Flexible yet Secure De-duplication Service for
Enterprise Data on Cloud Storage

Wen Bing Chuan'®, Shu Qin Ren?, Sye Loong Keoh' and Khin Mi Mi Aung?
fSchool of Computing Science, University of Glasgow Singapore, Singapore 737729
“Singapore Institute of Technology, SIT@RP Campus, Singapore 737729
Data Center Technologies Division, Data Storage Institute, A*STAR, Singapore 138932
Email: {2109934c, SyeLoong.Keoh} @glasgow.ac.uk, {Ren_Shugin, Mi_Mi_Aung} @dsi.a-star.edu.sg

Abstract—The cloud storage services bring forth infinite
storage capacity and flexible access capability to store and share
large-scale content. The convenience brought forth has attracted
both individual and enterprise users to outsource data service to
a cloud provider. As the survey shows 56 % of the usages of cloud
storage applications are for data back up and up to 68% of data
backup are user assets. Enterprise tenants would need to protect
their data privacy before uploading them to the cloud and expect
a reasonable performance while they try to reduce the operation
cost in terms of cloud storage, capacity and I/Os matter as well
as systems’ performance, bandwidth and data protection. Thus,
enterprise tenants demand secure and economic data storage yet
flexible access on their cloud data.

In this paper, we propose a secure de-duplication solution
for enterprise tenants to leverage the benefits of cloud storage
while reducing operation cost and protecting privacy. First,
the solution uses a proxy to do flexible group access control
which supports secure de-duplication within a group; Second,
the solution supports scalable clustering of proxies to support
large-scale data access; Third, the solution can be integrated
with cloud storage seamlessly. We implemented and tested our
solution by integrating it with Dropbox. Secure de-duplication
in a group is performed at low data transfer latency and small
storage overhead as compared to de-duplication on plaintext.

I. INTRODUCTION

In contrast to traditional storage services with fully trusted
infrastructure and management, cloud storage provides tenants
with a transparent service, like elastic capacity and flexible
accessibility, without the need to manage troublesome infras-
tructure. Individual users are already enjoying the flexibility,
accessibility and data management provided by cloud storage
services such as gmail, dropbox and wechat. People are de-
manding more storage space from service providers to backup
[1], share documents, photos and videos with friends [13]. All
these benefits are based on the assumptions that individual
users trust the service providers or take the risk of exposing
their data to the service providers, thus a privacy issue.

For enterprise tenants/users, data growth is tremendous
with online business transactions, and it will continue to be
so. The demand for outsourcing data storage and management
has increased dramatically. The study from ThelnfoPro’s Wave
shows that on-premises private cloud will host 30% and
off-premises public cloud will host 15% in IT service by
2015 [7]. Cloud storage space unfortunately, are not free.
Major providers like Amazon Cloud Storage service charges
consumers annually based on the amount of storage space they
purchase on an annual contract. Enterprise and corporate rely

their daily business functions on cloud storage. Basic business
operations such as data backup or recovery or cloud databases
increase the demand of cloud storage services. If redundant
data are not managed well, it would take up too much
unnecessary storage space, and hence incurring extra cost. This
often drive consumers into outsourcing for techniques aimed
to minimize space usage. Data De-duplication is an attractive
technology that reduces storage space and network bandwidth
during data transfer in order to cater for the vast amount of
redundant data. This technique exploits the content of data file
by removing the need of keeping multiple copies of files with
the same content through the elimination of duplicates.

Apart from optimizing the storage space, it is important
that enterprises have control over the access to their content
stored in the third party providers. The continuous report on
data leakage caused by inherent loopholes with the Internet has
raised concerns with regards to data security on a large scale.
Storage providers are inadequate as the only provider of data
security. Following reports of data leakage on platform such as
Dropbox [3] and iCloud [5], end users have realized that they
have a part to play in securing their own digital assets. Data
leakage often compromise data confidentiality and integrity,
this induces significant impact that could cost an individual
his/her reputation or monetary loss, and it could potentially
bring down a large corporation in a jiffy. In addition, the multi-
tenant nature of cloud computing exacerbates the security
vulnerabilities, resulting in the integrity of data is consistently
at risk.

Data protection and service cost are two top issues
concerned by enterprise tenants, which are extra features
demanded from the individual users. Business data is vital to
companies, they can get reliable, available, fault-tolerance and
performance from cloud service providers, but they cannot
take the risk of letting the service provider to scan data
or charge expensive service fee. If enterprise tenants were
willing to outsource data storage to cloud, they would prefer
flexible but secure data storage and management services
while keeping the service fee as low as possible. For example,
they would like the cloud service to manage their data without
knowing the data contents while cutting off all the unecessary
cost. We consider the application scenario where an enterprise
tenant has a group of users who share data storage through
an untrusted service provider as what they did with NAS or
SAN. Since the data stored is on untrusted site, all users’ data
are encrypted before they are uploaded to the cloud.

