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Abstract 

A Riccati-based tracking controller with collision avoidance capabilities is presented for proximity 

operations of spacecraft formation flying near elliptic reference orbits. The proposed dynamical model 

incorporates nonlinear accelerations from an artificial potential field, in order to perform evasive maneuvers 

during proximity operations. In order to validate the design of the controller, test cases based on the physical and 

orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) 

will be implemented, extending it to scenarios with multiple spacecraft performing reconfigurations and on-orbit 

position switching. The results show that the tracking controller is effective, even when nonlinear repelling 

accelerations are present in the dynamics to avoid collisions, and that the potential-based collision avoidance 

scheme is convenient for reducing collision threat.  

 

Keywords: Artificial Potential Functions, Autonomous Control, Collision Avoidance, Formation Flying, Tracking 
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1. Introduction 

The idea of autonomous spacecraft flying in tight formation, with maximum separation baselines of a 

few hundred meters, especially in low Earth orbits (LEOs), has generated widespread interest over the last several 

years. The constantly evolving notion of spacecraft formation provides the means to enhance mission reliability 

and adaptability to changing mission requirements by distributing major tasks, which used to be commonly 

handled by a single monolithic unit, among several smaller spacecraft, therefore leading to technological and 

economic benefits such as: mission robustness against unit loss by reconfiguring the formation with the remaining 

satellites, weight reduction in launch payload for tight formation missions, miniaturization and mass production 

of spacecraft, etc. Moreover, autonomy poses several advantages over traditional manual control, such as the 

reduction of ground-based orbit maintenance, planning and scheduling by knowing the future position and 

velocity of the spacecraft at any time and lower propellant usage by continuously maintaining the orbit at its 

highest level (De Florio et al., 2014). Several autonomous formation flying missions designed to demonstrate the 

feasibility of this technology are currently deployed while others are still under development, for example, 

TacSat2 (Plam et al., 2008), Demeter (Lamy et al., 2009), TanDEM-X (Montenbruck & Kahle, 2008) and 

PRISMA (D’Amico et al., 2013).  

Nevertheless, autonomous formation flying presents difficult control challenges which rise in complexity 

as the number of elements in the formation increases or when proximity operations are required. Having a large 

number of spacecraft in close formation requires to execute complex maneuvers with minimal fuel consumption 

and reliable collision avoidance systems.  To account for these tasks, several control strategies have been studied; 

the Linear Quadratic Regulator (LQR) applied to the control of spacecraft in formation using the Clohessy-

Wiltshire (CW) (Clohessy & Wiltshire, 1960) model for circular reference orbits, was used by Starin (Starin, 

2001) where an infinite time cost function was minimized by the algebraic Riccati equation. Bainum et al. (Bainum 

et al., 2005) presented further studies where the LQR was used along with the Tschauner and Hempel (TH) 

(Tschauner & Hempel, 1965) model for elliptic reference orbits. Capo-Lugo and Bainum (Capo-Lugo & Bainum, 

2007) used the LQR and the TH model to maintain the separation distance between a pair of satellites for the 
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NASA Benchmark Tetrahedron Constellation. This was accomplished while providing minimum time and fuel 

consumption through two different approaches, adapting the time-varying term in the TH equations in a piecewise 

manner and using the TH equations as a time-varying dynamical system. Yoo et al. (Yoo et al., 2013) presented 

fuel balancing strategies for maneuvers between projected circular orbits, subject to the CW dynamics, 

formulating the optimal control problem from Palmer’s CW analytical solution for general configurations (Palmer, 

2006). Moreover, Huang et al. (Huang et al., 2014) used controlled Lorentz forces on an electrostatically charged 

spacecraft as propellant less electromagnetic propulsion for orbital maneuvering in the planetary magnetic field. 

