
Analysing Compression Techniques
for In-Memory Collaborative Filtering

Saúl Vargas, Craig Macdonald and Iadh Ounis
{firstname.lastname}@glasgow.ac.uk

School of Computing Science, University of Glasgow

ABSTRACT
Following the recent trend of in-memory data processing, it
is a usual practice to maintain collaborative filtering data
in the main memory when generating recommendations in
academic and industrial recommender systems. In this paper,
we study the impact of integer compression techniques for
in-memory collaborative filtering data in terms of space and
time efficiency. Our results provide relevant observations
about when and how to compress collaborative filtering data.
First, we observe that, depending on the memory constraints,
compression techniques may speed up or slow down the per-
formance of state-of-the-art collaborative filtering algorithms.
Second, after comparing different compression techniques, we
find the Frame of Reference (FOR) technique to be the best
option in terms of space and time efficiency under different
memory constraints.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Filtering

Keywords: Recommender Systems, Collaborative Filtering,
Index Compression.

1. INTRODUCTION
With the decrease of memory costs, having servers with

hundreds of GBs of main memory is nowadays an affordable
option [10]. With such infrastructure, performing in-memory
data processing has become a common and feasible option
in both single and multi-node environments. This trend can
be observed in different areas of computing systems such
as databases [12], search indices [2] and recommendation
engines [7], more specifically in recommendation engines
relying on collaborative filtering (CF) techniques. Indeed,
keeping CF data in memory is a usual practice, particularly in
the publicly available datasets for research purposes. In real-
world datasets, however, CF data is usually several orders of
magnitude larger than the public datasets, and thus efficient
representations of in-memory CF data may be needed. As
CF data is commonly represented as lists of numerical ids of
users and items, integer compression techniques [1, 3, 4, 6,
9] can be used to significantly reduce the amount of memory
required for representing them.

In this work, we study the use of integer compression
techniques to compress CF data. Although there has been
prior work studying the benefits of compression techniques
for CF data [5], that work focused on a scenario where the
data is mainly stored on disk. In that setting, data transfer
between disk and memory can be identified as a bottleneck

Copyright is held by the authors.
RecSys 2015 Poster Proceedings, September 16-20, 2015, Vienna, Austria.

in the computation of recommendations and, consequently,
compression techniques consistently help in speeding up the
recommendation algorithms. In our fully in-memory setting,
depending on the available memory, compression techniques
may speed up computing time as well, but may also slow it
down. Furthermore, we explore a wider range of compression
techniques, finding that the Frame of Reference (FOR) [6]
technique offers the best solution in terms of space and time
efficiency among the compared approaches.

2. EXPERIMENTAL SETUP
In order to analyse the effect of compression techniques

for CF data, we have conducted a series of experiments with
two well known datasets: the dataset from the Netflix prize,
containing 100 million ratings from 480,000 users to 17,770
films, and the Yahoo Music dataset, containing 717 million
ratings from 1.8 million users to 136,736 songs. In both
datasets, ratings are given in a scale between 1 to 5 stars.
These are, to our knowledge, two of the largest CF datasets
available for academic research purposes.

Both datasets use numerical ids for identifying users and
items. In the case of the Netflix dataset, we map the original
user ids consecutive ids determined by the numerical order of
the original ids. More elaborate id re-assignation techniques,
which may lead to further compression efficiency [2, 11], are
left for future work. The preferences of each user/item are
represented with a list of sorted ids of items/users and a list
of numerical ratings. The lists of ids are compressed using a
variety of compression techniques: fixed-length coding (fix-
len), where each id is coded by using the minimum number
of bits required to store the largest id, γ coding [4], Elias-
Fano (EF) [3], Rice [9], ζ3 coding [1] and Frame of Reference
(FOR)1 [6]. With the exception of fixed-length and Elias-
Fano, id arrays are stored with delta-gaps. Rating values
in the 1-5 scale are simply compressed with fixed-length
coding, that is, using 3 bits to represent each rating. We use
RankSys2, a Recommender Systems framework written in
Java and, on top of it, we use the implementation of FOR in
the JavaFastPFOR3 package and the dsiutils4 package for
the rest of techniques.

In order to measure the performance of the different com-
pression techniques in terms of time efficiency with respect
to uncompressed representations of the CF data, we generate

1Results with more sophisticated variations of FOR, such as
PFOR, are omitted as they do not differ significantly from
those of the simpler, original FOR.
2http://ir-uam.github.io/RankSys/
3https://github.com/lemire/JavaFastPFOR
4http://dsiutils.di.unimi.it/

http://ir-uam.github.io/RankSys/
https://github.com/lemire/JavaFastPFOR
http://dsiutils.di.unimi.it/


Netflix Y Music

none 1,608 11,486
fix-len 506 4,051
γ 298 2,871
EF 249 2,190
Rice 241 2,130
ζ3 266 2,396
FOR 273 2,354

Table 1: Memory us-
age in MB of the Netflix
and Yahoo Music datasets
with different compres-
sion techniques for user
and item ids. Best results
in bold.

recommendations for 1,000 users randomly selected in both
datasets with the user-based nearest neighbours algorithm [8]
provided by RankSys. For the purpose of simulating different
memory constraints and their effect on the time efficiency
of the recommendations, we selected for both datasets three
different settings for heap size (via the -Xmx parameter in
Java): a heap size in which the uncompressed datasets fit
in memory without problem (4.8 GB for Netflix and 32 GB
for Yahoo Music), a heap size slightly higher that what is
required to keep the dataset in memory (2.4 GB and 16
GB) and, finally, a heap size slightly higher than what is
required to allocate the data with fix-len coding but where
the uncompressed data cannot be allocated (0.8 GB and
6 GB). Moreover, recommendations were generated in a
multi-threaded environment using 8 parallel threads. This
simulates a realistic high-demand environment where many
of the benefits of caching are lost and there is a high demand
of memory for auxiliary data structures for the CF algorithm.