In this paper, we propose a system that facilitates secure
file sharing over cloud based storage in a space and bandwidth
efficient manner while leveraging on the availability, flexibility
and capacity provided by the cloud. We outline the contribu-
tions of this paper as the following:

e A group-enabled De-duplication scheme that allows
de-duplicaiton on encrypted data across users.

e Secure sharing within multi-user group is enabled
to support fine-grained access control to the cloud
storage.

e Scalable and secure enterprise proxy solution that
provides transparent data access and protection.

This paper is organized as follows: Section II reviews the
literature and related work. Section III describes the problem
statement. Section IV presents the system architecture of
the proposed proxy-based access control and de-duplication
service. In Section V, we present the implementation details,
while Section VI describes the evaluation results. We present
security analysis of our solution in Section VII. Finally, we
conclude the paper with future work in Section VIII.

II. BACKGROUND AND RELATED WORK
A. Space Saving with De-duplication

The advent of big data, mobile computing and social
networking generates data deluge and demands for big volumes
of storage. Recent survey by Gartner shows that data growth
forms high cost for hardware infrastructure in data center.
Data de-duplication has been performed by commercial cloud
storage services such as Google Drive [4], Dropbox [3] and
bitcasa [2] across users to save space. In such a multi-tenant
environment, data duplication occurs at high possibility and de-
duplication results in substantial economic benefits for cloud
provider [14].

De-duplication [11] is a process of identifying redundancy
in data content and denying this incoming data if it matches
an existing record. Hence, only a unique single copy of the
data is stored and will be made available to all the authorized
users. Rashid [18] proposed a framework that implements
block-level data de-duplication so that files are divided into
blocks and de-duplicated. To fully utilize the benefit of data
de-duplication, cross-user de-duplication is used in practice.
It identifies redundant data across different users and then
removes the redundancy and therefore saving storage space.
The authors also pointed out that an average of 60% of data
can be de-duplicated for an individual using cross-user de-
duplication technique. Thus, proving that data de-duplication
is capable of supporting the integration with cloud storage to
provide space efficient storage on a lower cost and bandwidth
consumption.

However, there are several security drawbacks in data de-
duplication, e.g., the issue of data privacy and integrity. De-
duplication cross users can potentially lead to information leak-
age to malicious users through side channel attacks. Despite
the effort invested in improving the existing de-duplication
algorithm to provide users with adequate privacy, thus far there
is no work that has a solution for an effective and secure
combination of the two [18]. Current systems rely primarily

upon three main data de-duplication strategies [20], [17] as
follows: Firstly, Whole File strategy typically utilises a file’s
cryptographic hash value as an identifier. If two or more files
hash are of the same value, they are assumed to have identical
content and only stored once. This is the simplest and the
most straightforward form of data de-duplication. Secondly,
fixed-sized chunks where it breaks a whole file into n number
of pre-determined fixed-size chunks. Such chunk-level data de-
duplication renders more flexibility and efficiency in terms of
the depth of de-duplication. Each chunk is stored in a data
store. During de-duplication process, each chunk is analyzed
and identical chunks will not be stored into the data store,
hence saving storage space. This however, requires system to
keep track of a list the files and their associated data chunks.
When the files are requested, system will compute the chunks
into a whole file and have the file returned. One missing chunk
will raise issues in this de-duplication strategy. The last, and
the most flexible form of data de-duplication breaks files into
variable-length chunks using a hash value on a sliding window
mechanism. By utilizing techniques such as Rabin fingerprint,
chunking can be performed very efficiently [20].

According to [17], the location at which data de-duplication
is performed is also very important; if the data are de-
duplicated at the client side, then it is known as the
source-based de-duplication or otherwise, target-based de-
duplication. In source-based de-duplication, the client will
perform hash functions on each data segment that needs to
be uploaded. These results are sent to the storage provider
to check whether such data are already stored; thus only
unique segment will be uploaded and stored. While data de-
duplication at the client side can achieve bandwidth savings,
unfortunately it is prone to side-channel attack as mentioned
earlier. On the other hand, if de-duplication happens at the
storage provider, it is no longer prone to side-channel attack,
but such solution achieves no decrease in communication
overheads. This is a very classic example of a trade-off
between data security and system performance.

B. Privacy with De-duplication over Convergent Encryption

Convergent Encryption [17] is used to provide data confi-
dentiality in a de-duplication environment. It uses the cryp-
tographic value of data as the encryption key (Convergent
Key), therefore identical data will result in identical ciphertext.
In essence, data owner derives a convergent key from the
original data and encrypts the data with the key. In this
context, users do not have to interact with each other for
establishing an agreement on the key to encrypt a given data
file, overcoming the problem of key sharing and distribution.
Convergent Encryption overcomes the limitation of data con-
fidentiality in de-duplication environment in that ciphertext
is now distinguishable, making it suitable for cross user de-
duplication [17].

