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Abstract Evasion of carbon dioxide (CO2) from fluvial systems is now recognized as a significant
component of the global carbon cycle. However, the magnitude of, and controls on, this flux remains
uncertain, and improved understanding of both is required to refine global estimates of fluvial CO2 efflux.
CO2 efflux data show no pattern with latitude suggesting that catchment biological productivity is not a
primary control and that an alternative explanation for intersite variability is required. It has been suggested
that increased flow velocity and turbulence enhance CO2 efflux, but this is not confirmed. Here using
contemporaneous measurements of efflux (range: 0.07–107μmol CO2m

�2 s�1), flow hydraulics (mean
velocity range: 0.03–1.39m s�1), and pCO2 (range: 174–10712μatm) at six sites, we find that flow intensity is a
primary control on efflux across two climatically different locations (where pH is not a limiting factor) and that
the relationship is refined by incorporating the partial pressure of CO2 (pCO2) of the water. A remaining
challenge is how to upscale from point to reach or river basin level. Remote imaging or river surface may be
worth exploring if subjectivity in interpreting surface state can be overcome.

1. Introduction

Fluvial systems are often oversaturated with carbon dioxide (CO2) and thus have the capacity to degas CO2 to
the atmosphere [Butman and Raymond, 2011; Melack, 2011; Billett et al., 2006]. Such evasion of CO2 is now
recognized to be a significant component of the global carbon cycle, estimated at a rate of 1.8 ± 0.25 Pg of
carbon per year [Raymond et al., 2013], and its omission from carbon budget calculations may account for
some of the imbalance in global estimates of carbon reservoir size and rate of transfer [Richey et al., 2002;
Billett et al., 2006; Aufdenkampe et al., 2011]. While efflux estimates are becoming more precise, and a signifi-
cant amount of carbon is known to be reprocessed within fluvial systems in a series of transformations and
losses [Cole et al., 2007; Tranvik et al., 2009], the specific controls on CO2 efflux and its exact magnitude remain
poorly understood and quantified [Zappa et al., 2007; Alin et al., 2011; Butman and Raymond, 2011; Rasera
et al., 2013] and fluvial CO2 evasion may still be underestimated [Alin et al., 2011; Raymond et al., 2013] or
overestimated [Hunt et al., 2011; Abril et al., 2015]. As such we need to better quantify and understand the
controls on aquatic CO2 degassing, particularly in systems, such as rivers and lower order streams, for which
data remain sparse [Butman and Raymond, 2011; Melack, 2011; Wallin et al., 2011].

Published CO2 efflux data show similar means and ranges from rivers across a wide latitudinal range (Figure 1
and supporting information Figure S1). This contradicts expectation of intersite variability in CO2 efflux in
response to drivers of the fluvial CO2(aq) pool size, for example, soil type, geology, temperature, and river
water pH (Table 1) [Rebsdorf et al., 1991; Aufdenkampe et al., 2011; Lauerwald et al., 2013]. Further, where
moisture is not a limiting factor, catchment biological productivity is greater in warmer environments
[Lauerwald et al., 2013; Maberly et al., 2013], and greater productivity in a catchment has been linked to
increased riverine CO2 concentrations and CO2 efflux [Maberly et al., 2013]. Thus, in the tropics and equatorial
regions CO2 efflux from fluvial systems may be expected to be greater than at higher latitudes. However, no
consistent increase in CO2 efflux rate with decreasing latitude is observed (Figure 1), suggesting that net eco-
system productivity [e.g., Crammer et al., 1999] is not a primary control on CO2 efflux.

