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Abstract 

Fibronectin fibrillogenesis is the physiological process by which cells elaborate a fibrous FN 

matrix. Poly(ethyl acrylate), PEA, has been described to induce a similar process upon simple 

adsorption of fibronectin (FN) from a protein solution - in the absence of cells -leading to the 

so-called material-driven fibronectin fibrillogenesis. Poly(methyl acrylate), PMA, is a 

polymer with very similar chemistry to PEA, on which FN is adsorbed keeping the globular 

conformation of the protein in solution. We have used radical polymerisation to synthesise 

copolymers with controlled EA/MA ratio seeking to modulate the degree of FN 

fibrillogenesis. The physico-chemical properties of the system were studied using dynamic-

mechanical analysis, differential scanning calorimetry and water contact angle. Both the 

degree of FN fibrillogenesis and the availability of the integrin binding region of FN directly 

depend on the percentage of EA in the copolymer, whereas the same total amount of FN was 

adsorbed regardless the EA/MA ratio. Cell morphology adhesion and differentiation of 

murine C2C12 were shown to depend on the degree of FN fibrillogenesis previously attained 

on the material surface. Myogenic differentiation was enhanced on the copolymers with 

higher EA content, i.e. more interconnected FN fibrils. 

Keywords: Fibronectin, Fibrillogenesis, Biointerface, Bioactive substrates, Cell adhesion, 

Cell differentiation. 
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1. Introduction 

The chemical and physical properties of biomaterials determine the cell/material interaction.
1–

3
 The first biological event which occurs on the material surface when biomaterials are either 

studied in vitro or implanted in vivo is protein adsorption from culture media or physiological 

fluids respectively.
4–6

 Differences in protein absorption and configuration on the substrate 

play a pivotal role in cellular behaviour; including cell adhesion, proliferation, migration and 

differentiation.
7–9

 

Integrins are the major receptors for proteins adsorbed on material surface and trigger cell 

adhesion and activate diverse intracellular signalling pathways to regulate cell fate.
10,11

 

Integrins are also involved in assembling fibrillar matrix networks from soluble secreted 

matrix proteins, e.g. the formation of fibrillar fibronectin matrices.
12

  

Fibronectin (FN) is organised into a fibrillar network through direct interactions with cell 

surface receptors.
13

 FN fibrillogenesis is a cell-mediated matrix assembly process during 

which FN undergoes conformational changes that expose fibronectin-binding sites and 

promote intermolecular interactions needed for fibril formation.
14

 FN fibrillar matrices have 

diverse functional properties: provide binding sites for other ECM proteins, act as a structural 

support for cells and transduce cell signalling.
13,15

  

Several studies have demonstrated that surface chemistry is a key parameter that determines 

the amount and conformation of adsorbed FN.
16–18

 In previous works, we have shown the 

ability of certain material surfaces (in particular poly(ethyl acrylate) – PEA) to promote the 

organization of fibronectin in to physiological-like (nano)networks, a process that we named 

material-driven fibronectin fibrillogenesis.
19–22

 There, the adsorption of individual FN 

molecules on the material surface allows the exposure of FN self-assembly sites to drive FN-

FN interaction and the organisation of (nano)networks at the material interface, in absence of 
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cells. After FN adsorption on PEA, a biologically active FN (nano)network is spontaneously 

assembled on the material surface. This phenomenon does not occur on poly(methyl acrylate) 

(PMA), which differs from PEA in one single carbon in the side chain, where FN is adsorbed 

keeping the globular conformation.
20,21

 Other ways to induce the formation of fibronectin 

fibrils on material surface, mostly triggered by force, have been reported elsewhere.
20,23–25

 

Here, a series of copolymers with controlled ethyl acrylate/methyl acrylate (EA/MA) ratio 

were synthetised seeking to modulate the degree of FN fibrillogenesis. We investigated FN 

adsorption and conformation as a function of the amount of EA in the copolymers. 

Afterwards, we assessed the effect of the degree of fibrillogenesis on cell adhesion and cell 

differentiation using C2C12 myoblasts. 

The main novelty of this work is that we have now a way to control the degree of this process 

of organisation of fibronectin into nanonetworks by using the percentage of ethyl acrylate in a 

random copolymer that consitsts of EA (which polymer induces fibrillogenesis), and MA 

(which polymer adsorbs FN in a globular shape). Overall, this paper shows that the 

composition of the copolymer, i.e. the EA fraction, determine the degree of fibrillogenesis 

and in turn this controls cell fate, including cell differentiation. 