However, this scheme suffers from (1) Confirmation of File
attack (CoF), where an attacker who has already known the
full plain text of the data, he or she is able to verify if a copy
of that file has already been stored. (2) Learn-the-Remaining-
Information (LRI) attack, where the attackers already owned a
big part of the original data, and tried to guess the unknown
parts by checking if the result of the encryption matches
the observed ciphertext. And lastly, (3) Dictionary Attack, an

attacker who is able to guess or predict the original file can
easily derive the potential encryption key and verify whether
the file is already stored in the cloud storage provider or not.

In [16], the authors proposed to add a secret value to the
encryption key, by adding randomness and uniqueness, the key
is cannot be easily computable. Which now, de-duplication
will thus, can only be performed on files of those users to
whom they have a possession of the secret. This solution
overcomes the weakness of convergent encryption at the cost of
dramatically limiting the effectiveness of data de-duplication.

C. Cloud Storage: Dropbox Security

Dropbox, Google Drive and Sky Drive are some of the
most common cloud storage in the market. Known for their
convenience and easy to use interface, Dropbox in particular
has garnered more than 300 million users worldwide by May
2014. This is expected to increase within the next 6 months
[10]. Dropbox has one of the top network storage services and
it has since been providing personal data storage and data shar-
ing among multiple users. [8] has made an in-depth analysis on
the types of data sharing method provided by majority of the
cloud storage providers. The types of sharing method are as
follows: (a) Public Sharing, data is intended for the public, so
there’s no access control. A link to the shared folder (called the
sharing URL) can be published, giving anyone on the Internet
access to the shared documents. (b) Secret URL Sharing, file
owner shares the data with others by sending them a sharing
URL generated by the cloud storage provider. Anyone with
this URL can access the data without further authentication or
authorization. The data owner is responsible for identifying the
URL receivers. This is only applicable to shared files and not
folders. (c) Private Sharing, file owner must explicitly specify
who can access the shared data. The cloud storage providers
then authenticates the identity of the named users, usually by
requesting that they sign into their account before accessing
the data.

In October 2014, IT news giant, Engadget reported that
Dropbox has been under a massive hacks which compromises
7 million Dropbox accounts with their credential leaked online
[15]. Despite Dropbox quickly implemented counter-measures
to detect the account compromised, they are undeniably a
single point of failure in the face of all the sophisticated
attacks online. Dropbox does not have control over how the
secret URL links are shared after they are generated. This can
lead to unauthorized re-sharing of the secret URL link [8].
For instance, owner A sends a secret URL link to user B,
B although is not capable of inviting others to view this file,
but is capable to resharing this URL to others without the
acknowledgement of the file owner. This would mean that if
an unauthorized user got their hands on the URL, they can
potentially access the shared file with the URL. Convenience
of file sharing is performed on the cost of data confidentiality
and privacy, therefore there is a need for data encryption and
access control to overcome the vulnerabilities of Dropbox.

III. PROBLEM STATEMENT

A. Problem 1: Group Key Management for Data Privacy

When storing files and sharing them among users on
Dropbox, unencrypted files stored in the cloud is susceptible

to illegal access by the service provider and unauthorized
users, thus leading to the compromise of data integrity and
confidentiality. This problem could be solved by encrypting
all files before uploading to the cloud storage. However, the
risk has been delegated to the secrecy of the encryption key
instead, as illustrated in Figure 1. The encryption key needs
to be securely distributed in order to grant access to the files
and we have to protect against malicious attackers obtaining
the encryption key distributed by the sender to receivers.
Consequently, there is a need for a trusted entity to sit in
between the users and cloud storage in order to fulfill the new
tasks of key distribution and group access control, specifically
targeting at the requirements of secure de-duplication within a

group.

A—")
|
Upi
User1 oag gp,,
| TYpteq data g,
: Energ
|
|
| Share key
I 1
l i Dropbox
I |
\o? i

l User2 DO\Nn "' Use malicious way to
l 4 I Get the file
L e — |

LIs-e-;;,-_ ------------------ Malicious

I
the key S WY o get user

Fig. 1. Cloud Storage security and key distribution problems

B. Problem 2: De-duplication on Privacy Preserved Data

The second problem to address is to detect duplicated
data to be uploaded into the same cloud storage without
compromising the data privacy, as illustrated in Figure 2. The
negative redundant data will take up unnecessary space in the
cloud and slow down the network performance. The issue will
gradually worsen with the increase of redundant data in the
storage. The impact on enterprise users would be more evident