Studies of the controls on oxygen aeration [e.g.,Moog and Jirka, 1998; Palumbo and Brown, 2013] have shown
how a range of hydraulic factors, including velocity, depth, and channel slope, can be used to produce
statistical equations, which can be used to calculate the capacity for fluvial systems to absorb gas from the
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atmosphere. While these studies pro-
vide understanding of gas fluxes,
there is a range of forms of the
predictive relationships and recogni-
tion that existing approaches are
restricted by the range of flow depths
and velocities for which gas transfer
data are available and by the quality
of the overall database [Palumbo
and Brown, 2013]. In essence, gas
transfer across the air-water interface
occurs by molecular diffusion [Moog
and Jirka, 1999], at a rate controlled
by the concentration gradient. The
rate of diffusion is also controlled by
the thickness of the surface concen-
tration boundary layer, i.e., the mean
distance over which the gas concen-
tration varies from the surface to
nearly the bulk value [Moog and
Jirka, 1999], and so thicker boundary
layers reduce the rate of diffusion.
Processes that disrupt the boundary
layer therefore facilitate faster diffu-

sion and so greater gas efflux [Jonsson et al., 2008]. In the ocean and lakes, wind drag on the water surface
creates surface waves [Liss and Merlivat, 1986; Wanninkhof, 1992; Bock et al., 1999; Hofmann et al., 2008]
and so enhances diffusion and increases gas fluxes. Wind plays the same roles in rivers as in the ocean and
lakes, but this effect is spatially and temporally restricted. In estuaries and large rivers, wind can be the domi-
nant physical control on gas exchange, but upstream in smaller channels, such as mainly measured here,
stream characteristics which control the hydraulic properties of the flow are more significant [Alin et al.,
2011]. The interaction of downslope flow of water and channel roughness generates turbulence within the
water column and energy dissipation in the form of surface waves when the flow reaches a critical state
[Gordon et al., 2004] disrupting the surface boundary layer. It has been observed that high turbulent energy
during high river flow enhances fluvial gas evasion [Hope et al., 2001; Billett et al., 2006; Billett and Moore, 2008;
Butman and Raymond, 2011;Wallin et al., 2011; Raymond et al., 2013; Rasera et al., 2013], but the nature of this
effect has not been confirmed by direct, contemporaneous measurements of flow state and CO2 efflux.

Given the strong rationale for how hydraulic characteristics may influence the rates of riverine CO2 effluxes,
and the homogeneity observed in measured CO2 efflux globally (Figure 1), we designed a research program
to assess the importance of flow hydraulics on CO2 efflux. As climate change is projected to change regional
hydrology, including seasonality, [e.g., Gloor et al., 2013; Charlton and Arnell, 2014] understanding whether
flow characteristics exert a physical control on efflux rate is required to measure the impact of climate change
on CO2 feedback processes.

Here at sites in two distinct climatic and hydrological regions, we assess whether flow intensity (a generic
term which describes one or more of the measures of flow strength including mean flow velocity, bed shear
stress, turbulent stress, and flow state) is a primary control on CO2 efflux through simultaneous field measure-
ments of CO2 efflux, flow hydraulics, and other environmental descriptors. We explore an approach for sup-
porting upscaling from point to provide catchment scale (or larger) flux estimates.

2. Materials and Methods

Our field sites vary in location, size, and catchment characteristics, and sampling has been carried out over
several years, thus capturing a range of seasons and flow conditions. Within each site, measurement locations
were chosen to ensure that a range of flow intensities were included.

Figure 1. Global CO2 flux rates, obtained by direct measurement from
flowing water, displaying maximum, minimum, and mean CO2 efflux values.
Data sources and site references are in Table 1. Sites are ordered by latitude.
Site locations shown in Figure S1.
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2.1. Field Study Sites

