functor �.

Proof. We will prove only the first statement, as the second follows by a similar argument. It is clear that 1
acts as the identity. Let (Σ, σ, γ), (Σ′, σ′, γ′) be two factorisations and let (M, X , ρ) be a right χ-coalgebra. 
We have

((Σ, σ, γ) ⊗ (Σ′, σ′, γ′)) � (M,X , ρ)

= (ΣΣ′,Σσ′ ◦ σΣ′, γΣ′ ◦ Σγ′) � (M,X , ρ)

= (ΣΣ′M,X , γΣ′M ◦ Σγ′M ◦ ΣΣ′ρ ◦ Σσ′M ◦ σΣ′M)
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and

(Σ, σ, γ) � ((Σ′, σ′, γ′) � (M,X , ρ))

= (Σ, σ, γ) � (ΣM,X , γM ◦ Σρ ◦ σM)

= (ΣΣ′M,X , γΣ′M ◦ Σγ′M ◦ ΣΣ′ρ ◦ Σσ′M ◦ σΣ′M)

These are functorially equal, so � is a left action of F(χ). �
Corollary 3.9. The category S(χ) is a strict bimodule category for F(χ).

Proof. This follows immediately by applying Lemma 2.3 to Theorem 3.8. �
4. Examples

4.1. Flat connections

Let B = (B, μ, η) be a monad on a category C. The forgetful functor U : CB −→ C has a left adjoint F
defined by

F (X,α) = (BX,μX), F (f) = Bf.

The unit of this adjunction is given by η and the counit is ε̃(X,α) = α. Let B̃ denote the functor FU and let 
Δ̃ denote the natural transformation Fη U . The adjunction gives rise to a comonad B̃ = (B̃, Δ̃, ̃ε), which is 
the same as the comonad discussed in Section 2.3.

Let Σ: CB −→ CB be an endofunctor. For every object (X, α) in CB there are natural isomorphisms

CB(B̃Σ(X,α),ΣB̃(X,α)) ∼= C(UΣ(X,α), UΣB̃(X,α))

given by the adjunction, so there is a one-to-one correspondence between natural transformations σ: B̃Σ −→
ΣB̃ and natural transformations ∇: UΣ −→ UΣB̃. In fact, σ is a distributive law if and only if the diagrams

UΣ ∇

∇

UΣB̃

∇B̃

UΣB̃
UΣΔ̃

UΣB̃B̃

UΣ ∇
UΣB̃

UΣε̃

UΣ

commute.

Definition 4.1. We say that the natural transformation σ is a connection if ε̃ is compatible with σ, i.e. the 
second diagram above commutes for the corresponding natural transformation ∇. We say that a connection 
σ is flat if Δ̃ is compatible with σ, i.e. σ is a distributive law, or equivalently, both diagrams above commute.

The terminology is motivated by the special case discussed in detail in the following section.

4.2. (A, A)-bimodules

Let k be a commutative ring and let A be a unital associative algebra over k. Let C = A-Mod be the 
category of left A-modules. The functor B = − ⊗k A: C −→ C, together with the natural transformations
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μM :M ⊗k A⊗k A −→ M ⊗k A ηM :M −→ M ⊗k A

m⊗ a⊗ b �−→ m⊗ ab m �−→ m⊗ 1

defines a monad B on C which lifts to a comonad B̃ on CB. The latter is isomorphic to the category of 
(A, A)-bimodules (with symmetric action of k).

The functor D = A ⊗k −: C −→ C, together with the natural transformations

ΔM :A⊗k M −→ A⊗k A⊗k M εM :A⊗k M −→ M

a⊗m �−→ a⊗ 1 ⊗m a⊗m �−→ am

defines a comonad D on C. There is a mixed distributive law θ: B −→ D given by rebracketing on components

θM : (A⊗k M) ⊗k A −→ A⊗k (M ⊗k A)

so this lifts to a comonad distributive law θ: B̃ −→ D̃.
Let N be an (A, A)-bimodule and Σ: CB −→ CB be the functor defined by Σ(M) = M ⊗A N . We have 

that ΣD̃ = D̃Σ so the identity idΣD̃: Σ −→ D is a distributive law.
In this case, the components of a natural transformation ∇: UΣ −→ UΣB̃ are given by a left A-linear 

map

∇M :M ⊗A N −→ (M ⊗k A) ⊗A N ∼= M ⊗k N

The corresponding natural transformation σ: B̃ −→ Σ is given by

σM : (M ⊗A N) ⊗k A −→ (M ⊗k A) ⊗A N ∼= M ⊗k N

(m⊗A n) ⊗ b �−→ ∇M (m⊗A n)b.