compared to a single user.
Asistent uploading

of duplicated files slows
down the process, waste
time and space

)LL)
el

Duplicated contents

Q

%,
%
(o
: [>3
No control over the uploading ‘%9
of duplicated file %
‘o
User 1

Fig. 2. Redundant and duplicated data problem

Authenticate

Proxy .
(Server Application) File Upload Dropbox ~
; \
Authenticate acf = Enc(h[f] + ss , f) }
eddf = Enc (Kc, h[f] + s) acf N— eddf ‘
. N [
File Upload [
‘ Data De-duplication }
[ToTmmTmemmemees i i
v | o |
_ User o ! = |
|) . ity el > '] ‘
| (Client Application) . : |
| — E Convergent Encryption ' 5? }
| 2 | ! S| |m \
! f o ! S| |® |
| £ i 2115 |
| g ' 7 ANE |
i] = [
: File Download = ! Access Control @ & 2 [
: E ~ & = }
: h[f] +ss =Dec (KC!Eddfb_ _____ _w_-'_'_'_;'> Prime number Acess Control &k }
| f = Dec (h[f] + ss , acf) % 3 }
| = |
: == Prime number key generator |
i / Database i
: On the fly generate K_ }
: Store / Retrieve A }
\

File Synchronization

Fig. 3. System Architecture

IV. PROPOSED SOLUTION: FLEXIBLE YET SECURE
DE-DUPLICATION SERVICE FOR ENTERPRISE DATA ON
CLOUD STORAGE

We have designed and integrated our flexible and secure
de-duplication service with Dropbox cloud storage. However,
the solution is not limited only to Dropbox, it is a genetic
security service that is also applicable to other cloud storage
providers. As illustrated in Figure 3, our solution consists of
three components, namely:

e User/Client application — It provides interfaces to user
to operate data upload and download transparently
with the function of encryption and decryption.

e Trusted Proxy — It has three main responsibilities,
namely: 1) Mediate the communication between the
client and the Dropbox Cloud Storage service; 2)
Perform group authentication on end users when ac-
cessing the shared data on cloud storage; 3) Detect
data de-duplication to save storage cost and bandwidth
from/to cloud storage.

e Cloud storage server (Dropbox) — It serves as a data
store for all data uploaded by the client.

A. System Setup and Assumptions

When enterprises and Internet users turn to cloud based
storage as an alternative to on-premises data stores for its pow-
erful data synchronization service, they require convenient file
access from multiple users across multiple devices at numerous
locations. Although most cloud storage providers support file
sharing, it is of utmost important that only authorized users

should have access to the original (encrypted) data, whereas
unauthorized users should see no hints of the original data.
Therefore, it is crucial that a feasible access control mechanism
is set in place to manage the access rights and maintain the
privacy and integrity of data sharing in the cloud.

The communication channel between the cloud storage and
proxy is secured by TLS as required by Dropbox. Additionally,
the client application establishes a TLS secure channel with the
proxy while uploading or downloading files.

Prior to using this system, users are assumed to have
a Dropbox account, and the creation of shared folders and
sharing of folders with others are to be performed on the
Dropbox website before the trusted proxy can be invoked to
generate the corresponding cryptographic materials. Therefore,
the system cannot be used to grant access rights to non
Dropbox users.

B. Efficient Group Access Control based on Prime Factoring

In order to facilitate secure file sharing, the trusted proxy
employs a novel access control mechanism to grant access to
the files and shared folders stored in Dropbox based on the hard
problem of prime factoring. Each authorized user is assigned a
prime number, and the group access control key of a file is the
multiplication of all the authorized members’ prime numbers.
Access to the file or folder is granted whenever the group key
is divisible by the authorized member’s prime number.

Folders and files are viewed as Resources in the trusted
proxy. Prior to uploading or downloading files, the client appli-
cation needs to inform the trusted proxy about which resource
to manage. Each new resource is associated with a 256-bit

prime number as resource key, denoted as Rj. Similiarly, each
member m; is assigned a 128-bit prime number as member
key, denoted as K,,,;. The control key over group g is denoted
as K., where

ControlKeyGen(Ry,Kp;) = Kqq for Vm; € g

The control key, K., over a resource I, is essentially the mul-
tiplication of the resource key Rj and the dedicated member
keys K,,,; for which the members have been granted permission
to access the resource. The access control service which runs
on the proxy checks whether a user is authorized to access the
resource by invoking

IsMember(Keg, Kimi) — 0

This function checks whether a member, m; has access rights
to the resource managed by the control key, K 4. If K.q is
divisible by K,,; then member m; associated with K,,; is
deemed as authorized, and the output, o, a boolean value is
true, otherwise it is unauthorized with the output of false.
Whenever there is a change in membership, such as new
member joining or member is revoked from the authorized
member list, the group control key K, is updated through the
following:

AddMember(Keq, Kp,,..,) — K;g,
where K/Cg=ch*Kmnw
RevokeMember(K.q, Krevoked) =+ Kzg,

where I(;gchg ! Koo
The control key of a resource, K., will be re-computed by
multiplying the new member key k,,__, with the old control
key K., when adding a new member; the control key of a
resource, K., is updated by dividing itself by the revoked mem-
ber’s key, Ki,.,.... When permission to access the resource
is revoked. Each member is only securely deployed its own
member key and the control key is computed on-demand and
managed by the trusted proxy. The control key is invisible to
the members. More interestingly, the group key update are only
relevant to the new member and revoked member, in that the
control key generation process is transparent to other members.
Existing members do not need to be notified whenever there is
a change in the membership. As a result, our scheme provides
a very efficient manner to manage and enforce group access
control. This control can be further generalized and applied
to read and write permissions. Note that we define this group
access control key, a big prime number, as a metadata related
to the resource. This metadata can be placed in the cloud
storage and exists as an object. Due to hard problem of the
prime factoring, we can safely assume that its security is
difficult to compromise. For applications that require higher
level of security guarantee, our system can be adapted to store
the membership information in the cloud storage, so that the
control key itself is not being stored anywhere but generated
in real time on-demand.

For each resource in Dropbox, the trusted proxy obtains the
metadata of the resource, and based on the list of members
authorized to access the resource, the control key K., is
generated on the fly for each access request to Dropbox. In

essence, the control key K., is used to govern access to the
resource in Dropbox.

C. Authentication to Dropbox

The client application as shown in Figure 3 is equivalent to
the Dropbox desktop synchronization application that allows
users to upload, download and share files with other users. It
provides an interface for communication between the trusted
proxy and the user through the relay of the client’s operation
back to the proxy. The client application authenticates to the
Dropbox via the web browser and delegates its access rights to
the proxy to perform access control and data de-duplication.
Upon signing in to Dropbox, an access code will be given to
the user, submitting the code to proxy will generate an access
token from Dropbox. This token serves as an identification for
subsequent access by the user and proxy. As the access token
can be used to access the cloud storage, if attackers got hold
of it, they will be able to access the files stored in the cloud.
Hence, upon logging out from the proxy, this access token will
be revoked from Dropbox.

The Dropbox shared folder metadata contains the list of
members of the shared folder, the list of files within the shared
folders and the owner of the shared folder. As our system uses
the Dropbox itself to manage the member list, it is crucial that
the proxy and/or the client application do not store any trace
of member list. Consequently, whenever the folder metadata is
needed, it will be requested and pulled from Dropbox by the
proxy so that access control decision can be made in real time
to grant access to the cloud storage.

D. Cloud Storage Management and De-Duplication

In addition to the control key, K., and the resource key, Ry,
that are being used to enforce access control, a secret string,
ss for each resource is also generated by the trusted proxy to
perform encryption of the resource. When a client application
uploads a file to Dropbox, the request is routed to the trusted
proxy. A convergent key is generated using the hash value of
the resource, H|[f] salted with the secret string, ss.

KeyGengg(HIf], ss) — K;

This convergent key, K5 is used to encrypt the resource. The
proposed scheme is different from the conventional convergent
encryption in that a secret string is added to the hash of the re-
source in order to add randomness and uniqueness to the key so
that the encryption is not deterministic. Hence, Confirmation-
of-File and known plaintext attack can be mitigated in that
even if the attacker knew the plaintext and it cannot infer the
content of the encrypted files.

The resource is subsequently encrypted with the convergent
key, K; to produce a ciphertext, acf.

Encryptog(Ks, f) — acf

Anyone with possession of the convergent key will be able
to decrypt the file. Therefore, the convergent key must be
protected and only authorised users are allowed to access
the content of the file. The convergent key is subsequently

encrypted using the control key, K4, and this is stored in the
Dropbox as eddf.

Encryptop(Keg, Ks) — eddf

Before the resource can be uploaded to the Dropbox, data
de-duplication is performed on the encrypted file, i.e., acf. The
hash of acf, Hlacf] is checked against the database accessible
by the trusted proxy to detect whether there is already a copy
of the resource in the cloud. If the resource is a duplicate, the
upload to cloud will be skipped, otherwise both the encrypted
resource, acf and eddf are uploaded to Dropbox for storage.

E. Download of Resource

Access control is realized through division and multipli-
cation of prime numbers. Resource keys and member keys
are mapped to the member list obtained from the Dropbox
shared folder metadata. The control key, K., is generated for
each access request based on the member list. If it is divisible
by the member key, K,,; requesting for access, the acf and
eddf are downloaded from the Dropbox. If client is deemed
unauthorized to view the downloaded content, the download
process will be rejected.

Once the user has been authenticated, the control key, K.,
can be used to decrypt the convergent key, Ks. Following that,
the convergent key is then used to decrypt the resource.