Measurements weremade in two catchments in the UK and one in the Peruvian Amazon. The UKmeasurements
were made in two rivers with different land uses and catchment sizes, the River Kelvin (RK) and Drumtee Water
(DW). The Kelvin (sampling site 55°52′06″N, 4°17′16″W; 18m above sea level (asl)) is a 335 km2 semiurban (23%)
catchment, containing agricultural land (70%) and some forestry (6%), with a maximum elevation within the
catchment of 510m. Measurements were made within a 30m reach, 1.2 km upstream of the confluence with
the River Clyde Estuary, where bankfull width is 15–20m and bed sediment is large pebbles and patches of
exposed bedrock. Drumtee Water (sampling site 55°41′16″N, 4°23′37″W; 197m asl) is a headwater, 9.6 km2,
peat-dominated catchment where the land use is rough grazing andmaximum elevation within the catchment
is 260m. Measurements were made in a 19m reach, where the channel is 4–5m wide. These two drainage sys-
tems were sampled between June 2012 and December 2013 (number of samples: RK 83 and DW 79).

In the Amazon, measurements were made in four fluvial systems draining tropical rainforest in the Tambopata
National Reserve (12°50′00″N, 69°17′45″W; 200m asl), Madre de Dios region, Peru (for site map see Vihermaa
et al. [2014]). The sites ranged from small streams draining the local forest area to large rivers. Main Trail (MT)
has a catchment of ~5 km2 and was only active during the rainy season, being fed by surface runoff and
throughflow. New Colpita (NC) is a perennial small stream draining 7 km2. In both cases, channels were 4–7m
wide at sampling locations, width varying with season and corresponding stage height. La Torre river (LT) drains
an area of 2000 km2, and the channel is 40–80m wide at the sampling point, which is located close to the con-
fluence with Tambopata river (TP). TP has a 14,000 km2 catchment extending to the foothills of the Andes, and
the channel at the sampling point was ~200m wide. TP catchment contains some small-scale agriculture and
gold mining, but all four catchments are predominantly rainforest. The Amazonian sites were sampled between
February 2011 and May 2012 with sampling campaigns including both wet and dry seasons and targeting the
associated different water levels and flow conditions (number of samples: MT 42, NC 46, LT 37, and TP 26).

2.2. CO2 Efflux

In all cases CO2 efflux was quantified from measuring the rate of CO2 accumulation in a floating chamber of
known volume (0.0029m3) [Frankignoulle, 1988] using a Licor (LI-840A) infrared CO2/H2O gas analyzer (for
configuration see supporting information Figure S2). CO2 accumulation was measured over 4min and
repeated three times. CO2 flux was calculated using equation (1) [Frankignoulle, 1988; Rasera et al., 2008]:

FCO2 ¼ δCO2

δt

� �
V
RTS

� �
(1)

where FCO2 is the flux (μmol CO2m
�2 s�1), δCO2/δt is the slope of CO2 accumulation in the chamber

(μatm s�1), V is the chamber volume (m3), R is the gas constant (m3 atmK�1mol�1), T is the air
temperature (K), and S is the surface area of the chamber at the water surface (m2).

2.3. Hydraulic Parameters

In the UK rivers, velocity was measured using a Valeport flowmeter with 50mm diameter impeller, set to 60
second averaging, at 20% and 80% of the flow depth (for depth-averagedmean calculations) and aminimum
of three other heights (to allow identification of outliers) within the semilogarithmic lower part of the flow
profile. Mean velocity (ūms�1) is an indicator of depth-averaged hydraulic conditions at the measurement
point. Flow characteristics can be explored by considering the Froude (Fr) and Reynolds (Re) numbers. Fr is
a depth-averaged dimensionless number that indicates the amount of surface water disturbance such as
waves [Gordon et al., 2004; Allen, 1997] and so can act as a proxy for the interaction and degree of gas
exchange between the water surface and the atmosphere. Reynolds number (Re) indicates the degree of tur-
bulence and hence mixing in the water column [Gordon et al., 2004] and is an indicator of the potential trans-
fer of CO2-enriched water from lower in the water column and hyporheic zone (e.g., benthic recharge) [Peter
et al., 2014] to the water surface. Froude and Reynolds numbers are calculated as follows:

aÞ Fr ¼ uffiffiffiffiffiffi
gH

p (2a)

bÞ Re ¼ uH
v

(2b)
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where g is the acceleration due to gravity (m s�2), H is the water depth (m), and ν is the kinematic viscosity
(m�2 s�1). Additionally at the UK sites, a qualitative visual assessment of the water surface state was
undertaken; i.e., the degree of surface disturbances was estimated at the time of the CO2 efflux
measurement: “smooth” (a flat water surface), “medium” (ripples/waves with no white water) or “rough”
(ripples and waves with white water) (for examples of these states see supporting information Figure S9).
Wind speed was not measured, although the visual classification of water surface state incorporates the
effect of wind at the water surface.