For this purpose, a closed-loop integral sliding mode controller was designed to effectively track a trajectory when 

external disturbances are also present. Artificial potential fields (APF) have been also applied to the control of 

spacecraft in formation by strongly relying on the theory of dynamical systems. Bennet and McInnes (Bennet & 

McInnes, 2008) implemented a control scheme based on attractive/repulsive APF grounded in the theory of 

bifurcation to command the formation keeping of spacecraft and the transition during maneuvering, providing a 

wide variety of configurations with only  a single parameter change. Badawy and McInnes (Badawy & McInnes, 

2008) used the concept of superquadric potential fields, which allows the accurate modelling of the geometry of 

any orbital element, for on-orbit assembly of large space structures. McCamish et al. (McCamish et al., 2007) 

have also investigated mixed control strategies, such as APF and LQR, to perform rendezvous and assembly 

maneuvers using the CW relative dynamics near a circular orbit. In nonlinear control with APF, Lee et al. (Lee et 

al., 2015) developed a decentralized, six-degree-of-freedom tracking control scheme using Lie group theory and 

a Lennard-Jones potential. The simulated scenarios use a virtual leader approach and focus on formation keeping 

using highly elliptical reference orbits, leading to almost global asymptotic convergence to the desired trajectory. 

The objective of this paper is to present the design of a mixed LQR/APF tracking controller for close-

maneuvering spacecraft in formation using dynamics of relative motion linearized near an elliptical reference 

orbit. Contrasted with other LQR/APF formulations, the proposed control strategy has the capacity to deal with 

both circular and elliptical reference orbits, providing guidance and tracking toward target nominal trajectories 

while optimizing fuel consumption by Riccati procedure; additionally, the collision avoidance scheme, generated 

from a Gaussian-like potential function, is defined in terms of both spacecraft and obstacle position and velocity, 

ensuring evasive actions between the elements of the formation using repelling accelerations. This paper starts 

presenting first the equations of relative motion to be used, including its state-space representation and energy 

matching conditions for local bounded relative motion in Section 2. The controller is then presented in Section 3, 

where the collision avoidance guidance scheme is developed. Next, in Section 4, the selected test cases and results 

are introduced using elliptical reference orbits. Finally, conclusions are found in Section 5. 

2. Linear Equations of Relative Motion 

Consider two spacecraft orbiting around the Earth. One of the spacecraft is called leader and the other 

the follower. Let r and θ denote the radius and the true anomaly of the reference orbit of the leader spacecraft, 

respectively. In the Local Vertical Local Horizontal (LVLH) reference frame, the linear equations of the relative 

dynamics of the follower with respect to the leader, in component-wise manner, can be represented as (Inalhan et 

al., 2002) 
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with n being the mean motion and e the eccentricity of the reference orbit. A tracking dynamical system, capable 

of following a nominal trajectory, can be designed in matrix representation using Eq. (1), adding a control input 
3u  and a nonlinear term 

6N  to account for external perturbations. With the definition of the tracking 

vector between the current state  
T

x y z x y zx  and the nominal state 

 
T

n n n n n n nx y z x y zx  as 6

n   x x x , the tracking dynamics can be represented as 



          t t t t t      Nx x u    (2) 

where 
n  u u u and 

n  N N N . The dynamics matrix 
6 6A  and the control matrix 

6 3B  are defined 

as follows (Bate et al., 1971) 
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Here 3 3

3

0 , 3 3

3

I  and the matrix elements are given as 
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where θ can be obtained from Kepler’s equation. Introducing appropriate initial conditions to Eq. (1) allows the 

follower to orbit bounded paths around the center of the formation without any control effort, when disturbances 

are not acting on it. In order to exhibit periodicity in the relative motion (locally bounded relative motion), period 

commensurability must exist between the absolute orbit of the follower and the leader. Since the semi-major axis 

of an elliptic orbit determines its energy, it is possible to use energy matching conditions (EMC), together with 

the initial state of the follower, to find bounded relative motion by equating the orbit energy of the leader and the 

follower (Gurfil, 2005). If ε and a are the energy and the semimajor axis of an elliptic orbit, respectively, then 
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where the subscript 0 indicates an initial condition. 

3. Control Strategy Design 

The procedure to control formation maneuvers consists of two parts: tracking and collision avoidance. 

First, the tracking of the nominal trajectories 
nx  is achieved through the linear quadratic regulator (LQR) to 

minimize a quadratic cost function  
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subject to the relative dynamics of Eq. (2) with the weight matrices   6 6t  F 0 ,   6 6t  Q 0  and 

  3 3t R 0> . To provide an optimal solution to this problem a Riccati procedure, also called the sweep 

method, is used along the control law of the form (Bryson & Ho, 1975) 

      t t t Ku x   (7) 

where the Kalman gain  tK is defined as      1 T( )t t t tK R P  and 6 6( )t P is the solution of the Matrix 

Riccati Equation (MRE)  
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It is worth mentioning that Eq. (8) does not depend on the state initial conditions nor the desired output; 

it can be computed offline.  

