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ABSTRACT

The work presented here suggests a method for
assessing speech accommodation in a holistic acous-
tic manner by utilising Hidden Markov Models
(HMMs). The rationale for implementation of this
method is presented along with an explanation of
how HMMs work. Here, a heavily simplified HMM
is used (single state; mixture of gaussians) in or-
der to assess the applicability of more sophisticated
HMMs. Results are presented from a small-scale
study of six pairs of female Scottish-English speak-
ers, showing measurement of significant trends and
changes in holistic acoustic features of speakers dur-
ing conversational interaction. Our findings suggest
that methods integrating HMMs with current holis-
tic acoustic measures of speech may be a useful tool
in accounting for acoustic change due to speaker in-
teraction.
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1. INTRODUCTION

Studies of the phonetic features that contribute to
speech accommodation [12] have made robust find-
ings demonstrating its dependency on both segmen-
tal and non-segmental acoustic features along with
its persistence across both long-term and short-term
interactions [18, 17, 9]. However, previous research
generally doesn’t attempt to pull these streams of
evidence together to assess accommodation holisti-
cally. The concept of listeners making accommoda-
tive gestures based on holistic interpretations of the
speech signal is not new and has found empirical
support in recent studies [3].

Traditional holistic methods of analysing speech
accommodation are often perceptual, which can be
hard to quantify. Other methods include segmen-
tal approaches, relying on manual phonetic tran-
scription, which can be a painstaking and time-
consuming process. In addition to these methods,

it is also possible to use a holistic acoustic method,
whereby the properties of the entire speech signal
are captured and compared. However, assessing
speech accommodation with holistic acoustics is not
trivial. This is due to the subtle and contextually
dependent nature of speech being at odds with the
global approach of holistic acoustic measures. This
makes assessing the realisation and relative direc-
tion (convergence/divergence) of speech accommo-
dation difficult to account for with holistic acous-
tics. A holistic measure of accommodation must
capture subtle features of human interaction whilst
consisting of multiple spectral properties. This pa-
per presents a small-scale study from a larger PhD
project, part of which is attempting to resolve this is-
sue through the application of Hidden Markov Mod-
elling.

1.1. Holistic Acoustic Measures of Speech Accommo-
dation

The acoustic features reflecting speech accommo-
dation have tended to be considered as static, rather
than as interacting and interdependent elements of
the same signal. Acoustic measures such as the for-
mant frequencies of vowels [1], speech rate [8] and
fundamental frequency [7] have all proven to be ex-
cellent in assessing relative change in these acous-
tic features but taken separately, they cannot repre-
sent the interplay between acoustic features. In this
respect, holistic acoustic measures offer a potential
alternative. A good example of a holistic acous-
tic measure can be found in the literature on ac-
cent recognition. [13]’s ACCDIST measure utilises
Mel-Frequency Cepstral Coefficients (MFCCs) in
tandem with the ACCDIST accent tables. When
tested against other measures of the spectral enve-
lope, measurements with MFCCs resulted in an ac-
cent recognition rate of up to 92.3%. This provides
good justification for the use of MFCCs as a holistic
acoustic measure of speech. Further justification can
be found in the artificial speech recognition commu-
nity where they have long been in use (see [15]).
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Whilst there are other holistic measures of speech
(see [4]), MFCCs provide a good tool for a first pass
attempt at holistically accounting for the speech sig-
nal.

1.2. Hidden Markov Models

Hidden Markov Models (HMMs) are able to char-
acterise the general form of a continuous signal.
When implemented for linguistic purposes, a HMM
can be used to estimate the probability of a given
speech sound having been uttered by a particular
speaker.

More specifically, HMMs are probability distri-
butions defined over joint sequences of symbols
(eg. phoneme categories) and observations (eg.
MFCC coefficients). For speech signals, they can
be characterised when considering a sequence S =
(s1,s2, . . . ,sN) of states, where every si belongs to a
predefined set of symbols V = {v1, . . . ,vD} , and a
sequence X = (~x1, . . . ,~xN) of observations, where~xi
is a vector of physical measurements extracted from
a speech signal at time ti (t j > ti if j > i). A HMM
is the joint probability p(X ,S|Λ) of observing X and
S to occur together, where Λ is the set of the param-
eters. The parameters’ set Λ can be characterized
by taking into account the actual expression of the
probability:

p(X ,S|Λ) = πs1bs1(~x1) ·as1s2bs2(~x2) . . .asN−1sN bsN (~xN)

where πs1 is the probability of the sequence S start-
ing with state s1 (there are D parameters πvi , one
per element of V ), the asis j are the probabilities of
a transition between state si and state s j (there are
D×D parameters arranged in a matrix A where el-
ement i, j corresponds to the probability of a transi-
tion between vi and v j), and bsi(~x) is the emission
probability density function, i.e. the probability of
observing~x when the state is si (there are D distribu-
tions, one for each element of V , and each of them
has parameters that are included in Λ).

