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K-theoretic duality for
hyperbolic dynamical systems

By Jerome Kaminker at Davis, Ian F. Putnam at Victoria and
Michael F. Whittaker at Wollongong

Abstract. The K-theoretic analog of Spanier–Whitehead duality for noncommutative
C �-algebras is shown to hold for the Ruelle algebras associated to irreducible Smale spaces.
This had previously been proved only for shifts of finite type. Implications of this result as well
as relations to the Baum–Connes conjecture and other topics are also considered.

1. Introduction

The goal of this paper is to exhibit a duality between two C �-algebras associated to
a hyperbolic dynamical system. This is a noncommutative version of Spanier–Whitehead
duality from topology. It turns out that it is a special case of a type of duality which occurs
in several different settings. It will be described carefully and we will indicate some of the
different contexts in which it appears.

Let us first briefly recall Spanier–Whitehead duality, a generalization of Alexander dual-
ity that relates the homology of a subspace of a sphere with the cohomology of its complement.
Given a finite complex X � SnC1, consider the map

(1.1) � W X � .SnC1 nX/! Sn;

defined by
�.x; y/ D

x � y

kx � yk
;

where the algebraic operations take place in SnC1 n ¹north poleº Š RnC1. Then one has an
isomorphism

(1.2) ��.ŒSn�/= W QHn�i .X/! H i .SnC1 nX/;

given by slant product. This was generalized by Spanier and Whitehead to allow SnC1 nX

to be replaced by a space of the homotopy type of a finite complex, Dn.X/, for which the
analog of the above relations hold. It is in this form that these notions extend naturally to the
noncommutative setting.
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264 Kaminker, Putnam and Whittaker, K-theoretic duality for hyperbolic dynamical systems

In noncommutative topology, the roles of homology and cohomology are played by
K-theory and K-homology. These have been combined into a bivariant theory by Kasparov,
for which one has K-theory, K�.A/ D KK�.C; A/, and K-homology, K�.A/ D KK�.A;C/.
Kasparov’s theory comes equipped with a product that is the analog of the slant product used
above. Of course, noncommutative C �-algebras play the role of algebras of continuous func-
tions on ordinary spaces. With this in hand, the generalization of Spanier–Whitehead duality to
this setting is easily accomplished.

Let A be a C �-algebra. We will consider indices in K-theory to be modulo 2. A C �-alge-
bra Dn.A/ is a Spanier–Whitehead n-dual of A (or simply a “dual“ when the context is
clear) if there are duality classes ı 2 Kn.A˝Dn.A// and� 2 Kn.A˝Dn.A// such that the
Kasparov products yields inverse isomorphisms,

ı˝Dn.A/ W K
i .Dn.A//! Kn�i .A/;(1.3)

˝A� W Kn�i .A/! Ki .Dn.A//:

Note that in the noncommutative case, given ı, it is an additional condition to require the
existence of �, while in the commutative case this holds automatically [35].

It is natural to compare this to the noncommutative version of K-theoretic Poincaré
duality, as introduced by Connes. In general, these notions are different. The main thing is that
Poincaré duality relates K-theory and K-homology of the same algebra. However, this is more
restrictive than simply finding a dual algebra,B , whose K-theory is isomorphic to the K-homol-
ogy of A. Even in cases where one can choose an algebra to be its own Spanier–Whitehead
dual, care must be taken. A situation which indicates this is when the algebra is A D C.S1/.
Since S3 n S1 deformation retracts to S1, we may take C.S1/ itself to be a Spanier–Whitehead
2-dual. The duality class � lies in K0.C.S1/˝ C.S1// and the isomorphism from (1.3) pro-
vides isomorphisms

K�.C.S
1// Š K�.C.S1//:

However, S1 is an odd-dimensional Spinc manifold, so it has a K-theory fundamental class
which can be viewed as being in K1.C.S1/˝ C.S1// and it provides the usual Poincaré
duality isomorphisms

K�.C.S
1// Š K�C1.C.S1//:

The main result of this paper exhibits this duality for the stable and unstable Ruelle
algebras associated to a Smale space, (i.e. a compact space X with a hyperbolic homeo-
morphism, '). The stable and unstable sets for ' provideX with the structure of foliated space,
in the sense of Moore–Schochet, in two different ways, which are transverse to each other. The
easiest example to visualize is the 2-dimensional torus, T 2 with the hyperbolic toral automor-
phism given by the matrix ' D Œ 1 11 0 �. The stable and unstable foliated space structures are the
Kronecker flows for angles � and � 0, respectively, where � D tan�1.�
/, � 0 D tan�1.
�1/,
and 
 is the golden mean 
 D .1C

p
5/=2. One may now associate to these structures their

Connes foliation algebras, which, in this example, are isomorphic to A� ˝K and A� 0 ˝K ,
respectively, where A� is the irrational rotation algebra. These algebras are interesting invari-
ants of the dynamics, and in the present case they happen to be isomorphic, although that is
far from true in general. They are simple algebras with a canonical (semi-finite) trace. The
homeomorphism, ', induces an automorphism of each of these algebras, and one can take the
associated crossed product algebras, .A� ˝K/ Ì'� Z and .A� 0 ˝K/ Ì'� Z. One obtains in
this way simple, purely, infinite C �-algebras. They are special cases of algebras introduced by
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the second author in [27] and are called the stable and unstable Ruelle algebras associated to
a Smale space. As a consequence of Elliott’s classification program, they have the remarkable
property of being determined up to isomorphism by their K-theory groups, [22]. It is these
algebras which will be shown to be duals.

We briefly review the general dynamical setting for the duality. The necessary precise
definitions will be presented in Section 2. Let .X; '/ be a Smale space. In later sections, we
will impose some mild dynamical conditions, but they will be suppressed in the introduction.
Consider the groupoids given by the equivalence relations of being stably or unstably equiva-
lent. In general, these are analogs of the holonomy groupoid of a foliation. They are locally
compact groupoids which admit Haar systems, so that one may define their C �-algebras,
S.X; '/ andU.X; '/. These are finite direct sums of simpleC �-algebras which are also separa-
ble, nuclear, and stable. They are often known to be of the type to which Elliott’s classification
program (in the finite case) applies. They each have a densely defined trace and the map '
induces automorphisms, ˛s and ˛u, on the algebras, which scale the trace by the logarithm
of the entropy of '. As above, we now take the crossed products by these automorphisms to
obtain the stable and unstable Ruelle algebras,

Rs.X; '/ D S.X; '/ Ì˛s
Z; Ru.X; '/ D U.X; '/ Ì˛u

Z:

These C �-algebras are separable, simple, stable, nuclear, purely infinite, and satisfy the Uni-
versal Coefficient Theorem. Thus, according to the purely infinite case of Elliott’s program, as
developed by Kirchberg and Phillips, they are completely classified by their K-theory groups.
It is interesting that these algebras, which arose from dynamics and duality theory, turn out to
have remarkable properties as C �-algebras.

The Duality Theorem shows that the stable and unstable Ruelle algebras are Spanier–
Whitehead duals of each other. This implies that the K-theory of Rs.X; '/ is isomorphic, with
a dimension shift, to the K-homology of Ru.X; '/, and vice-versa.

1.1. Theorem. Let .X; '/ be an irreducible Smale space. There exist duality classes
ı 2 KK1.C; Rs.X; '/˝Ru.X; '// and � 2 KK1.Rs.X; '/˝Ru.X; '/;C/ such that

ı ˝Ru.X;'/ � Š 1Rs.X;'/;

ı ˝Rs.X;'/ � Š �1Ru.X;'/:

Taking the Kasparov product with ı and � yields inverse isomorphisms

K�.R
s.X; '/

�˝Rs.X;'/

��������! K�C1.Ru.X; '//;

K�.Ru.X; '//
ı˝Ru.X;'/

��������! K�C1.R
s.X; '//:

We will now describe some of the background for our results. In [25], the second author
introduced the algebras studied in the present paper. They were based on constructions of
algebras due to Ruelle in [32], although the crossed product by the automorphism induced
by ' was not used there. Further properties of these algebras were presented in [28]. In [15],
the first two authors worked out a special case of the duality theory when the Smale space was
a subshift of finite type. In this case, the Ruelle algebras were known to be isomorphic to stabi-
lized Cuntz–Krieger algebras [8, 9]. Specifically, suppose that the Smale space was the shift of
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266 Kaminker, Putnam and Whittaker, K-theoretic duality for hyperbolic dynamical systems

finite type associated with a non-negative integral, irreducible matrix, A. Denote the dynami-
cal system by .XA; 'A/. It follows thatRs.XA; 'A/ Š OAt ˝K andRu.XA; 'A/ Š OA ˝K .
Following work of D. Evans [12] and D. Voiculescu [38], one considers the full Fock space of
a finite-dimensional Hilbert space and the associated creation and annihilation operators. One
compresses them to a subspace determined by the matrix A and generates a C �-algebra, E .
This algebra contains the compact operators and one obtains an extension,

0!K ! E ! OA ˝OAt ! 0:

The extension determines an element � in K1.OA ˝OAt / and it was shown in [15] that it
induces the required duality isomorphism. J. Zacharias and I. Popescu [24] have extended this
type of duality theory to higher rank graph algebras.

There are other sources for examples of duality. One type is based on an amenable action
of a hyperbolic group, � , on a compact space, X . In this setting, the crossed product algebra
C.X/ Ì � can often be shown to be its own dual, as in Poincaré duality. Since the duality
presented in this paper is based on transversality coming from hyperbolic dynamics, it is
natural to ask why this occurs. The underlying idea is that the action of � can be recoded so it
has the same orbit structure as a single hyperbolic transformation. Using this principle and the
results in [4], J. Spielberg showed that for certain Fuchsian groups acting on their bound-
ary, the crossed product algebra was isomorphic to a Cuntz–Krieger algebra OA. This was
extended by Laca and Spielberg [18] (see also C. Anantharaman-Delaroche [1]) to show that the
crossed productC.S1/ Ì SL.2;Z/ is isomorphic to a Ruelle algebra. One may ask how general
a phenomenon this is. According to Connes–Feldman–Weiss, [6], an amenable action is orbit
equivalent, in the measure theoretic context, to the action of a single transformation. In the
cases at hand, one gets much more than a orbit equivalence in the measure category, and the
map it induces provides isomorphisms of the crossed product algebras with Ruelle algebras of
associated hyperbolic dynamical systems. It would be interesting to have a theory intermediate
between measure theoretic orbit equivalence, which is naturally associated to von Neumann
algebras, and topological flow equivalence, which is related to C �-algebras, where an equiva-
lence would induce isomorphisms of Ruelle type algebras.

This line was pursued further by H. Emerson, who, without assuming that such crossed
products are related to hyperbolic dynamical systems, was able to show that if one takes � to
be a Gromov hyperbolic group, then there is an extension, analogous to the one above, whose
K-homology class yields an isomorphism K�.C.à�/ � �/ Š K�C1.C.à�/ � �/ (see [11]).
We will describe in Section 4 how this clarifies a relation between the dynamical duality of the
present paper and the Baum–Connes map for hyperbolic groups.

Building on ideas like these, the duality theory for general Smale spaces has played
a role in the work of V. Nekrashevych [20] on providing more precision to Sullivan’s dictionary
relating the dynamics of rational maps to that of Kleinian groups. Starting with a rational map,
f W C ! C, suitably restricted, Nekrashevych constructs a self-similar group �f , the iterated
monodromy group of f . This group has a limit set,ƒ.�f /, which admits a self-map, �f , so that
the pair .ƒ.�f /; �f / is topologically conjugate to .f; Julia.f //, the latter being f restricted to
its Julia set. He shows that the inverse limit lim

 �
¹ƒ.�f /; �f º is a Smale space. Thus, one may

study the stable and unstable Ruelle algebras and their duality in this context. Nekrashevych
establishes that the unstable Ruelle algebra is Morita equivalent to an algebra associated to
the iterated monodromy group, while the stable Ruelle algebra is Morita equivalent to the
Deaconu–Renault algebra [10, 30] associated to the rational map f . One may thus view the
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dynamical duality between the Ruelle algebras as relating the expanding dynamics of f with
the contracting dynamics associated to the action of the self-similar group on its limit set. To get
closer to Sullivan’s program, it would remain to relate the latter with the action of a Kleinian
group on its limit set. If the respective algebras are simple and purely infinite, as expected,
then finding a Kleinian group whose algebras have the same K-theory as the self-similar group
would provide support for Sullivan’s dictionary.