Collision avoidance during maneuvering is achieved through repulsive accelerations created by artificial 

potential functions (APFs) (McInnes, 1993). The accelerations, obtained through the negative gradient of the APF, 

result in a non-linear continuous dynamical system in which stability can be investigated robustly and 

mathematically by Lyapunov methods. The main feature of this scheme is that it accounts for the separation 

distance and velocity of both spacecraft and obstacles without the previous knowledge of their trajectories (Ge & 

Cui, 2002). To obtain such accelerations, the proposed potential function U is defined as a Gaussian-like function 
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where the element Am is a positive scaling constant defined as (McQuade & McInnes, 1997) 
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Here λ is a scaling factor for the strength of the potential,   is the relative position of the spacecraft and 

D is a positive constant that determines the influence range of the potential. The scalar variables d and 
ad  are 

defined as follows. It is assumed that the relative position and velocity of an obstacle  
T

o o o
x v  are currently 

known. The component of the relative velocity between the spacecraft and the obstacle in the direction of the 

obstacle is defined as 

 T ˆ[ ]so ov   v v n   (11) 

where n̂  is a unit vector directed from the spacecraft to obstacle and is defined as 
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The symbol  represents Euclidean norm defined as 
1/2
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Eq. (12), the quantity 
od      represents the separation distance between spacecraft and obstacle. If 0sov 

, then the spacecraft is moving away from the obstacle, and in principle there is no need to implement evasive 

maneuvers. On the other hand, if 0sov  ,  then it is required to reduce this velocity to zero within a distance 
ad , 

which can be achieved by selecting a deceleration value 
da  and using the following expression: 
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The potential U can be implemented by tuning its parameters depending on the problem requirements. 

For example, Fig. 1 shows a plot of the surface and the associated contours of the potential in Eq. (9) where D 

represents the extension of the potential and λ its gradient.  

 
 

a) λ = 3×10-8 and D = 10 m 

 
 

b) λ = 3×10-7  and D = 5 m 

Fig. 1: Potential distribution 

Moreover, the corresponding repulsive acceleration can be defined as the negative gradient of the 

potential with respect to the spacecraft position and velocity and denoted by 

 ( , ) ( )o U U   N
v

x x    (14) 

Next, Eq. (14) is evaluated to result in the following expression 
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with its corresponding derivatives 
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In order to help to visualize the nature of the evasive movement, the acceleration ( , )oN x x  can be defined 

in terms of the velocity component sov   in the direction of the unit vector ˆ
n  normal to n̂ , as observed in Fig. 2, 

where 
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Then, using the relationship  so o so   v v v v  leads the second equation in the set of Eq. (16) to 

become 
1
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. The final expression of the repulsive acceleration is given by 
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In Eq. (18), two different components can be observed; the first, in the opposite direction of n̂ , is used 

to repel the spacecraft from the obstacle; the second, in the direction of ˆ
n , is used to steer the spacecraft during 

the evasive maneuver.  

 

Fig 2: Vector elements of the repelling force 

In the forthcoming case studies including multiple spacecraft, one spacecraft sees all other spacecraft as 

obstacles. Therefore, the total repulsive acceleration for one spacecraft is simply defined as the summation of all 

the repulsive accelerations due to the rest of the spacecraft in formation 
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where k represents the current spacecraft and b the total number of spacecraft involved in the maneuvers. 

Implementing together the tracking scheme and the collision avoidance system (CAS) results in the control 

strategy illustrated in Fig. 3. 

  

 



 

Fig. 3: Guidance and control scheme 

4. Case studies 

To demonstrate the effectiveness of the proposed guidance and control system, two simulated scenarios 

are presented in the next subsections using eccentric reference orbits and PRISMA as reference mission. In these 

scenarios, several followers transfer to and then track a predefined target nominal trajectory while collision 

between the elements of the formation is avoided. The proposed controller is implemented using the model in Eq. 