Decryptor(Keg, eddf) — Ks
Decryptcr(Ks, acf) — f

The actual requested file is never downloaded until its acf
and eddf are decrypted and the client is deemed authorized to
view the file content.

V. SYSTEM IMPLEMENTATION

We have implemented a client application that mimics the
Dropbox desktop application using Java. In addition, a trusted
proxy is implemented and deployed to mediate the communi-
cation between the client application and the Cloud Storage,
Dropbox. The following sections describe the implementation
of the client application and the trusted proxy.

Client Application The client is implemented using Java,
and it provides a simple interface for the user to authenticate
itself to Dropbox, create a new resource, manage access
control, upload resources as well as download resources.

Dropbox Core API The proposed access control and de-
duplication service was integrated with Dropbox using its
Core API. The core API provides most of the functionalities
needed by the trusted proxy, such as authentication of client,
retrieval of metadata of files and folders of the client and basic
operations to create file, create folders as well as removing
them. However, the core API does not allow the proxy to
perform the creation of shared folders [9]. The only shared
folder related function is to request for its metadata. The
metadata of a shared folder however, is returned from Dropbox
in JSON format, as there exist no methods to extract the
metadata for certain information, unlike of those provided for
metadata of a folder. Therefore a class name CURL.java is
created to make HTTP request to Dropbox for shared folder

Upload > to Shared Folder

& w_bing

Name & Date Modified
AndroidStudioProjects Friday, March 13, 2015 1:44 AM
Applications Saturday, January 31, 2015 8:56 PM

1 Desktop Monday, March 30, 2015 3:40 AM

1 Documents Sunday, March 29, 2015 4:02 PM

% Downloads Monday, March 30, 2015 12:07 AM

% Dropbox Friday, March 27, 2015 8:04 AM

] Library Wednesday, February 11, 2015 10:21 PM
Movies Sunday, March 22, 2015 7:30 PM

7 Music Wednesday, February 11, 2015 10:21 PM

1 Pictures Thursday, March 26, 2015 3:06 AM
Public Thursday, January 29, 2015 9:33 PM
VirtualBox VMs Thursday, February 5, 2015 3:09 PM

File Format: All Files

File :WB_v1.7.0_UpdateSite_for_Eclipse4.4.zip is added at[2015-03-30 03:40:16.725]

Location
/Users/w_bing/Downloads/p61...
/Users/w_bing/Downloads/Unli...
/Users /w_bing/Downloads /WB_.

Name Type size
p612-shamir pdf 188.9 bytes
Unlimited)CEPolicy)DK7 zip 7.3 bytes
WB_v1 zip 37.9MB

| Proceed

Fig. 4. Interface of the implemented Client Application

metadata as well as extracting information such as owner of
the shared folder and members in the shared folder out of the
JSON string returned from Dropbox [12].

Cryptography and Access Control We implemented
convergent encryption and cryptographic hashing using the
Bouncy Castle API for Java [6]. Encryption was based on
256-bit AES, and SHA-256 was used as the hashing function.
Convergent encryption was achieved by implementing AES-
256 with a static IV. The IV is derived from the first 16 byte
of a secret string, the same secret string used to generate the
convergent key.

The Prime Number Access Control was implemented on
the trusted proxy. This was achieved through the use prime
number multiplication and division capability in Java. As the
prime numbers generated were really big, a Biglnteger data
type was used.

VI. EVALUATION AND RESULTS
A. System Performance and Overhead

In terms of performance, we measured the time taken
to upload and download files of variable size to determine
the performance overhead incurred by the trusted proxy. We
compared the total data transfer time from access control, data
encryption/decryption, de-duplication to upload/download with
our proxy solution against the existing Dropbox solution. The
experiment results are listed in Table I and Table II. Obviously,
our solution is slower than the current Dropbox solution for
upload as shown in Table I, but the difference is narrowed
down with the increase of file size. More importantly, the
overhead of 4 sec to 1 min is consumed by the security
features provided including confidentiality, access control and
secure de-duplication. On the contrary, the performance of our
solution is slightly better for resource download. As shown
in Table II, the performance between our system and pure
Dropbox solution is comparable. This is possibily because
the amount of computational workload has been reduced in
that data de-duplication check is only applicable to resource
upload, while resource download only involves access control

check and decryption. In fact, when performing data de-
duplication, more cryptographic functions such as hashing had
to be carried out, thus this might have slowed down the overall
performance. While for access control, most of the operations
are simple mathematical division and multiplication.