The natural transformation ∇ defines a connection if and only if each ∇M splits the quotient map M ⊗k

N −→ M ⊗A N . Taking M = A yields an A-linear splitting of the action A ⊗k N −→ N , so N is k-relative 
projective. Conversely, given a splitting n �→ n(−1) ⊗ n(0) of the action, we obtain ∇M as ∇M (m ⊗A n) =
mn(−1) ⊗ n(0).

Thus we have:

Proposition 4.2. The functor Σ admits a connection σ if and only if N is k-relative projective as a left 
A-module.

Composing ∇M with the noncommutative De Rham differential

d:A −→ Ω1
A,k, a �−→ 1 ⊗ a− a⊗ 1

gives the notion of connection in noncommutative geometry [12, III.3.5].
If N is not just k-relative projective but k-relative free, i.e. N ∼= A ⊗k V as left A-modules, for some 

k-module V , then the assignment ∇M (m ⊗A (a ⊗ v)) = ma ⊗ (1 ⊗ v) defines a flat connection. Thus we 
have:

Proposition 4.3. The triple (Σ, σ, idΣD̃) is a factorisation of θ.

In particular, let σ: A −→ A be an algebra map and N = Aσ, the (A, A)-bimodule which is A as a 
left A-module with right action of a ∈ A given by right multiplication by σ(a). Then we have Σ(M) =



1414 U. Krähmer, P. Slevin / Journal of Pure and Applied Algebra 220 (2016) 1403–1418
M ⊗A Aσ
∼= Mσ. Since Aσ is free as a left A-module we get a factorisation (Σ, σ, idΣD̃) by Proposition 4.3, 

where σ: B̃ −→ Σ is the flat connection defined on components by

σM :Mσ ⊗k A −→ (M ⊗k A)σ
m⊗ a �−→ m⊗ σ(a).

Note that we use σ to denote both the algebra map and the flat connection.
From the general theory developed in Section 3 we obtain therefore an action of the group of endomor-

phisms of A on the category of admissible data for θ. In particular, we can act on the standard cyclic object 
associated to A [11,24], which corresponds to the following admissible datum.

Consider A as a functor A: {∗} −→ CB from the one-morphism category to the category of 
(A, A)-bimodules. Since B̃A = D̃A = A ⊗k A we have a natural transformation ρ = idA⊗kA: B̃A −→ D̃A. 
The triple (A, {∗}, ρ) is a right θ-coalgebra.

Considering (A, A)-bimodules as either left or right Ae := A ⊗k Aop-modules, we view the zeroth 
Hochschild homology as a functor H = − ⊗Ae A: CB −→ k-Mod. We define a natural transformation 
λ: HD̃ −→ HB̃ by

λM : (A⊗k M) ⊗Ae A −→ (M ⊗k A) ⊗Ae A ∼= M

(a⊗m) ⊗Ae b �−→ mba

The pair (H, k-Mod, λ) is a left θ-coalgebra, and the duplicial k-module associated to the admissible datum 
(A, {∗}, ρ, H, k-Mod, λ) is indeed the cyclic object defining the cyclic homology HC(A).

The cyclic homology of the duplicial object associated to the admissible datum

(Σ, σ, idΣD̃) � (A, {∗}, ρ,H, k-Mod, λ) = (Aσ, {∗}, ρ ◦ σA, H, k-Mod, λ)

is HCσ(A), the σ-twisted cyclic homology of A. This was first considered in [17] and is discussed in Section 
5.2 of [14] in the context of Hopf algebroids. Thus the action of the category of factorisations generalises 
this twisting procedure.