(2) together with the control law in Eq. (7) and the CAS in Eq. (18) and it is assumed that no external perturbations, 

such as J2 and atmospheric drag, affect the performance of the satellites and the controller. The capabilities of the 

proposed controller are analyzed in terms of values of total maneuver delta-v ( v ) and fuel consumption, 

calculated using the equations  
0

 
t

T
t

v t dt   u   and  0 0expf spm m v g I   respectively, with and without the 

effects of the CAS. When considering the effects of the CAS, the vector 
Tu  corresponds to the sum of the control 

input and the repelling acceleration. The values of 
0m  and 

spI  used in the following scenarios are defined in the 

next subsection and 
0 9.81g   m/s2. 

 

4.1 Highlights of the PRISMA mission 

PRISMA has the objective of testing spacecraft formation flying capacities for future space missions and 

it was designed by the Swedish National Space Board and OHB Sweden. Within this project, the German 

Aerospace Center (DLR) and the German Space Operations Center (GSOC) contribute with the Spaceborne 

Autonomous Formation Flying Experiment (SAFE), implementing autonomous guidance laws and robust control 

algorithms for safe separation, formation keeping and reconfiguration of formations in close proximity. The 

PRISMA mission comprises two satellites, Mango (the follower) and Tango (the leader) in a reference orbit with 

750 km of mean altitude, 0.004 of eccentricity and 98.28° of inclination. Relevant physical features of these 

satellites are summarized in Table 1 (D’Amico et al., 2013). In the following scenarios, it is assumed that Mango 

thrusters provide continuously-variable low-thrust during the controlled maneuver.  

 Mango Tango 

Main Body (mm) 750 x 750 x 820 570 x 740 x 295 

Deployed (mm) 2600 N/A 

Wet Mass (kg) 150 40 

Propulsion (N) 6 x 1 ( 220spI s )  N/A 

Cross-section (m2) 1.3 (or 2.75a) 0.38 

Drag Coefficient 2.5 2.25 
a After solar panels are deployed 

Table 1: Summary of relevant physical features of Mango and Tango 



 

4.2 Scenario 1 

This scenario simulates the on-orbit transfer of two Mango satellites with initial and final conditions as 

indicated in Table 2. The reference orbit has an eccentricity of 0.25, a perigee of 450 km and a period of 2.4 hours. 

First, the scenario is simulated without the effects of the CAS and its results are compared to those obtained when 

the CAS is active. In this scenario, the diagonal of the LQR gains are selected to be  150 150 150diagQ , 

 1 1 1diagR  and  150 150 150diagF . In both scenarios, it is assumed that every Mango occupies a 

spherical volume with a diameter of 2.6 m, taking into account the fully-deployed solar panels of Mango (See 

Table 1). However, a virtual safety layer is added to every spacecraft, by means of the parameter D in Eq. (10), 

surrounding each one of them with a spherical volume of 5 m diameter. The rest of the CAS parameters in Eq. 

(10) are chosen as λ = 1×10-7  and ad = 0.1 m/s. Starting at the perigee of the reference orbit, the planar maneuver 

carried out by both satellites during the simulation with and without the CAS is showed in Fig. 4, in terms of 

displacement in the x-y LVLH plane. It is observed in Fig. 4a that without the effects of the CAS the spacecraft 

maneuvering generates a collision threat. On the other hand, Fig 4b shows that the trajectory of the two satellites 

initially approach each other but then they are repelled by the forces generated by the CAS. These avoidance 

actions are more visible in Fig. 5 where the separation distance between the spacecraft is plotted for the complete 

maneuvering time. It is also observed in Fig. 5a that without the CAS the spacecraft violate the virtual safety layer 

generating a collision threat between them. Using the CAS with the previously selected parameters allow these 

separation distances to be shifted beyond the safety limit, as observed in Fig. 5b, decreasing the collision risk of 

the maneuver. This shift is also perceived in the error dynamics as indicated in Fig. 6a in contrast with Fig. 6b, 

where the additional maneuvering to avoid collision can be also observed. This feature is likewise observable in 

the thrust behavior as seen in Fig. 7 where an additional amount of thrust is required to carry out the avoidance 

movement. This behavior has an impact on v  and fuel consumption, as observed in Table 3, where the 

requirements of the maneuvering to avoid collision creates a difference between the values obtained with and 

without CAS. For instance, Mango 1 increases its total maneuver v  and fuel consumption by 40%. Tuning the 