2. Materials and methods 

2.1. Materials 

Copolymers sheets (ca. 0.4 mm of thickness) were obtained by radical polymerisation of a 

solution of ethyl acrylate (EA), methyl acrylate, MA, (Sigma-Aldrich, Steinheim, Germany) 

and merging ratios of EA/MA of 70/30, 50/50 and 30/70 wt.% using 1 % wt benzoin (98% 

pure, Scharlau) as photoinitiator. The reaction was carried out in ultraviolet light for 24 h. 

After polymerisation, low molecular weight substances were extracted from the material by 

drying in vacuum to constant weight. Besides, pure poly(ethyl acrylate), PEA, and 
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poly(methyl acrylate), PMA, sheets were prepared in the same way. Thereafter, materials with 

the afore-mentioned composition will be named as PEA100, PEA70, PEA50, PEA30 and 

PMA100.  

Thin films were prepared using a spin-coater (Brewer Science). Each one of the synthesised 

polymers and copolymers was dissolved in toluene at concentration between 4 and 6 wt%. 

Spin casting was performed on 12 and 25 mm glass coverslips at 3000 rpm for 30 s. Samples 

were dried in vacuum at 60 °C before further characterization. The obtained films are not 

porous and have approximately 500 nm of thickness.  

2.2. Physico-chemical characterization of materials 

2.2.1. Differential scanning calorimetry  

Differential scanning calorimetry (DSC) measurements were performed in a Mettler Toledo 

823e apparatus on samples between 5 and 10 mg. Nitrogen gas was purged through the DSC 

cell with a flow rate of 20 ml/min. After erasing the effects of any previous thermal history by 

heating to 100 °C, the samples were subjected to a cooling scan down to −60 °C at 10 °C/min, 

followed by a heating scan from that temperature up to 100 °C at a rate of 10 °C/min. The 

glass transition temperature (Tg) was calculated from the cooling scan as the inflexion point of 

the specific heat capacity (cp) versus temperature; which coincides with the minimum in the 

temperature derivative of cp.  

2.2.2. Dynamic-mechanical analysis (DMA) 

Dynamic-mechanical analysis was performed using a Seiko DMS210 apparatus at a 

frequency of 1 Hz in the tension mode. The temperature dependence of the storage modulus 

(E’), loss modulus (E’’), and loss tangent (tan δ) was measured in the temperature range -70 

to 70 ºC at a heating rate of 2 ºC/min. The samples for these measurements were prismatic 

(ca. 15x8x1 mm). 
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2.2.3. Water contact angle on the different substrates 

The surface wettability was investigated by water contact angle (WCA) measurements. To 

measure the static contact angles, a 3 µl drop was deposited onto the surface and stabilisation 

allowed (~ 10 s). When the three-phase boundary is in motion, the angles formed are called 

dynamic contacts angles and they are further subdivided into advancing and receding contact 

angles. The advancing contact angles was measured as drop expanded, whereas the receding 

contact angle whole the liquid was removed from the drop. The difference between the 

advancing and the receding contact angle is called hysteresis (H). Measurements were carried 

out using a Theta optical tensiometer (Biolin Scientific). All measurements were performed 

six times for each substrate.  

2.3. Atomic Force Microscope (AFM) experiments  

Atomic force microscopy (AFM) was performed in a Multimode AFM equipped with 

NanoScope IIIa controller from Veeco (Manchester, UK) operating in tapping mode in air. 

Nanoscope 5.30r2 software version was used for image processing and analysis. Si-

cantilevers from Veeco (Manchester, UK) were used with force constant of 2.8 N/m and 

resonance frequency of 75 kHz. The phase signal was set to zero at a frequency 5-10% lower 

than the resonance one. Drive amplitude was 600 mV and the amplitude setpoint Asp was 1.8 

V. The ratio between the amplitude setpoint and the free amplitude A∞/A0 was kept equal to 

0.8. 