3. EXPERIMENTAL EVALUATION
The results of the experimental setup previously described

are summarised in Table 1 and Table 2. The results in
terms of memory usage in Table 1 indicate similar trends for
both datasets: while a simple fix-len encoding is capable of
reducing notably the size of the CF data in memory (by one
third in both datasets), the rest of compression techniques
are able to further reduce the usage of memory (below 20%
in most cases), being EF and Rice the most space efficient
among the compared alternatives.

In terms of time efficiency, Table 2 illustrates the change
in performance when different memory constraints are con-
sidered. Again, the observed trends are equivalent in both
datasets. Under the lightest memory constraints, it can be ob-
served that the fastest option is working with uncompressed
data. However, with the intermediate memory constraints,
all the compression techniques are faster than the uncom-
pressed data. Finally, in the setting with the heaviest memory
constraints, the fix-len option heavily suffers the scarcity of
available memory, whereas the rest of more space-efficient
coding alternatives suffer a milder time penalty. Among the
compression approaches, FOR stands out as the best one,
being the fastest approach in every setting and only slightly
slower than the uncompressed option in the setting with high
memory availability.

To understand better the slowness of the uncompressed
data and the simple fix-len coding under tight memory con-
straints, we observed in detail the performance characteristics
of the system, and noticed two factors: the higher time spent
in the garbage collector and the inability to make full use of
the multi-threading capabilities of the system.

On the one hand, these previous observations contrast
with prior work [5], in which CF data was primarily stored
on classic disk search indices. In that work, the use of com-
pression techniques always represented a speed up in access
to CF data. As we observe, in the case of in-memory CF
data this situation does not necessarily happen, provided

Netflix Y Music

4.8 GB 2.4 GB 0.8 GB 32 GB 16 GB 6 GB

none 43.96 109.43 - 100.74 267.66 -
fix-len 58.68 60.51 743.05 119.07 122.22 458.50
γ 63.03 64.00 71.13 131.64 128.27 131.49
EF 64.51 67.71 74.20 134.44 130.74 137.54
Rice 69.82 69.73 77.42 144.15 135.53 137.85
ζ3 63.91 66.65 74.81 129.71 145.08 142.80
FOR 48.79 50.43 55.36 111.33 106.80 108.92

Table 2: Execution time in seconds of the user-based
nearest neighbours algorithm in the Netflix and Ya-
hoo Music datasets with different compression tech-
niques for user and item ids. Best results in bold.

that the remaining memory is large enough to support the
auxiliary data structures and the variables required for the
computation of the algorithms. On the other hand, when
comparing the performance of the different compression tech-
niques, our results are in line with those of [2] for search
index compression, in which the FOR technique is also found
to be the best solution in terms of time efficiency.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have conducted a study of the performance

of compression techniques for keeping CF data in the main
memory. We find that compression techniques in this case,
as opposed to when the data is primarily stored on disk, may
actually slow down the processing time when the remaining
memory available for the processing of CF algorithms is
large enough. Under more severe memory constraints, we
find that compression techniques are indeed able to speed
up the generation of recommendations. Finally, we find that
the FOR technique is the best compression approach as its
space efficiency is at the same level of the rest of compared
alternatives while its time efficiency is clearly better than
these and close to that of using no compression.

As part of future work, we envisage the usage of hybrid rep-
resentations of CF data, in which the system may selectively
compress part of the data in order to maximise the perfor-
mance of the system under different memory constraints.

5. REFERENCES
[1] P. Boldi and S. Vigna. Codes for the world wide web. Internet

Mathematics, 2(4), 2005.

[2] M. Catena, C. Macdonald, and I. Ounis. On inverted index
compression for search engine efficiency. In ECIR, 2014.

[3] P. Elias. Efficient storage and retrieval by content and address
of static files. J. ACM, 21(2), 1974.

[4] P. Elias. Universal codeword sets and representations of the
integers. IEEE Trans. Inf. Theory, 21(2), 1975.

[5] V. Formoso, D. Fernández, F. Cacheda, and V. Carneiro. Using
rating matrix compression techniques to speed up collaborative
recommendations. Inf. Ret., 16(6), 2013.

[6] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing
relations and indexes. In ICDE, 1998.

[7] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh.
WTF: The who to follow service at Twitter. In WWW, 2013.

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
Grouplens: An open architecture for collaborative filtering of
netnews. In CSCW, 1994.

[9] R. Rice and J. Plaunt. Adaptative variable-length coding for
efficient compression of spacecraft television data. Trans.
Communication Technology, 19(6), 1971.

[10] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and
A. Douglas. Nobody ever got fired for using Hadoop on a
cluster. In HotCDP, 2012.

[11] F. Silvestri. Sorting out the document identifier assignment
problem. In ECIR, 2007.

[12] H. Zhang, G. Chen, B. Ooi, K. Tan, and M. Zhang. In-memory
big data management and processing: A survey. IEEE TKDE,
27(7), 2015.


	Introduction
	Experimental Setup
	Experimental Evaluation
	Conclusions and Future Work
	References