In general, HMMs are used as follows: first a vec-
tor of physical measurements is extracted at regular
time steps from a speech signal, resulting in a se-
quence X . Then, the sequence of states S∗, most
likely to underlie the sequence of observations is
found by:

S∗ = arg max
S∈S (V )

N

p(X ,S|Λ)

Where S
(V )

N is the set of all possible sequences of
N symbols each belonging to V . When V contains
D symbols, there are DN possible sequences. This
provides the probability distribution of any given

speech sound being uttered by the speaker who pro-
duced sequence X .

In this study, where we assess accommodation in
6 pairs of speakers, HMMs allow for utterances pro-
duced by a speaker A – whilst in interaction with
a speech partner B – to be tested against A’s gen-
eral speech characteristics to determine if A’s speech
changes holistically during interaction. This then
provides a measure of speech accommodation which
accounts for multiple acoustic features. The HMMs
used here are a deliberate over-simplification, their
use as meant as justification for the further develop-
ment of this approach.

2. METHOD

2.1. Participants

We assessed the evidence for speech accommoda-
tion in 12 participants, organised into 6 pairs. Ages
ranged from 19 to 65 (mean 30.92 yrs). All partici-
pants gave English as their native language and were
screened for normal hearing and eyesight.

Gender and dialect have both been shown to im-
pact phonetic accommodation [2, 7]. For this reason,
female-female speaker pairs were used and partici-
pants were born and raised in the City of Glasgow.

Similarity attraction has also been theorised to
impact accommodation. A protocol for participant
pair self selection was designed around literature
detailing similarity judgements based on facial fea-
tures (eg.[19, 16]). This provided two groups, Self-
Selected and Randomly Paired.

Measures of personality and interpersonal attrac-
tion were taken but are not reported here.

2.2. Task Materials & Experimental Task

The DiapixUK task [5] (an empirically validated
spot-the-difference task) was used to elicit free flow-
ing conversation. It consists of twelve images, each
with a counterpart that is the same apart from twelve
slight differences. Participants had to find the differ-
ences between the images, using verbal communica-
tion only.

Participants sat in opposite corners of a sound
attenuated booth, with a divider between them.
They could not see each other but could still
hear one another. Each participant had an AKG
mono microphone, designed to minimise back-
ground speech/noise, recording them. These were
fed into separate channels and combined into a
stereo signal, with one channel assigned to each par-
ticipant. Speech was recorded at a sampling rate
of 44100Hz. Participants were seated ∼30cm away



from a flat screen monitor, adjusted to eye level. Di-
apixUK images were presented on these monitors
in four blocks, within each block participants com-
pleted three DiapixUK tasks. Each pair completed
twelve DiapixUK tasks in total and here, speech
recorded in each task is referred to as an ‘Inter-
action’. The order in which the images were pre-
sented were randomised. Stimuli were presented us-
ing PsychToolbox [14] in MATLAB R©. Data was
orthographically transcribed in Praat [6] and force-
aligned and segmented in LaBB-CAT [10].

2.3. Hidden Markov Model Analysis

The aim here is to provide a basic proof of con-
cept. As such, analysis has been limited to the most
simple form of HMM, a single state HMM. This is
simply a mixture of gaussians. Here, a mixture of
10 gaussians is used. If the application of HMMs at
their most basic level elicits results, justification will
be provided to develop the technique using fully re-
alised HMMs.

2.3.1. Step 1: convert acoustic signal to MFCC

This step provides a form that can account for
acoustic properties across instances of the same
word. Signal segments with similar acoustic prop-
erties are represented by similar vectors. For our
purposes, the MFCCs of our data were calculated in
the Hidden Markov Model Toolkit (HTK) [20] using
the HCopy function. More specifically, the MFCC
is derived from discrete Fourier transform based log
spectra, [11] provides the specific transformations
used by HTK.

2.3.2. Step 2: train speaker models

The first Interaction between two speakers, A &
B, is used to train the speaker models, i.e. to set
the value of the parameters in ΛA and ΛB so that
the probabilities p(XA,SA|ΛA) and p(XB,SB|ΛB) are
maximized, where XA is the sequence of all obser-
vation vectors extracted from all words uttered by
A in the first Interaction (same for B). The train-
ing is performed through a mathematical model (the
Baum-Welch algorithm) implemented in HTK. In
this work, there is one HMM for each speaker. The
HMM corresponding to speaker A has one state
(D = 1) and p(X ,S|ΛA) is the probability of speaker
A having uttered the words from which the sequence
of observations X has been extracted (ΛA is the pa-
rameter set of the HMM corresponding to speaker
A).