In order to study the topography of the surfaces, roughness of spin-coated samples was 

measured from AFM images (size 1 µm x 1 µm). Rq (root mean square average of height 

deviations taken from the mean image data plane) was calculated using the roughness 

subroutine in the Nanoscope software.  
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To analyze FN organisation on material surfaces, samples prepared by spin-coating were 

covered with a solution of concentration 5 or 20 µg/ml for 10 min (FN from human plasma 

(Sigma-Aldrich) and PBS). After adsorption, the samples were rinsed in PBS to eliminate the 

non-adsorbed protein. 

Image processing and fractal dimension (FD) calculation via the box-counting method 

(BCM)
26

 were performed by using FracLac and ImageJ software.
27,28

  

2.4. FN adsorption  

FN from human plasma was adsorbed from a solution of concentration 20 µg/ml in DPBS for 

1h (for complete saturation) on 12 mm samples. After adsorption, supernatant was collected 

and quantified by Micro BCA Protein Assay Kit (Thermo Scientific). The adsorbed FN was 

obtained as the difference between the amount of FN in the initial solution and in the 

supernatant.  

2.5. FN conformation 

The relationship between the degree of FN fibrillogenesis and the availability of FN domains 

on the material surface was investigated by means of an enzyme-linked immunosorbent assay 

(ELISA). FN was adsorbed from a solution with a concentration of 20 µg/ml in DPBS for 1h 

on spin coated substrates (12 mm). Then, samples were rinsed with DPBS to eliminate the 

non-adsorbed protein. After adsorption, samples were blocked in 1% BSA/DPBS and 

incubated with primary antibody Anti-Fibronectin cell binding domain (1:500 MAB1937, 

Merck-Millipore) in blocking solution for 1h at 37 °C. Samples were then rinsed in 0.5% 

Tween-20/DPBS and incubated with alkaline phosphatase conjugated secondary antibody 

(1:5000) for 1 h at 37 °C followed by incubation with 4-methylumbelliferyl phosphate 

substrate (Sigma-Aldrich) for 45 min at 37 °C. Reaction products were quantified using a 

fluorescence plate reader (Victor III, PerkinElmer) at 365 nm /465 nm.  
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2.6. Cell culture 

Murine C2C12 myoblasts (Sigma-Aldrich) were maintained in Dubelcco’s Modified Eagle 

Medium (DMEM) supplemented with 20% foetal bovine serum and 1% penicillin-

streptomycin in a humidified atmosphere at 37 C and 5% CO2. Cells were subcultured before 

reaching confluence (approximately every 2 days).  

For cell adhesion, myoblasts were seeded at low density (5000 cells/cm
2
) onto different 

materials after coating with 20 µg/ml of FN in DMEM supplemented with 1% penicillin-

streptomycin and in absence of serum in medium. 

In myoblast differentiation experiments, C2C12 cells were seeded at confluence density 

(20000 cells/cm
2
) onto the materials coated with 20 µg/ml of FN in DMEM supplemented 

with differentiation medium in absence of serum (1% insulin-transferrin-selenium and 1% 

penicillin-streptomycin). For the experiments including contractility inhibitors, blebbistatin 

was added to the culture medium at 10 mM after 2 h of culture and maintained for 4 days. 

2.7. Cell adhesion experiments 

After 3 h of culture, C2C12 cells were washed in DPBS (Gibco) and fixed in 10% formalin 

solution (Sigma) at 4 °C. Cells were incubated with permeabilizing buffer (103 g/L sucrose, 

2.92 g/L NaCl, 0.6 g/L MgCl2, 4.76 g/L HEPES buffer, 5 ml/ L Triton X-100, pH 7.2) for 5 

min, next blocked in 1% BSA/DPBS and incubated with primary antibody against vinculin 

(Sigma, 1:400). Samples were then rinsed in DPBS/ 0.5% Tween-20. Cy3-conjugated anti-

mouse secondary antibody in 1% BSA/DPBS (Invitrogen) and BODIPY FL phallacidin 

(Invitrogen) were used. Finally, samples were washed and mounted in Vectashield with DAPI 

(Vector Laboratories). Eclipse 80i (Nikon) fluorescent microscope was used for cellular 

imaging. After imaging, cell morphology was analysed by ImageJ software. 
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2.8. Focal adhesion kinase activity 