In the Amazonian streams, near-surface flow velocity is the mean of three replicates taken directly below the
chamber position using a Geopacks hand-held flowmeter. Information to calculate Re and Fr was not avail-
able from the Amazon sites. As ū is highly correlated with Fr and Re, by definition, ū is used alone to indicate
flow intensity for the Amazonian sites.

2.4. Water Chemistry Parameters

Water chemistry was analyzed at the time of chamber deployment to allow calculation of pCO2 and explora-
tion to find explanatory variables for CO2 flux models. At Drumtee Water, pH was logged continuously (at
30min resolution) with an In-Situ Inc. MP TROLL 9000 water chemistry sonde. The Troll 9000 was calibrated
approximately every 4 to 6weeks using two point calibrations from freshly prepared pH 4 and pH7 buffer
solutions, and ensuring the manufacturers specified acceptable values for slope and intercept were reached.
Measuring pH in situ eliminated the possibility of a delay enabling microbial action that leads to an altered
sample pH [Abril et al., 2015] and avoided compromising sample integrity through laboratory processes
(which can alter sample pH through artificial degassing) [Herczeg and Hesslein, 1984; Abril et al., 2015]; mea-
suring pH continuously met themanufacturers pH probeminimum equilibration time specification of 20min.
For the River Kelvin our directly measured pH data were unreliable due to equipment malfunction and so pH
was calculated from a linear relationship (n= 10; R2 = 0.72) between discharge and pH fitted to data collected
at a monitoring station 9 km upstream of the CO2 measuring site (data provided by the Scottish
Environmental Protection Agency, 2015). There are no significant tributaries entering between these sam-
pling points, and similarity in water chemistry has been verified in a separate spatial sampling experiment
(for details see supporting information Figure S3). At both RK and DW air and water temperature were mea-
sured using a Lilipop®, Traceable®, handheld thermometer.

For MT and NC, pH, conductivity and temperature were logged at 15min resolution by an In-Situ Inc. MP TROLL
9500 data logger. For LT and TP, spot measurements of pH, conductivity, and temperature were made using a
TROLL 9500 data logger at the time of CO2 flux measurement. The TROLL was deployed for>20min to ensure
equilibration with stream water, and a maintenance regime similar to that described earlier was used.

At all sites, within 15min of the flux measurement, water samples were collected for determining dissolved
inorganic carbon concentration ([DIC]) using a headspace method [Waldron et al., 2014] and analysis on a
Thermo-Fisher-Scientific Gas Bench/Delta V Plus. Partial pressure of CO2 (pCO2) was calculated from the
[DIC] using pH and temperature [Rebsdorf et al., 1991; Stumm and Morgan, 1996]. Where pH was measured
using a Troll 9000 or 9500 (DW, NC, MT, LT, and TP), uncertainty in pH is ±0.1 pH unit according to the man-
ufacturers specifications and 1.3% for RK indicated by the percent residuals (Figure S3). Uncertainty in [DIC] is
0.027 nM [Waldron et al., 2014].