CAS parameters has implications not only in the performance of the spacecraft but also the final results of total 

maneuver v  and fuel consumption, since the contribution of the artificial repelling acceleration is directly related 

to the calculation of these quantities, as mentioned at the beginning if this section. For example, considering the 

maneuver and results presented in this scenario, an increase in the value of the parameter D would provide a larger 

virtual safety volume and also would contribute to increase the magnitude of the repelling acceleration, and 

therefore v  and fuel consumption, since D is included twice in the expression of the repelling acceleration in 

Eq. (18) as an inverse negative exponential. A similar result may be obtained by increasing the CAS parameter λ, 

which acts as a gain used to tune up the overall magnitude of the repelling acceleration. Moreover, the deceleration 

parameter ad also contributes to the overall magnitude of the repelling acceleration. When tuned-up, ad modifies 

the value of the virtual distance da the maneuvering spacecraft requires to travel in order to decrease the quantity 

sov  to zero. The larger the value of ad the largest the values of v  and fuel consumption. These features are 

implemented and verified as follows. Simulating Scenario 1 using the same gain matrices and CAS parameters, 

but changing the value of   to 71.5 10 , yields larger v  and fuel consumption in Mango 2, for instance, with 

values of 11.82 m/s and 819 g respectively, as shown in Table 4. This table also shows that selecting an effective 

distance of 7 mD  , while leaving the rest of the parameters and gains as previously defined in the scenario, 

increases Mango 2 v  and fuel consumption to 1.18 m/s and 82.24 g respectively. Moreover, choosing the CAS 

parameter 
da  to 1 m/s2 leads to an increase in these values to 5.57 m/s and 386.85 g. 

 Mango 1 Mango 2 

Initial position (m)  15 50 0
T

     15 50 0
T

  

Initial velocity (m/s)  0.35 0.35 0
T

  0.17 0.17 0
T

  

Final position (m)  15 0 0
T

   15 0 0
T

 

Final velocity (m/s)  0 0 0
T

  0 0 0
T

 

Table 2: Initial and final conditions in Scenario 1 



 

  
a) Without CAS b) With CAS 

Fig. 4: Maneuver trajectory in Scenario 1 

 

  
a) Without CAS b) With CAS 

Fig. 5: Separation distance in Scenario 1 

 

  
a) Without CAS b) With CAS 

Fig. 6: Magnitude of the position error in Scenario 1 

  

  
a) Without CAS b) With CAS 

Fig. 7: Magnitude of the control input in Scenario 1 

 

 

 



 

    MANGO 1 MANGO 2 TOTAL 

WITHOUT CAS 

v  (m/s) 0.72 0.24 0.969 

Fuel Consumption (g) 50.12 17.33 67.45 

Max. Thrust (N) 0.72 0.32 N/A 

Final Position Error (m) 0 0 N/A 

Final Velocity Error (m/s) 0 0 N/A 

WITH CAS 

v  (m/s) 1.01 1 2.01 

Fuel Consumption (g) 70.65 69.62 140.27 

Max. Thrust (N) 0.72 0.322 N/A 

Final Position Error (m) 0 0 N/A 

Final Velocity Error (m/s) 0 0 N/A 

Table 3: Summary of results for Scenario 1 

 

Parameter  v  (m/s) Fuel Consumption (g) 

D = 7 m  1.18 82.24 

λ = 1.5×10-7 11.82 819.71 

ad = 1 m/s2 5.57 386.85 

 

Table 4: CAS parameters tune-up and corresponding v  

and fuel consumption for Mango 2. Each row represents a test case where the named parameter is set as 

specified, while the others are those defined in Scenario 1 

 

4.3 Scenario 2 

In this scenario, a maneuver with four Mango satellites is simulated, each located at one vertex of an 

imaginary square with side length of 20 m in the y-z plane and centered at the origin of the LVLH reference frame, 

with initial and final states as observed in Table 5. The objective of this maneuver is to swap positions diagonally 

while avoiding collision between the spacecraft. The LQR matrices are chosen with the same values as in the 

previous scenario and the CAS parameters are selected as D = 5 m, λ = 1×10-6 and ad = 15 m/s2. The 3D maneuver, 

with and without the effects of the CAS, is shown in Fig. 8. When a collision avoidance action is taken, extra 

maneuvering is observed, as in Fig. 8b, in contrast with those maneuvers without CAS in Fig. 8a. These avoidance 

actions are also visible in Fig. 9 where the separation distance between each spacecraft is plotted for the complete 

maneuver. In Fig. 9a, it is also observed that without the CAS some spacecraft generate a collision threat, which 

vanishes when the CAS is activated shifting the separation distances above the safety limit, as observed in Fig. 