2.3.3. Step 3: compute likelihood ratio

After models have been trained, it is possible to
estimate the probability that a given word w has
been uttered by a given speaker: if Xw is the se-
quence of observation vectors extracted from the
speech signal segment corresponding to word w,
then p(Xw,SA|ΛA) is the probability of that word
having been uttered by A and p(Xw,SB|ΛB) is the
same probability for B. The right hand side of the
following expression:

θ =
p(Xw,SA|ΛA)

p(Xw,SB|ΛB)

is called likelihood ratio θ . When θ > 1, it is more
likely that the word has been uttered by A than by B
and vice versa when θ < 1.

2.3.4. Step 4: correlate time with changes in the
speech spectrum

An Interaction can be thought of as a sequence
of words uttered either by A or by B. If w(A)

i is the
ith word uttered by A, then the following likelihood
ratio can be considered a measure of how speaker A
becomes more similar to speaker B:

θi =
p(X

w(A)
i
,SA|ΛA)

p(X
w(A)

i
,SB|ΛB)

.

The ratio θi can be measured for each word uttered
by A resulting in a sequence of pairs (θi, ti), where
ti is the time when word wi starts. If the correlation
between the θi’s and the ti’s is negative to a statis-
tically significant extent, then A tends to converge
to B and vice versa, if the correlation is positive to
a statistically significant extent. If the correlation is
not statistically significant, then there is no evidence
for change. Switching A and B in the expression of
the likelihood ratio demonstrates how B shifts with
respect to A. Here, we report the results of correla-
tions between pairs of speakers within each Interac-
tion, for the 11 Interactions that they had with each
other (the first acts as the training model).

3. RESULTS

Figure 1 shows the results of the analysis for each
of the six pairs tested. A significant negative correla-
tion coefficient demonstrates that, over the course of
an Interaction, the vectors characterising the speech
of a given speaker become more similar to that of
their conversational partner. A significant positive
correlation coefficient demonstrates that the vectors



Figure 1: Results for the correlations between time and likelihood ratios for each speaker. Dark bars and light
bars represent speakers A & B, respectively, from a given pair. Single stars show statistical significance at the 5%
level and double stars at the 1% level. Interaction numbers begin at 2 because the first Interaction is used to train
HMMs.
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become less similar. For example, interpreting In-
teractions 2, 3 & 4 of Pair 1 (top left panel) demon-
strates that in Interaction 2, speaker A did not change
whilst speaker B had a non significant shift towards
their partner. Interaction 3 shows speaker A remain-
ing static and speaker B significantly shifting away.
Interaction 4 shows both speakers shifting towards
each other but only speaker A shifts significantly.

Results show all pairs demonstrating at least
seven instances of a statistically significant shift for
at least the 5% level. Pair 2 shows the highest
amount of shift with twelve statistically significant
effects. Although correlations are small (mean R2 =
±0.11, sd = 0.04), this is something that was ex-
pected when assessing a subtle phenomenon with
holistic measures. However, they remain statisti-
cally significant and a binomial test puts the prob-
ability of obtaining this result by chance at ∼ 10−12.
This suggests that the results reflect an actual con-
vergence or divergence in this holistic acoustic mea-
sure across the course of the interaction.

The measured similarity of participants in a given
pair did not impact the results. However, this might
be due to the self selection protocol lacking con-
struct validity or because of the small sample size
of the groups (n = 6).

4. DISCUSSION

The findings of this study demonstrate that using
even the most basic of HMMs (i.e. single state; mix-
ture of gaussians) in conjunction with holistic acous-
tic measures (here, MFCCs) can identify and mea-
sure shifts in speech production relative to a con-
versational partner. It is important to highlight that
what is being evaluated here are statistical models
of the entire speech spectrum. A comparative anal-
ysis using traditional phonetic methods is needed
to confirm that the result obtained is a true mea-
sure of phonetic accommodation. Heavily simpli-
fied HMMs have been implemented here and work is
under-way to address this. Developing this approach
with more sophisticated HMMs will at least confirm
(if not improve) effectiveness. Additionally, the de-
gree to which function words contribute to accom-
modation was not assessed here. Excluding them
may help in training the models as a good deal of
social information is lost in function words due to
their high frequency.

The method presented here shows promise in de-
tecting accommodation in conversation but develop-
ment and modifications are clearly needed to con-
firm its applicability. If this approach proves capa-
ble of detecting accommodation, it could be a valu-
able tool for uncovering the processes contributing
to speech accommodation during interaction.
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