2.5. Data Analysis

Data analysis was carried out using R statistical package version 3.1.0 [R Development Core Team, 2008]. Most
of the measured variables were lognormally distributed (Figure 3) and were log-transformed prior to model-
ing. As multiple measurements were made at each site, the data show some clustering. Thus, to avoid
pseudoreplication in the analysis, a linear mixed effect model was fitted to the data [Pinheiro et al., 2014].
Initially, a null model with no explanatory variables was fitted to the data to investigate the influence of
different levels of data structure. This showed that 2% of the variance was between regions (Amazon; UK),
12% between sites within a region, and 86% within the sites. The low between site and between region var-
iances suggest that there was no significant systematic regional difference in efflux rate. The 86% of variance
within the individual sites indicates that the differences in site characteristics (e.g., stream order) were less
important than sample-to-sample variability due to variation in flow intensity and water chemistry. Further,
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analysis of the variance structure indi-
cated that “site” was sufficient as a
grouping factor in further analyses as
regional variance was so low.

3. Results

CO2 efflux rates ranged between 0.07
and 107μmol CO2m

�2 s�1 overall, with
all six sites having similar CO2 efflux
ranges. Five sites had very similar
mean CO2 effluxes (range 4.54 to
9.00μmolCO2m

�2 s�1); however, the
mean at NC was 17.8μmolCO2m

�2 s�1,
two to four times that of the other sites.
Ranges and means of CO2 efflux rates at
all sites lie within the range of previously
reported values (Figure 1 and Table 1).

Using pooled data from DW and RK,
significant positive logarithmic correla-
tions are found between CO2 efflux
and each of the hydraulic parameters,
ū, Fr, and Re (Figure 2). Data from RK
and DW overlap indicating similar con-
trols on efflux at both sites, although
with some differences in the gradients
and significance levels of the relation-
ships (Figure 2). At all six sites there
was a significant positive correlation
between CO2 efflux and ū (Figure 3),
although the overall relationship shows
fanning at the upper end. The similarity
of relationships involving ū, Fr, and Re
with efflux occurs by definition, but tur-
bulence and flow state are responsible
for gas transfer within the water col-
umn and at the water-atmosphere
boundary, respectively. Mean velocity
empirically records these processes
but is less likely to be applicable across
scales than the dimensionless Fr and
Re parameters. However, ū has the
highest correlation with CO2 efflux at
the UK sites and is the only measure of

flow intensity available for the Amazon data, so we use mean velocity below acknowledging that this is an
empirical proxy for turbulence and water surface conditions. For generality, we use the term flow intensity
to encompass the combined effects of velocity, turbulence, and water surface conditions on gas transfer
and exchange.

CO2 partial pressure of the water (pCO2) varied between sites, and all were within previously reported ranges
[Raymond et al., 2013, and references therein] (Table 1). NC had by far the highest pCO2 of all the studied sites
(mean 6163μatm, maximum 10,712μatm) with mean pCO2 being 2.5–5.5 times the magnitude of that of the
other sites. RK had the lowest mean and maximum pCO2 (mean 1112μatm, maximum 1956μatm) with the
maximum pCO2 being lower than the minimum pCO2 at NC (2399μatm). We propagated the pH and DIC

Figure 2. CO2 fluxes related to hydraulic properties for DW and RK sites. CO2
efflux plotted against: (a) mean flow velocity (ū), (b) Froude number (Fr), and
(c) Reynolds number (Re). All show strong positive, logarithmic relationships
with CO2 efflux, with efflux rates being slightly higher and the curves slightly
steeper at DW. “C” represents DW and RK combined data. All relationships
were significant at P< 0.001. R2 values (in square brackets) indicate that the
relationship between ū and CO2 efflux is strongest.
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uncertainties to calculate the uncer-
tainty in pCO2; this ranges from 14.4
to 32.8% of the pCO2 value, and the
intersite differences still exist; for
example, NC is significantly different
to the other sites (P=<0.001; for detail
see supporting information Table S1
and Figure S4).