9b. This shift is also perceived in the error dynamics as indicated in Fig. 10a in contrast with Fig. 10b and in the 

thrust behavior as seen in Fig. 11a and 11b. As expected, these avoidance maneuvers modify the results in terms 

of v  and fuel consumption, as observed in Table 6, where differences are showed between the values obtained 

with and without CAS; for example, Mango 3 increased its v  and fuel consumption by approximately 1500%. 

 

 

 

 



 Mango 1 Tango 2 Mango 3 Mango 4 

Initial position (m)  0 10 10
T

    0 10 10
T

  0 10 10
T

   0 10 10
T

   

Initial velocity (m/s)  0 0 0
T

  0 0 0
T

  0 0 0
T

  0 0 0
T

 

Final position (m)  0 10 10
T

   0 10 10
T

    0 10 10
T

   0 10 10
T

 

Final velocity (m/s)  0 0 0
T

  0 0 0
T

  0 0 0
T

  0 0 0
T

 

Table 5: Initial and final conditions in Scenario 2 

 

  
a) Without CAS b) With CAS 

Fig. 8: Maneuver trajectory in Scenario 2 

 

  
a) Without CAS b) With CAS 

Fig. 9: Separation distance in Scenario 2 

 

  
a) Without CAS b) With CAS 

Fig. 10: Magnitude of the position error in Scenario 2 

 

  



  
a) Without CAS b) With CAS 

Fig. 11: Magnitude of the control input in Scenario 2 

 

    MANGO 1 MANGO 2 MANGO 3 MANGO 4 TOTAL 

WITHOUT CAS 

v  (m/s) 0.071 0.071 0.071 0.071 0.284 

Fuel Consumption (g) 4.94 4.94 4.94 4.94 19.76 

Max. Thrust (N) 0.025 0.025 0.025 0.025 N/A 

Final Position Error (m) 0.001 0.001 0.001 0.001 N/A 

Final Velocity Error (m/s) 0 0 0 0 N/A 

WITH CAS 

v  (m/s) 1.09 1.12 1.09 1.12 4.42 

Fuel Consumption (g) 76.32 78.28 76.32 78.28 309.2 

Max. Thrust (N) 0.04 0.04 0.04 0.04 N/A 

Final Position Error (m) 0.002 0.002 0.002 0.002 N/A 

Final Velocity Error (m/s) 0 0 0 0 N/A 

Table 6: Summary of results for Scenario 2 

 

 

5. Conclusions 

A tracking controller with collision avoidance capabilities for formation flying in close proximity was 

presented using Riccati procedure in eccentric reference orbits. The proposed dynamical model incorporates 

repulsive accelerations from an artificial potential field, in order to perform collision avoidance during proximity 

operations. The controller was implemented in two scenarios for spacecraft formation reconfiguration and 

swapping. These scenarios showed that the performance of the controllers, in terms of total maneuver v  and 

fuel consumption, was affected by the selection of the CAS parameters. In both scenarios several spacecraft were 

simulated with the proposed controller and its performance was compared with and without the influence of the 

CAS. Both cases showed that the controller allowed the spacecraft to effectively track the nominal trajectory with 

a final error close to zero. The simulations including CAS showed an effective decrease of collision risk during 

the performance of the maneuver. The same simulations also showed increments in total v  and fuel consumption 

with respect to the same maneuver without CAS, although this increment was expected, since the spacecraft 

required additional collision avoidance maneuvers, especially in those spacecraft with higher collision risk. 

Further studies will be done to determine the optimal values of the CAS parameters. For future work, we will add 

scenarios with long-time horizons to test the controller performance along with perturbations like J2 and 

atmospheric drag.  

 

 

 



References 

Badawy, A. & McInnes, C., 2008. On-Orbit Assembly Using Superquadric Potential Fields. Journal of Guidance 

Control and Dynamics, 31(1), pp.30–43. 

Bainum, P.M. et al., 2005. Techniques for deploying elliptically orbiting constellations in along-track formation. 

Acta Astronautica, 57(9), pp.685–697. 

Bate, R., Mueller, D. & White, J., 1971. Fundamentals of Astrodynamics, New York: Dover Publications Inc. 