4.3. Mixed factorisations

Let B = (B, μ, η) be a monad on a category C and let Σ: CB −→ CB be a functor. In this section, we 
consider a special case of Section 4.1: when the functor Σ is a lift of a functor S: C −→ C, i.e. there is a 
commutative diagram

CB

U

Σ CB

U

C
S

C

Let D be a comonad on C and let θ: B −→ D be a distributive law. Distributive laws γ: S −→ D lift to 
give distributive laws γ: Σ −→ D̃, and if γ is part of a factorisation (S, σ, γ) of θ: B −→ D then we get a 
factorisation (Σ, σ, γ) of θ: B̃ −→ D̃.

We consider three special cases of this construction. The distributive laws used therein are instances of 
one defined on the category of right U -modules, where U is a left Hopf algebroid, which is defined and 
discussed in [15].
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Example 4.4. Suppose that σ: B −→ B is a monad morphism which is compatible with θ; that is σ: B −→ B

is a natural transformation such that the three diagrams

BB

μ

σσ
BB

μ

B
σ

B

idC

η

η
B

σ

B

BD
σD

θ

BD

θ

DB
Dσ

DB

commute. The first two diagrams say that σ: B −→ idC is a distributive law. The triple (idC , σ, idSD) is a 
factorisation of θ: B −→ D, so we get a factorisation (Σ, σ, idΣD̃) of θ: B̃ −→ D̃. Explicitly, Σ: CB −→ CB is 
given by

Σ(X,α) = (X,α ◦ σX), Σ(f) = f.

Observe that the composition of monad morphisms corresponds under this assignment to the monoidal 
structure in F(θ), so when viewing the monad morphisms as a monoidal category with composition as 
tensor product and the identity idB as unit object, we have:

Proposition 4.5. The assignment σ �−→ (Σ, σ, idΣD̃) is a monoidal functor.

The factorisation given in Proposition 4.3 arises in this way.

Example 4.6. Let k be a commutative ring and let U be a Hopf algebra over k. We use Sweedler notation 
to denote the coproduct

Δ(u) = u(1) ⊗ u(2).

See [23,20] for more information about Hopf algebras.
Consider the category C = k-Mod. The functor B = − ⊗k U : C −→ C is part of a monad B where 

the multiplication is given by the multiplication of the algebra U and the unit is given by the unit of the 
algebra U . Dually, the functor D = U ⊗k −: C −→ C is part of a comonad, whose structure is given by the 
comultiplication and counit of the coalgebra U . There is a mixed distributive law θ: B −→ D given by

θX :U ⊗k X ⊗k U −→ U ⊗k X ⊗k U

u⊗ x⊗ v �−→ S(v(2))u⊗ x⊗ v(1).

Let P be any right U -module. This defines a functor P ⊗k −: C −→ C. The maps

σX :P ⊗k X ⊗k U −→ P ⊗k X ⊗k U

p⊗ x⊗ u �−→ pu(1) ⊗ x⊗ u(2)

define a distributive law σ: B −→ P ⊗k − and the maps

γX :P ⊗k U ⊗k X −→ U ⊗k P ⊗k X

p⊗ u⊗ x �−→ u⊗ p⊗ x

define a distributive law γ: P ⊗k − −→ D. The triple (P ⊗k −, σ, γ) is a factorisation of θ: B −→ D, and so 
this gives a factorisation of θ: B̃ −→ D̃ in the category CB ∼= Mod -U .
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Example 4.7. Let C = k-Mod where k is a commutative ring, and consider the functor B = U ⊗k−: C −→ C. 
Similarly to Example 4.6, this is simultaneously part of a monad B and a comonad D. There is a mixed 
distributive law θ: B −→ D given by

θX :U ⊗k U ⊗k X −→ U ⊗k U ⊗k X

u⊗ v ⊗ x �−→ vS(u(2)) ⊗ u(1) ⊗ x

and a distributive law τ : B −→ B given by

τX :U ⊗k U ⊗k X −→ U ⊗k U ⊗k X

u⊗ v ⊗ x �−→ v ⊗ u⊗ x.

If U is commutative (or even just if the antipode S maps into the centre of U), then (B, τ, θ) is a factorisation 
of θ: B −→ D and so (B̃, τ, θ) is a factorisation of θ: B̃ −→ B̃ in CB ∼= U -Mod.