File Size With Proxy Without Proxy
180 Kb pdf approx. 7 secs <3 secs

6.5Mb Audio File approx 45 secs <20 secs

40 Mb Video clip 2 mins approx 1 - 2 mins
>230 Mb Zip file 5 mins 4 mins

TABLE 1. RESULTS OF UPLOAD SPEED
File Size With Proxy Without Proxy
180 Kb pdf approx 4 secs 1 -2 secs
6.5Mb Audio File approx 30 secs <20 secs
40 Mb Video clip 2 mins 1 mins
>230 Mb Zip file approx 7 mins 7 mins

TABLE 1I. RESULTS OF DOWNLOAD SPEED

An increase in uploading or download time per file will be
significant if the client were to be an enterprise user. Processing
more files drastically increases the processing time thus might
not be feasible. But our solution is scalable, we can add
more proxy nodes to perform access control and secure de-
duplication because of the secure metadata storage on cloud
and on-demand computation of the control key.

B. Storage Space Overhead

By implementing data de-duplication, we can potentially
save up a lot of storage space, but concern arises when we
are also uploading the access control files into Dropbox. One
encrypted data file comes with one access control file, the
number of access control files will increase linearly with
the number of encrypted data. Table III compares the access
control file size against the actual encrypted data file size. The
size of the encrypted data has no relevance to the file size
of an access control file. This is due to the fact that each
access control file stores the decryption key, and the decryption
key are of the same size due to the algorithm used. Taking
into consideration that the access control file safeguards the
integrity of the data, the space taken up by access control
files is actually acceptable. But this remains arguable, as a
mitigation to this problem is to store the access control file on
the trusted proxy, and leave the responsibilities to the proxy,
but this can potentially affect the overall system performance.

File Size Access control file size
180 Kb pdf 64 Bytes
6.5Mb Audio File 64 Bytes
40 Mb Video clip 64 Bytes
>230 Mb Zip file 64 Bytes

TABLE III. COMPARISON OF ACCESS CONTROL FILE SIZES

VII. DISCUSSION AND SECURITY ANALYSIS
This section presents a security analysis of the proposed
system and describes the corresponding mitigation strategy.

A. Compromise of File Content

As the proposed system has adapted the use of Convergent
Encryption, even if the attacker has knowledge of the file

content stored in Dropbox and wishes to launch Confirmation-
of-File attack (CoF), he or she is not able to do so because
all resources in our system are encrypted with its hash value
concatenated with a secret string, and encoded as K. Thus,
without knowning the secret string, it is not possible to initiate
a CoF attack on the system.

Additionally, the cloud storage is not directly accessible
by a client of the system, instead they must first be decrypted
by the trusted proxy. The generation of the convergence key
is hence performed at the trusted proxy, the clients will not
be able to have access to the shared secretr string. In order
to safeguard the secret string, other security means such
as threshold cryptography [19] can be employed to further
split the secret string into m shares and stored in distributed
databases. With this, the secret string can only be constructed
on-demand when k — 1 out of n shares needs be gathered, and
the attackers have to compromise k — 1 shares.

B. Compromise of Dropbox Access Code

Upon launching the client application, one will be
prompted to request for access from Dropbox. Following that,
a line of access code provided by Dropbox will need to be
entered into the system. This line of code, although is exposed
to the public, it can be a threat to the system on its own. This
access code when copied into the application, Dropbox will
be able to authenticate the client and then return the access
token to the client. To make this API call for authentication,
the access code is needed, the access code however is not
the access token, and it serves a totally different function.
Therefore even the access code is compromised, Dropbox
knows that this access code is tag to which account, and
it will expire after a period of time. Essentially, this access
code cannot derive any access token. The only solution to this
problem is to ensure that the user is not susceptible to Shoulder
Surfing, making sure that no one else in the vicinity can gain
access to the access code.

Enter this code into SDDS_FYP to finish the process.

1suc-uZwJREAAAAAAAACazZ_U9mrfxDT9_P12HVN_YQ

Fig. 5. Requesting access code from Dropbox

C. Compromise of Dropbox Access Token

The access token is crucial for the trusted proxy to commu-
nicate with Dropbox, and Dropbox identifies the client through
this access token. If the access token is compromised, it will
endanger the proxy as well as all the data in the client’s
Dropbox. The system is unable to deal with compromised
token, however we can prevent the compromise from taking
place. The access token can only be gained through API calls

made to Dropbox, the entire communication made from proxy
to Dropbox is secured using Transport Layer Security, (TLS)
provided by Dropbox. Upon client exiting the application,
and when the session has ended, the application must request
the trusted proxy to revoke this access token from Dropbox.
Consequently, revoked tokens will no longer be usable after
the session has ended.

D. Old and Outdated Access Control Files

Access control files are re-generated upon each request of
adding a new member and revoking the membership of current
members. As these access control files are automatically syn-
chronized between the client application and the cloud storage,
the client can attempt to constantly back-up all the access
control files. Whenever a user has his membership revoked
from accessing a shared file, although it still holds onto the
outdated access control file, its request to decrypt the file
will be denied. This is because the trusted proxy would have
updated the control key and hence the client will not be able
to decrypt the old access control file.