After 3 h of C2C12 cells culture on samples, total protein extraction was performed by lysing 

the cells with RIPA buffer (50 mM Tris-HCl pH 7.4, 1% nonidet p-40, 0.25% Na-

deoxycholate, 150 mM NaCl and 1 mM EDTA) supplemented with protease inhibitor cocktail 

tablets (Roche). The lysates were concentrated with Microcon YM-30 Centrifugal Filters 

units (Millipore) and separated in 8%-SDS PAGE under denaturing conditions as described 

elsewhere.
29

 Proteins were transferred to a PVDF membrane (GE Healthcare) using a semidry 

transfer cell system (Biorad), and blocked by immersion in 5% skimmed milk in PBS. To 

analyse the expression patterns of FAK and phosphorylated FAK on tyrosine 397 (pFAK), the 

blots were incubated separately with primary antibody against FAK (Millipore, 1:2500), 

pFAKs (Millipore, 1:250) and α-Tubuline (Abcam, 1:20000) as a loading control in 

PBS/0.1% Tween-20/2% skimmed milk for 1h at room temperature and washed with 

PBS/0.1% Tween-20. The blots were subsequently incubated in HRP-conjugated secondary 

antibody (GE Healthcare) diluted 1:20000 in PBS/0.1% Tween-20/2% skimmed milk. The 

Supersignal West Femto Maximum Sensitivity Substrate (Pierce) was used prior to exposing 

the blots to X-ray film. Image analysis of the western bands was conducted using ImageJ 

software. 

2.9. Myogenic differentiation experiments 

C2C12 cells were cultured on FN-coated materials for 4 days under differentiation conditions 

and immunostained for sarcomeric α-actinin. Cells were fixed in 70% ethanol/37% 

formaldehyde/glacial acetic acid (20:2:1) for 10 minutes and then blocked in 5% goat serum 

in DPBS for 1 h. Samples were sequentially incubated with primary antibody anti-arcomeric 

α-actinin (Abcam, 1:200) and secondary antibody anti-mouse AlexaFluor-488 (Invitrogen, 

1:200) for 1h, and then washed with DPBS/0.5 % Tween 20. Finally the samples were 

mounted with Vectashield containing DAPI. Eclipse 80i (Nikon) fluorescent microscope was 
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used for cellular imaging. Myogenic differentiation was calculated as the percentage of cells 

positive for sarcomeric α-actinin using ImageJ software.  

2.10. Statistics 

All experiments were performed at least three times unless otherwise noted. Data were 

reported as mean - standard error. To establish if our data follow a normal distribution, 

D'Agostino-Pearson omnibus test was resorted. 

Results were analysed by one-way ANOVA using GraphPad Prism 6.0. If treatment level 

differences were determined to be significant, pair-wise comparisons would perform using a 

Tukey in case of normal distribution of data or a Dunn’s test in the contrary case. A 95% 

confidence level was considered significant. 

3. Results  

3.1. Polymers and copolymers physico-chemical properties 

Fig. 1a shows the cooling DSC thermograms for the pure homopolymers and copolymers. 

Only one glass transition was found in the EA/MA copolymers, located between those of the 

corresponding homopolymers. As the amount of MA increases, the glass transition 

temperature (Tg) increases according to the copolymer composition (Table 1). The dynamical-

mechanical spectra, elastic modulus (E’) and loss tangent (tan δ) is depicted in Fig. 1c and 1d. 

Pure polymers show a single maximum in tan δ and a drop in E’, which corresponds to the 

main relaxation, related to the glass transition. Likewise, copolymers present one single 

relaxation process, placed between those of the corresponding homopolymers. The magnitude 

and temperature of the maximum of tan δ depend on composition: the higher the amount of 

EA units the lower the intensity and temperature of this main relaxation. The elastic modulus 

measured at 37 ºC for the copolymers, presents values in between both homopolymers (Table 

1), increasing monotonically as the amount of MA in the system does. Static and dynamic 
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water contact angle measurements (Fig. 2a) are quite similar throughout the copolymers with 

comparable hysteresis, which confirms no differences in wettability regardless of the EA/MA 

ratio. 

Surface topograpy, caracterized by the roughness parameter Rq obtained from AFM images, 

shows  no significant differences between copolymers (Table 1). All the spin-coated surfaces 

are rather smooth at the nanoscale and homogeneneous for the copolymer series. 

.   

Fig. 1.  a) DSC thermograms at a cooling rate of 10 ºC/min. b) Couchman-Karasz prediction 

and experimental glass transition values (Tg). c) Mechanical loss tangent (tan δ) and d) elastic 

modulus (E’) measured at 1 Hz.   
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Fig. 2. Water contact angle on the different substrates. a) Static contact angle. b) Dynamic 

contact angle and c) hysteresis. 