4.4. Braided distributive laws

Let χ: T −→ C be a comonad distributive law on a category A.

Definition 4.8. A distributive law τ : T −→ T between the comonad T and the endofunctor T is braided with 
respect to χ if the hexagon

TTC
Tχ

TCT χT

TTC

τC

Tχ

CTT

TCT
χT

CTT Cτ

commutes. Dually, we say that a distributive law ϕ: C −→ C between the endofunctor C and the comonad 
C is braided with respect to χ if a similar hexagon commutes.

Clearly, τ is braided if and only if (T, τ, χ) is a factorisation of χ, since the above hexagon is just the 
Yang–Baxter condition in that case. In the dual case, (C, χ, ϕ) would be a factorisation of χ.

Example 4.9. In Example 4.7, the distributive law τ is braided with respect to θ.

Example 4.10. Let τ : T −→ T be a BD-law. These are defined in [16] and are exactly those distributive laws 
which are braided with respect to themselves. Thus (T, τ, τ) is a factorisation of τ .

Example 4.11. For this example we relax the assumption that monoidal categories are strict. Let A be a 
braided monoidal category with tensor product ⊗, associator morphisms α and braiding morphisms b. Let 
U = (U, ΔU , εU ) and V = (V, ΔV , εV ) be comonoids in A. The comonoids U, V define two comonads U, 
V with endofunctors U ⊗ −, V ⊗ − respectively, and three distributive laws χ: U −→ V, τ : U −→ U and 
ϕ: V −→ V defined by
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U ⊗ (V ⊗X)
α−1

U,V,X

(U ⊗ V ) ⊗X
bU,V ⊗id

(V ⊗ U) ⊗X
αV,U,X

V ⊗ (U ⊗X)

U ⊗ (U ⊗X)
α−1

U,U,X

(U ⊗ U) ⊗X
bU,U⊗id

(U ⊗ U) ⊗X
αU,U,X

U ⊗ (U ⊗X)

V ⊗ (V ⊗X)
α−1

V,V,X

(V ⊗ V ) ⊗X
bV,V ⊗id

(V ⊗ V ) ⊗X
αV,V,X

V ⊗ (V ⊗X)

respectively. The distributive laws τ and ϕ are both braided with respect to χ so we get two factorisations 
(U ⊗ −, τ, χ) and (V ⊗ −, χ, ϕ) of χ. By Proposition 3.5 these are both comonoids in F(χ). This example 
comes from the dual of Example 1.11 in [5].

4.5. Quantum doubles

In our final example, we consider the distributive laws corresponding to quantum doubles: let B and C
be two Hopf algebras over a commutative ring k and R ∈ C ⊗k B be an invertible 2-cycle, meaning that we 
have

(ΔC ⊗k idB)(R) = R13R23, (idC ⊗k ΔB)(R) = R12R13,

(idC ⊗k SB)(R) = R−1, (SC ⊗k idB)(R) = R−1,

where R−1 refers to the multiplicative inverse in the tensor product algebra C ⊗k B and subscripts denote 
components in C ⊗k C ⊗k B respectively C ⊗k B ⊗k B. We refer to [9] for more background information.

The coalgebras B and C define comonads T and C on A = k-Mod given by B ⊗k − and C ⊗k − with 
structure maps given by the coproducts and the counits. The 2-cycle R defines a distributive law χ: T −→ C

given by

χX :B ⊗k C ⊗k X −→ C ⊗k B ⊗k X

b⊗ c⊗ x �−→ R(c⊗ b)R−1 ⊗ x.

In this case, every (B, Cop)-bimodule M , that is, a k-module M with two commuting left actions of B
and C, gives rise to a factorisation of χ: let Σ: A −→ A be the functor M ⊗k −. We define distributive laws

σX :B ⊗k M ⊗k X −→ M ⊗k B ⊗k X, γX :M ⊗k C ⊗k X −→ C ⊗k M ⊗k X,

b⊗m⊗ x �−→ R12(m⊗ b⊗ x), m⊗ c⊗ x �−→ R12(c⊗m⊗ x).

Then a straightforward computation shows that (Σ, σ, γ) is a factorisation of χ.
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