The relationship between CO2 efflux
and ū at the Amazonian sites was
the same as the UK sites (Figure 3),
except for at NC which has a higher
rate of CO2 efflux for a given velocity.
When the influence of pCO2 was
included, by plotting efflux against
the product of flow velocity and
pCO2, data from NC and all other sites
collapse onto a linear log-log relation-
ship (Figure 4). Assumptions that all
error is contained in either the pro-
duct of flow velocity and pCO2, or flux
provide constraints on the range in
this relationship (Figure 4).

A multiple regression model, with log-
transformed flow velocity and pCO2

as explanatory variables, describes the data from all six sites (equation (3)). The residuals were randomly
distributed (see supporting information Figure S5):

log FCO2ð Þ ¼ �2:88 þ 1:06 * log ūð Þ þ 0:77 * log pCO2ð Þ: (3)

The fit had an adjusted R2 value of 0.66 (see supporting information Figure S6), and the overall P value was
highly significant (<0.001). An alternative approach fitting a model with flow: pCO2 interaction was also
tested, but the interaction term was not significant.

To account for intersite variation, a linear mixed effect model was fitted [Pinheiro and Bates, 2000], which
yielded the following predictive equation based on the fixed effects:

log FCO2ð Þ ¼ 1:43 þ 1:20 * log ūð Þ þ 0:22 * log pCO2ð Þ: (4)

Site-specific random effect terms on the intercept ranged from�0.87 to +1.12 (see Figure S6). In this case the
flow:pCO2 interaction term was autocorrelated with pCO2 and could not be included in the model simulta-
neously. The site-specific terms reflect the magnitude of CO2 efflux and thus are related to site-specific
controls over the availability of CO2. Four sites have effect terms that are close to zero (�0.14 to 0.01); RK
has a significantly lower intercept (�0.87) and NC a significantly higher value (1.12).

The two models, equations (3) and (4), have different intercepts due to the separate site-specific component
in the mixed effects model. The flow velocity coefficients (1.06 and 1.20) are similar between the models but
pCO2 has a lower coefficient in the mixed effects model (0.77 versus 0.22). This implies that some of the dif-
ferences in pCO2 values between sites (Kruskal-Wallis rank sum test, P value≪ 0.001) are attributed to site-
specific effects, whereas the velocity differences are systematic across all sites.

Direct measurement of hydraulic properties is not always possible, so for the UK sites, the qualitative descrip-
tion of water surface state was used to assess the potential for rapid upscaling. Adding water surface state to
the logarithmic relationships between efflux and hydraulic variables, the data separate according to the
visual characterization (Figure 5). There is little separation between the medium and rough data sets, imply-
ing that moderate disturbance of the water surface disrupts the surface boundary layer.

Figure 3. CO2 efflux andmean flow velocity data from all UK and Amazonian
sites. All sites follow the same trend whereby CO2 efflux increases with flow
velocity, apart from one of the Amazonian small streams (NC) where a given
velocity resulted in a higher efflux rate. Both the response variable (efflux)
and the explanatory variable (flow velocity) show skewed distributions and
were therefore log-transformed before fitting statistical models to the data.
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4. Discussion

Measurements of the ranges and
mean values of CO2 efflux from rivers
in contrasting climatic zones, UK
(temperate) and Amazonian (tropi-
cal), show no significant differences,
and all data fall within previously
reported ranges that show no consis-
tent pattern with latitude (Figure 1
and Table 1). We interpret these
results as showing that ecosystem
level productivity is not the primary
control on CO2 efflux and an alterna-
tive explanation for intersite variabil-
ity in CO2 efflux is required.

pH can limit CO2 efflux through its
influence on speciation of the DIC
pool [Hoffmann and Schellnhuber,
2010]. At high pH, a greater propor-
tion of the DIC pool is in the form of
carbonate and bicarbonate ions,
which only exist in aqueous form,
and so are not available for degas-
sing. Thus, it is possible that at higher
pH the CO2 pool size may be smaller;
however, the size of the CO2 pool is
also dependent on the total DIC
concentration, as it is a proportion of
this. Here at the time of sampling,

the pH of all fluvial systems was rarely above pH 7; thus, in all cases, under these relatively low pH conditions,
CO2 was available for degassing.