 

Table 1.  Glass transition temperature (Tg), elastic modulus (E') at 37 ºC and roughness 

parameter Rq . 

Sample Tg (º C) E' (kPa) Rq (nm) 

PEA100 -20 ± 1 620 ± 5 0.288  

PEA70 -8 ± 1 750 ± 5 0.316  

PEA50 -4 ± 1 1100 ± 10 0.291  

PEA30 3 ± 1 2130 ± 10 0.294  

PMA100 13 ± 1 3100 ± 10 0.265  

 

 

3.2. FN organisation on material surfaces  

AFM images (Fig. 3a) show FN distribution on the copolymers after the adsorption of FN 

from solutions with concentration of 5 and 20 µg/ml. Different degrees of fibrillogenesis were 
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found in dependence of the EA/MA ratio in the copolymers. As expected, PEA100 shows a 

complete interconnected (nano)network of FN fibrils from the solution of concentration 20 

µg/ml, whereas PMA100 presents a globular FN conformation after adsorption. The density 

of interconnected fibrils decreases with higher amount of MA units in the copolymers, 

resulting in a lower degree of fibrillogenesis compared to PEA 100. If FN is adsorbed from a 

solution of concentration 5 µg/ml (Fig. 3a), this fact becomes even more evident. In 

particular, the fibrillar organisation is virtually lost on PEA50 and PEA30, whereas the 

surfaces with higher ratio EA/MA show FN fibrils, but lacking full interconnection between 

them.  

 
 

Fig. 3. Material-driven degree of FN fibrillogenesis. a) AFM images (phase magnitude) of FN 

adsorbed on material substrates for 10 min from solutions with a concentration of 5 and 20 

µg/ml. The scale bar is 0.5 µm. b) Fractal dimension (FD) calculated from AFM images. 
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3.2.1. FN conformation on material surfaces 

The quantification of the amount of adsorbed FN on the copolymers show no significant 

differences throughout the series (Fig. 4a). Nevertheless, ELISA with the monoclonal 

antibody mAb1937 (against FNIII8) suggests different availability of the integrin binding site 

of FN in dependence of the EA/MA ratio. FNIII8 is better exposed on PEA100 and it 

decreases monotonically as the amount of MA in the copolymer increases (Fig. 4b).  

Fig. 4. Fibronectin conformation on material surfaces. a) Surface density of adsorbed FN after 

1 h. b) Exposition of FNIII8 repeat on surfaces obtained by enzyme-linked immunosorbent 

assay (ELISA). 

 

 

3.3. Myoblast adhesion on FN coated substrates 

Cell adhesion was studied on the copolymers coated with FN (with different degree of FN 

fibrillogenesis) after 3h of culture in serum free conditions and under low density seeding to 

minimise cell-cell contacts (5000 cells/cm
2
). Immunofluorescence for the focal adhesion 
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protein vinculin was performed. Attached cells with well developed focal adhesions were 

observed on all substrates regardless the composition of the copolymer, i.e. the degree of FN 

fibrillogenesis on the material surface. Cells were slightly bigger but with similar shape 

(circularity) on copolymers with higher content of EA and then higher degree of FN 

fibrillogenesis (Fig. 5).  

 

Fig. 5. Adhesion of C2C12 cells after 3 hours culture on FN coated materials. a) 

Immunofluorescence for vinculin. b) Cell area and c) cell circularity. 
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We then investigated the starting of signalling cascades on the different copolymers by 

quantifying the phosphorylation of FAK in tyrosine 397. Results in Fig. 6a shows that the 

degree of FN fibrillogenesis attained on the different copolymers has no influence on total 

FAK expression. However, the level of phosphorylation of FAK (pFAK) was higher on 

copolymers with higher EA content, i.e, on which FN is assembled with higher degree of 

fibrillogenesis (Fig. 6b). 