E. Compromise of Convergent Encryption Key

In all cryptographic system, the encryption key is the
secret to the file content. The trusted proxy can only prevent
encryption key from getting compromised but cannot deal with
a compromised key. The encryption key is generated with the
file hash value salted with a secret string, and then encrypted
with a control key. The trusted proxy employs multi-layer
security to protect the convergent encryption key. Therefore,
we assume that it is sufficiently difficult to compromise the key.
However under any circumstance that the key is compromised,
the client will have to remove all files from the shared folder
and inform the proxy administrator to mitigate further loss.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has proposed a flexible yet secure data De-
duplication service for enterprise tenants to utilize cloud
storage in a secure and economical means. With the security
concerns, we have proposed a lightweight access control
mechanism based on prime factoring hard problem to provide a
flexible group control; we have also devised and implemented a
practical secure de-duplicaiton method to allow de-duplication
to occur on encrypted data within a group, which can effec-
tively tolerate the existing attacks of CoF, LRI and Dictionary
attacks. With regards to the concerns of operating costs, our
secure de-duplicaiton solution can efficiently save storage ca-
pacity on the cloud storage and compare well with the existing
solutions. Furthermore, our solution is scalable because of its
metadata storage on the cloud and on-demand control key
computation. Nonetheless, the performance of the proposed
system can be scaled up by deploying multiple proxy nodes,
and this is particularly useful for meeting the requirements of
the enterprise tenants, where it can better support performance
oriented applications for large scale enterprises.

Our prototype on Dropbox has demonstrated the feasibility
of combining de-duplication and access control to secure cloud
storage. Although the performance penalty for uploading of
resources through a single trusted proxy is significantly higher
as compared to the existing Dropbox solution, we believe

that with multi proxies and multi-threading, the performance
can be further improved. Finally, we will further explore
the possibility of delegating some tasks on the proxy to the
clients without compromising the security in our future work.

REFERENCES

[1] Amazon Simple Storage Service, http://aws.amazon.com/s3, 2015.
[2] Bitcasa, https://www.bitcasa.com, 2015.

[3] Dropbox, http://www.dropbox.com, 2015.

[4] Google drive, www.google.com/drive, 2015.

[5] iCloud, https://www.icloud.com, 2015.

[6] BouncyCastle. The Legion of the
https://www.bouncycastle.org/, 2015.

Bouncy Castle.

[71 R. Castagna. Survey finds cloud storage implementation growing but
cautious, mar 2013.

[8] C.-K. Chu, W.-T. Zhu, J. Han, J. Liu, J. Xu, and J. Zhou. Security
concerns in popular cloud storage services. Pervasive Computing, IEEE,
12(4):50-57, Oct 2013.

[91 Dropbox. Core api. https://www.dropbox.com/developers/core, 2015.

[10] K. Hong. Dropbox reaches 300m users, adding on 100m users in just
six months. http://thenextweb.com/insider/2014/05/29/dropbox-reaches-
300m-users-adding-100m-users-just-six-months/, may 2014.

[11] J. Li. Secure deduplication with efficient and reliable convergent key
management. [EEE Transaction On Parallel And Distributed System,
25(6):1615-1625, jun 2014.

[12] S. Marx. New in Dbeta: shared folder metadata.
https://blogs.dropbox.com/developers/2014/07/mew-in-beta-shared-
folder-metadata/, 2015.

[13] Megaupload. Megaupload.

[14] D. T. Meyer and W. J. Bolosky. A study of practical deduplication.
Trans. Storage, 7(4):14:1-14:20, Feb. 2012.

[15] M. Moon. Dropbox passwords posted online and millions more might
follow. http://www.engadget.com/2014/10/14/dropbox-log-in-posted-

online/?ncid=rss_truncated&utm_source=twitterfeed&utm_medium=twitter,

oct 2014.

[16] D. Perttula. Drew perttula and attacks on convergent encryption.
https://tahoe-lafs.org/hacktahoelafs/drew_perttula.html, mar 2008.

[17] P. Puzio. Cloudedup : Secure deduplication with encrypted data
for cloud storage. 2013 IEEE International Conference on Cloud
Computing Technology and Science, 978-0-7695-5095-4(13):363-370,
2013.

[18] F. Rashid. A secure data deduplication framework for cloud envi-
ronments. 2012 Tenth Annual International Conference on Privacy,
Security and Trust, 978-1-4673-2326-0(12):81-87, 2012.

[19] A. Shamir. How to share a secret. Communication of the ACM,
22(11):612-613, nov 1979.

[20] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller. Secure data
deduplication. In Proceedings of the 4th ACM International Workshop
on Storage Security and Survivability, StorageSS *08, pages 1-10, New
York, NY, USA, 2008. ACM.