Figure 4. Data from UK (RK and DW) and Amazonian sites (MT, NC, LT, and
TP) demonstrating a log-log relationship between CO2 efflux and the
product of flow velocity and pCO2. By including the influence of pCO2, NC
falls in line with the rest of the study sites. The log-transformation produces
variables that are approximately normally distributed as shown by the
histograms. Symbol size is scaled by pCO2, and site coded by color. The
dashed and dotted lines are log-log regressions assuming that all error is
contained in flux and the “mean flow velocity*pCO2” product, respectively.
The solid line is the bisector of these relationships and is an approximation to
the functional relationship between the dependent and independent
variables where both have equal proportional error.

Figure 5. Separation of data by visually determined flow state in the relationships between CO2 efflux and mean velocity,
Froude number, and Reynolds number.
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Within-site variability is greater than that observed between sites and is consistently related to flow hydraulics
(Figures 3 and 4). Hydraulic controls over CO2 efflux have been suggested previously [Raymond et al., 2012;
Wallin et al., 2011], but published studies estimated this from stream slope and estimates of gas transfer velocity
(k) rather than direct measurements of both flux and hydraulic variables as have beenmade here. When pooled
CO2 efflux data from all six sampling sites were plotted against ū, an increase in CO2 efflux occurs as flow inten-
sity increases regardless of climatic zone (Figure 3). CO2 efflux should be enhanced by flow intensity because
convection and turbulent mixing associated with eddies greatly enhance gas transfer across the air-water inter-
face [Moog and Jirka, 1999; Eugster et al., 2003] by repeatedly renewing the surface boundary layer with CO2(aq),
maintaining a steep CO2 concentration gradient between the water and the atmosphere [Eugster et al., 2003]. It
is unclear what scale of eddies are the most important to gas transfer across an air-water interface [Moog and
Jirka, 1999]. However, it is thought to be a combination of large- and small-scale eddies, with the higher-
frequency small-scale eddies embedded within larger eddies, carried to the surface where they renew the
surface zone [Moog and Jirka, 1999], transferring CO2 where available from the bed.

Of all of the sites, NC is distinctive having higher minimum, maximum and mean CO2 efflux than the other
five sites for a given flow velocity (Figure 3 and Table 1). At all six sites, mean pCO2 levels showed oversatura-
tion with respect to atmospheric CO2 concentration, but NC had much higher pCO2 levels and greater over-
saturation than all the other sites (Table 1). Although data are not abundant, elevated pCO2 has been
previously reported to enhance CO2 evasion [Billett and Moore, 2008]. Elevated pCO2 can cause enhanced
CO2 efflux due to a greater availability of CO2 for degassing and a steeper water-atmosphere CO2 concentra-
tion gradient [Billett et al., 2006]. Thus, it seems likely that at NC, the higher concentration of CO2 in the water
resulted in greater CO2 efflux at a given velocity. When pCO2 was included in the model for efflux, NC data
aligned with the other sites (Figure 4 and supporting information Figure S7). That it was only necessary to
include pCO2 to align one site suggests flow intensity is the primary control on CO2 efflux and pCO2 the
secondary. Our knowledge of hydrological pathways in the catchments supports this analysis, as NC is the
only site with a dominant groundwater contribution to its flow. Fanning at the upper end of the relationship
between CO2 efflux and ū (Figure 3) indicates that factors that were not considered in this study may contri-
bute to variation in CO2 efflux, for example, the interaction of streamwater with the river bed [e.g., Peter et al.,
2014]), dissolved organic carbon concentration (as a contributor through respiration or UV oxidation to CO2

[Cole et al., 2007]), or seasonality (controlling allochthonous inputs and as a proxy for temperature, auto-
chthonous and secondary production [e.g., Billett and Moore, 2008; Dawson et al., 2009]).