 
Fig. 6. Expression of focal adhesion kinase (FAK) on C2C12 cells after 3h culture on FN 

coated materials. a) FAK expression and bands from Western Blot. b) Determination of FAK 

activity obtained as pFAK/FAK ratio.  
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3.4. Myoblast differentiation 

In order to analyse the influence of different degrees of FN fibrillogenesis on myoblast 

differentiation, cells were cultured for 4 days in ITS containing medium and afterwards 

stained for sarcomeric α-actinin, a protein expressed in differentiated myoblasts.
30

 Myoblast 

differentiation depends on the degree of fibrillogenesis (Fig. 7). PEA and copolymers with 

high EA content show high levels of differentiated myoblasts (even higher than collagen, 

which is the gold standard for myoblast differentiation). However, as the degree of 

fibrillogenesis decreases (lower EA contents), the fraction of differentiated cells decreases up 

to PMA100, on which FN is adsorbed in a globular shape and the percentage of differentiated 

cells is the lowest one. This result shows direct relationship between myoblast differentiation 

and the distribution of FN into (nano)networks at the material interface. 

 

Fig. 7. Myogenic differentiation after 4 days of culture on the copolymers. a) 

Immunofluorescence of sarcomeric α-actinine (green) and nuclei (blue). b) Fraction of 

differentiated cells normalised using the level of differentiation on PEA100. The figure at the 

bottom shows the cell density on the copolymers after 4 days.  
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Blebbistatin is a small molecule which binds to myosin heads to form a complex with low 

affinity for actin  and inhibit cell contractility.
31

 We have used blebbistatin to assess the role 

of contractility in the ability of different degrees of FN fibrillogenesis to trigger 

differentiation. Cell differentiation remained constant regardless of the presence of 

blebbistatin only for copolymers with low EA content, ie. on which FN is adsorbed with low 

degree of fibrillogenesis or in a globular shape (PMA) (Fig. 8). However, higher degrees of 

FN fibrillogenesis (on PEA100 and PEA 70) stimulated cell contractility and then 

differentiation, as the addition of blebbistatin reduced significantly the level of differentiation.  

 

Fig. 8. Myogenic differentiation on the copolymers after 4 days of culture with blebbistatin at 

10 µM. a) Immunofluorescence of sarcomeric α-actinine (green) and nuclei (blue). b) Fraction 

of differentiated cells normalised using the level of differentiation on PEA100. The figure at 

the bottom shows the cell density on the copolymers after 4 days. 
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4. Discussion 

The terminal model (first-order Markov model) of copolymerization enables the estimation of 

copolymer composition after the polymerisation process has finished.
32,33

 The ratio of molar 

fraction of monomers F1/F2 in the copolymer can be obtained from the molar fraction of 

monomers f1 and f2 in the reaction mixture and the monomer reactivity ratios r1 and r2 

according to the expression:  

( )
( )1222

2111

2

1

frff

frff

F

F

+
+

=      (1) 

Reactivity ratios for EA and MA are 0.6 and 0.96 respectively.
34

 The higher MA reactivity 

ratio means that MA radicals have a higher propensity to react with MA monomers rather 

than with the EA ones. This behaviour can be seen in Fig. 9, where the straight line depicts 

the ideal random copolymers (r1·r2=1), the two monomers with equal reactivities. This ideal 

situation leads to a final composition of the copolymer chain that matches the comonomer 

solution, as well as a random distribution of co-monomers along the copolymer chain. 

Reactivity ratios r1 and r2 are not too different for MA and EA. Then, the prediction of the 

terminal model (equation 1) is slightly below the straight line (Fig. 9), which means that the 

fraction of EA units in the copolymer chain is lower than fraction of EA units in the reacting 

mixture. Fig. 9 shows that the fraction of EA units for the 70:30, 50:50 and 30:70 comonomer 

solutions turns into 66%, 45% and 26% respectively, i.e. the copolymer chain is less rich in 

EA than the original solution.  This also means that the number of MA units in the copolymer 

chain are above the fraction of MA in the solution. The higher tendency of EA to bind MA 

units together with the tendency of MA to bind MA units might result in a copolymer chain 

that is not perfectly random distributed, but where small blocks of MA are preferentially 

present. 
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Only one single glass transition and one main relaxation can be seen in the copolymers, which 

suggest no phase separation in EA and MA domains within the system. The length of 

cooperativity at the glass transition has been evaluated in the order of a few nanometers in 

amorphous polymers.
35

 This size determines an order of magnitude for the size domains that 

can show an independent glass transition in a phase-separated system. Although the terminal 

model suggested the potential presence of small blocks of MA in the copolymer, their size 

must not be large enough to produce an independent glass transition. Consistent with this 

approach, the copolymers present one single glass transition process located between those of 

the corresponding homopolymers according to its composition, following the FEA/ FMA ratio.  