Bennet, D. & McInnes, C.., 2008. Pattern transition in spacecraft formation flying via the artificial potential field 

method and bifurcation theory. 3rd International Symposium on Formation Flying, Missions and 

Technologies. 

Bryson, A.E. & Ho, Y.-C., 1975. Applied Optimal Control: Optimization, Estimation, and Control, Taylor & 

Francis. 

Capo-Lugo, P.A. & Bainum, P.M., 2007. Active Control Schemes Based on the Linearized Tschauner–Hempel 

Equations to Maintain the Separation Distance Constraints for the NASA Benchmark Tetrahedron 

Constellation. Journal of Mechanics of Materials and Structures, 2(8). 

Clohessy, W. & Wiltshire, R., 1960. Terminal Guidance System for Satellite Rendezvous. Journal of the 

Astronautical Sciences, 27(9), pp.653–678. 

D’Amico, S., Ardaens, J.-S. & De Florio, S., 2013. Autonomous formation flying based on GPS — PRISMA 

flight results. Acta Astronautica, 82(1), pp.69–79. 

De Florio, S., D’Amico, S. & Radice, G., 2014. Virtual Formation Method for Precise Autonomous Absolute 

Orbit Control. Journal of Guidance, Control, and Dynamics, 37(2), pp.425–438. 

Ge, S. & Cui, Y., 2002. Dynamic motion planning for mobile robots using potential field method. Autonomous 

Robots, 13, pp.207–222. 

Gurfil, P., 2005. Relative motion between elliptic orbits: generalized boundedness conditions and optimal 

formationkeeping. Journal of Guidance, Control, and Dynamics. 

Huang, X., Yan, Y. & Zhou, Y., 2014. Optimal spacecraft formation establishment and reconfiguration propelled 

by the geomagnetic Lorentz force. Advances in Space Research, 54(11), pp.2318–2335. 

Inalhan, G., Tillerson, M. & How, J.P., 2002. Relative dynamics and control of spacecraft formations in eccentric 

orbits. Journal of Guidance Control and Dynamics, 25(1), pp.48–59. 

Lamy, A., Julien, E. & Flamenbaum, D., 2009. Four Year Experience of Operational Implementation of 

Autonomous Orbit Control: Lessons Learned, Feedback and Perspectives. … of the 21st International 

Symposium on …. 

Lee, D., Sanyal, A.K. & Butcher, E. a., 2015. Asymptotic Tracking Control for Spacecraft Formation Flying with 

Decentralized Collision Avoidance. Journal of Guidance, Control, and Dynamics, 38(4), pp.587–600. 

Available at: http://arc.aiaa.org/doi/10.2514/1.G000101. 

McCamish, S.B., Romano, M. & Yun, X., 2007. Autonomous Distributed Control Algorithm for Multiple 

Spacecraft in Close Proximity Operation. In AIAA Guidance, Navigation and Control Conference and 

Exhibit. 

McInnes, C.R., 1993. Autonomous Proximity Maneuvering Using Artificial Potential Functions. European Space 

Agency Journal, 17(2), pp.159–169. 



McQuade, F. & McInnes, C.R., 1997. Autonomous control for on-orbit assembly using potential function 

methods. Aeronautical Journal, 101(1006), pp.255–262. 

Montenbruck, O. & Kahle, R., 2008. Navigation and control of the TanDEM-X formation. The Journal of the 

Astronautical Sciences, 56(3), pp.341–357. 

Palmer, P., 2006. Optimal Relocation of Satellites Flying in Near-Circular-Orbit Formations. Journal of 

Guidance, Control, and Dynamics, 29(3), pp.519–526. 

Plam, Y. et al., 2008. Autonomous Orbit Control Experience on TacSat-2 using Microcosm’s Orbit Control Kit 

(OCK). 31st Annual AAS Guidance and Control Conference. 

Starin, S., 2001. Design of a LQR controller of reduced inputs for multiple spacecraft formation flying. American 

Control Conference, 2, pp.1327–1332. 

Tschauner, J.F.A. & Hempel, P.R., 1965. Rendezvous zu einemin Elliptischer Bahn umlaufenden Ziel. Acta 

Astronautica, 11(2), pp.104–109. 

Yoo, S. et al., 2013. Spacecraft fuel-optimal and balancing maneuvers for a class of formation reconfiguration 

problems. Advances in Space Research, 52(8), pp.1476–1488. 

 