These data suggest that for the range of pCO2 values at the six sites, CO2 efflux can be considered to be hydrau-
lically limited, analogous to transport-limited solute transport in rivers; i.e., the flux of CO2 to the atmosphere is
primarily determined by turbulence andwater surface disturbance which, respectively, supply CO2 to the water
surface and facilitate its transfer to the atmosphere. Figure 2 shows significant single-site relationships between
efflux and flowparameters, with R2 values 0.5–0.83. Combining data from sites introduces variation in pCO2 and
potentially other processes such as wind disturbing the water surface which is of more significance in larger riv-
ers. However, introducing pCO2 either as a secondary variable (equation (3)) or in a linear mixed effect model
(equation (4); Figure 4) provides improved statistical significance. Where the supply of CO2 is limited, for exam-
ple, in high pH streams, we hypothesize that the relative significance of hydraulic conditions will be reduced
and that additional biogeochemical parameters may need to be introduced to these explanatory models.

As yet there is no simple sensor technology to directly measure CO2 efflux from a stream or river surface and
to enable spatial and temporal upscaling, so we need to explore proxy approaches. When considering the
water surface state in the relationship between CO2 efflux and log ū, log Fr and log Re, the data separate
according to the visual characterization of the water surface (Figure 5). The relationship between water
surface state and Froude number is well known [Gordon et al., 2004]: water surfaces classified as “smooth”
separate by Froude number from those classified as medium and rough (supporting information Figure
S8) and by definition, Fr is correlated with other measures of flow intensity. With the collection of suitable
calibration data sets, visual classification data could provide estimates of Froude number. Water surface state
can bemeasured from aerial imagery [Cox and Munk, 1954; Preisendorfer and Mobley, 1986; Gordon, 2005] and
so if this visual classification method can be refined, there may be potential for using remote sensing tech-
niques to include more accurate estimates of CO2 evasion from low-order and/or inaccessible streams in
catchment scale or global estimates of riverine CO2.
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5. Conclusion

Direct measurements of flow intensity with CO2 efflux rates at six sites in two contrasting climatic regions
show that flow intensity is a primary control on CO2 efflux rates. Here ū has the highest correlation with
CO2 efflux but is less likely to be applicable across scales than Fr and Re, so instead we use the term flow inten-
sity to encompass multiple measures of flow stress. The relationship between flow intensity and CO2 efflux is
refined when pCO2 is included in the model, correcting for intersite variability. The highest CO2 effluxes were
measured when both flow velocity and pCO2 were high. However, the highest effluxes occur over a range of
velocities, suggesting that additional controls, for example, diurnal or seasonal responses or the impact of
hydrological events [e.g., Peter et al., 2014] also influence CO2 efflux rates. It may be possible to refine the
model by quantifying these and incorporating such controls empirically into the model.

Having confirmed the significance of hydraulic controls over CO2 efflux, there is potential for improving both
the coverage and accuracy of CO2 efflux estimates from surface waters, overcoming limitations in under-
standing that support upscaling. We note that our model describes less well CO2 efflux rates at the highest
flows and so further data are required in high flow conditions to refine the model. Additionally, we lack
knowledge of CO2 recharge from the interaction of the water column with the benthic and hyporheic zones
[e.g., Peter et al., 2014], and how this influences the capacity to degas CO2 needs to be considered, with a view
to comparison with models that estimate CO2 degassing at the catchment scale [e.g., Abril et al., 2014].
Further, our model is unlikely to apply in conditions where CO2 efflux is supply limited, e.g., middle to high
pH systems such as glacial-melt [Thomas and Raiswell, 1984; Brown, 2002] or tufa systems [Chen et al.,
2004; Pedley et al., 2009] where speciation of DIC can limit efflux, but flow velocity may still be high.
However, to support upscaling, visual classification of water surface state shows promise but requires devel-
opment and rigorous testing to reduce subjectivity and variation in the estimates.
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