 

Fig. 9. Molar fraction of EA units in the copolymer as predicted by the terminal model, FEAcop 

as a function of the molar fraction of EA monomers in the reacting mixture, fEA,. The straight 

line gives the composition of a random copolymer where the fraction of monomers in the 

reacting mixture remains after polymerization. 

 

The composition dependence of the glass transition temperature was also compared with the 

prediction of the Couchman-Karasz equation for miscible polymer blends or copolymers:
36
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where ωPMA is the mass fraction of MA in the copolymer, ∆cp-PEA and ∆cp-PMA are the specific 

heat capacity difference at Tg for both homopolymers and Tg-PEA and Tg-PMA are the glass 

transition temperature of the PEA100 and PMA 100 homopolymers respectively. The 

theoretical data predicted from the model are in good agreement with the experimental results 

(Fig. 1b) which further confirms the homogeneity of the copolymers. 

We have shown that the composition of the copolymer, i.e. the fraction of EA, determined the 

degree of fibrillogenesis and that this is the key parameter driving cell differentiation. 

Adhesion, migration and differentiation processes are dependent of both surface chemistry 

and stiffness
37–39

 in addition to the surface topography and wettability.
40

 Cells have an ability 

to sense and probe the stiffness of their surroundings as they adhere to and interact with the 

local ECM.
41

 The elastic modulus (E') of the EA/MA copolymers vary between 0.6 and 3 GPa 

(Table 1). The elastic modulus for skeletal muscle tissue is 12 kPa.
42

 Then, all copolymers can 

be considered as stiff surfaces from the myoblast's point of view and we can disregard the 

mechanical properties of the substrate stiffness, to play any role on cell behaviour. 

Furthermore, surface properties such as roughness (Table 1) and wettability (Fig. 2) remain 

constant through the copolymers, which disregard these parameters as the key to explain 

cellular experiments.  

The material-driven FN fibrillogenesis on PEA was found to be a time- and concentration-

dependent process, whose dynamics were followed via AFM at different adsorption times
43

, 

or at increasing protein concentration (for a fixed adsorption time).
19

.Based on these 

observations, the process was explained to include the following sequence of events:
25

 (i) 

Conformational change of FN upon adsorption on PEA that involves unfolding and efficient 

arm extension of FN upon interaction with chemical groups of the substrate (a vinyl backbone 

with -COOCH2CH3 side chain that carries negative charge). (ii) Enhanced FN–FN 

interaction as the adsorption process continues, that involves the amino-terminal 70 kDa 
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fragment, the hallmark of cell mediated FN fibrillogenesis.
44

 (iii) Finally, new FN molecules 

are preferentially adsorbed in close contact to the proteins already present in the substrate, 

probably as a consequence of the presence of polar oriented FN molecules. The formation of a 

network on PEA is not a property unique to FN. For example, a similar network was found 

for fibrinogen
45

 and collagen IV
46

 but only globular-isolated molecules were observed after 

laminin
47

 and vitronectin adsorption.
48

 

Unlike PEA, FN is adsorbed in a globular shape on PMA, a polymer which differs from PEA 

in only one methyl group in the side chain.
19,21

 The organisation of FN after adsorption on the 

copolymers EA/MA led to different degrees of fibrillogenesis (Fig. 3a), with fibrils attaining 

different degrees of interconnection. Protein interconnection degree, quantified by the fractal 

dimension (Fig. 3b), shows the relationship between the EA/MA ratio and the degree of FN 

fibrillogenesis. That is to say, the EA ratio in the copolymers is a way to control the degree of 

FN fibrillogenesis at the material interface. It has been previously shown that the degree of 

fibrillogenesis can be modulated on PEA by adsorbing FN from solutions of different 

concentrations or by using different adsorption times.
20,22

 However, in both cases the total 

amount of FN on the surfaces changes as well, which does not happen with the copolymers 

shown in this work (Fig. 4a). The fact that we can control the degree of fibrillogenesis by 

tuning the composition of the surface further supports the concept that the organization of FN 

at the interface is a consequence of specific protein-material interactions. As we now have 

random copolymers of EA and MA, the fraction of EA groups on the surface is a reflection of 

the composition of the system and since only these EA groups promote the organization of 

fibronectin, the phenomenon occurs (at the nanoscale) but with lower length scales, i.e. lower 

degree of fibrillogenesis. 

In addition, different degrees of FN fibrillogenesis involve also a different conformation of 

the protein on the surface, as revealed by the increased availability of the integrin binding 
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region as the interconnection between fibrils on the material surface does. (Fig. 4b). This 

means that for intermediate degrees of fibrillogenesis (e.g. PEA50), the protein interface at 

the material interface consists of FN fibrils with the molecule in good conformation to have 

the integrin binding regions available and other non-fibrillar molecules on which the integrin 

binding site is not so well exposed. The superposition of these two kinds of fibronectin 

conformations results in simultaneous controlled FN organisation into fibrils, which moreover 

present different affinities to bind integrins. As a consequence, cells on substrates with higher 

degree of FN fibrillogenesis result in better cell adhesion, with slightly longer stretched cells  

and higher number of stress actin fibres (Fig. 5).
49

 In turn, cell signalling is activated more 

efficiently (Fig. 6b) as a consequence of the higher density of available integrin binding 

regions as fibrillogenesis progresses (Fig. 4b). This is well correlated with classical 

experiments that show a correlation between fibronectin conformation, cell adhesion and 

signalling using model surfaces.
16,50

 

Myoblast differentiation occurs more effectively on substrates with higher degree of FN 

fibrillogenesis (Fig. 7). On the one hand, there is a direct relationship between myoblasts 

adhesion and differentiation, as previously shown.
51

 Variations of integrin expression and 

signalling mediated by focal adhesion kinase influence positively in myogenic 

differentiation.
21,52,53

  

On the other hand, activation of cell contractility is necessary to promote differentiation. 

Contractile forces generated for actomyosin machinery result from dynamic interactions 

between actin and non-muscular myosin as a consequence of phosphorylation of myosin light 

chain II by several kinases as Rho associated kinases or Myosin Light Chain kinase.
54

 

Myosins constitute a superfamily of ATP-dependent motor proteins that play important roles 

in several cellular processes that require force and translocation
55

 and within the cell regulates 

several function, including skeletal muscle contraction and differentiation.
56

 In myoblast 
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differentiation and fusion process, cells produces large amounts of contractile machinery 

proteins such as myosin heavy chain, two myosin light chain and two subunits of 

tropomyosin,
57

 demonstrating the importance of contractile machinery in myoblast 

differentiation. We have previously shown that the organisation of FN into (nano)networks on 

PEA enhanced myoblast differentiation by activating cell contractility.
21

 Here, we show that 

when blebbistatin is added to culture medium (Fig. 8), cell differentiation drops significantly 

only on copolymers which show higher degree of FN fibrillogenesis, whereas it has no effect 

for cells on globular FN (PMA) and moderate degrees of fibrillogenesis (PEA30). This 

suggest a direct dependence between the degree of fibrillogenesis, the activation of cell 

contractility and the level of cell differentiation.  

5. Conclusions 

We have shown that material-driven FN fibrillogenesis originally described on PEA can be 

modulated by copolymerising EA with MA units. Increasing the amount of EA in the 

copolymer leads to well-organised FN (nano)networks that show better availability of the 

integrin binding region of FN. This fact, together with the ability of FN (nano)networks to 

enhance cell contractility, leads to better cell adhesion, cell signalling and myoblast 

differentiation by increasing the degree of FN fibrillogenesis on the material surface. 

We have shown that the organisation of fibronectin into nanofibrils provides a robust platform 

to induce cell differentiation.
58

 Materials that control the degree of FN fibrillogenesis upon 

simple adsorption can be incorporated into novel strategies to modulate cell response in the 

field of tissue engineering. This series of materials can be used to coat the surface of 3D 

scaffolds which results in a system that is biomimetic of the extracellular matrix, with 

controlled density of fibrils tailored but the composition of the underlying material. This 

platform has the potential to become an effective approach to engineer advanced 

microenvironments that control the number of cell adhesion sites as well as the amount of 
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growth factors used in the system to promote cell differentiation in vitro and tissue repair in 

vivo. We have recently submitted a patent application that presents the use of the system in 

tissue engineering applications, in particular musculoskeletal repair and regeneration
59

.  
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