The structure of the paper is as follows. Section 2 is an introduction to Smale spaces.
We provide here more details on the technical aspects needed for later proofs. In Sections 3,
we review the construction of the C �-algebras associated to Smale spaces. Section 4 covers
the K-theoretic duality we will use and describes various contexts where it arises naturally. In
Section 5, the K-theory duality element is constructed. This is essentially a consequence of the
transversality of the stable and unstable equivalence relations, and can be constructed in more
generality. Indeed, the Mishchenko line bundle, used in the Baum–Connes assembly map, can
be obtained this way. Section 6 is devoted to construction of the K-homology duality class,
which provides the inverse on K-theory. Here, the hyperbolic nature of the dynamics plays
a crucial role. Thus, it appears that the K-theory duality class exists in reasonable generality,
but the existence of an inverse requires additional structure. This is precisely analogous to the
difficulty in finding an inverse to the Baum–Connes assembly map using the Dirac-dual Dirac
method. In Section 7, the proof of the main theorem will be completed and, finally, in Section 8
we will discuss open questions and possible extensions of the theory.

Acknowledgement. The authors are very grateful to the referee for a very thorough
reading of the paper and numerous helpful suggestions.

2. Smale spaces

In this section, we provide a brief introduction to Smale spaces. The reader is also referred
to [25, 33], but we will try to keep our treatment self-contained.

We assume that .X; d/ is a compact metric space and that ' is a homeomorphism. The
main gist of the definition is that, locally at a point x,X is homeomorphic to the product of two
subsets, denoted Xs.x; "/ and Xu.x; "/ and on these, the maps ' and '�1, respectively, are
contracting. For the uninitiated, it may be best to begin reading from Figure 1 to Definition 2.2
and then work backwards to the more rigorous aspects below.

We assume the existence of constants, "X > 0; � > 1, and a map

.x; y/ 2 X; d.x; y/ � "X 7! Œx; y� 2 X

satisfying a number of conditions. First, Œ � ; � � is jointly continuous on its domain of definition.
Also, it satisfies

Œx; x� D x;

Œx; Œy; z�� D Œx; z�;

ŒŒx; y�; z� D Œx; z�;

'Œx; y� D Œ'.x/; '.y/�;

for any x; y; z in X , where both sides of the equality are defined. It follows easily from these
axioms that Œx; y� D x if and only if Œy; x� D y and Œx; y� D y if and only if Œy; x� D x.
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We define, for each x in X and 0 < " � "X , sets

Xs.x; "/ D ¹y 2 X j d.x; y/ � "; Œy; x� D xº;

Xu.x; "/ D ¹y 2 X j d.x; y/ � "; Œx; y� D xº:

It follows easily from the axioms that the map

Œ � ; � � W Xu.x; "/ �Xs.x; "/! X

is a homeomorphism to its image, which is a neighbourhood of x in X , provided " � "X=2.
The inverse map sends a point z close to x to the pair .Œz; x�; Œx; z�/. Moreover, as we vary ",
the images form a neighbourhood base for the topology at x. To summarize, X has a local
product structure. We give a proof of the following simple result for completeness and because
we will use it later in an essential way.

2.1. Lemma. Given x; y 2X and 0 < "� "X=2, if the intersectionXs.x; "/\Xu.y; "/
is non-empty, then it is the single point Œx; y�.

Proof. Suppose that z is in the intersection. This means that Œz; x� D x and Œy; z� D y.
It also means that d.x; y/ � d.x; z/C d.z; y/ < 2" � "X so that Œx; y� is defined. It follows
that Œx; y� D ŒŒz; x�; Œy; z�� D ŒŒz; x�; z� D Œz; z� D z.

It will probably help to have a picture of the bracket in mind, see Figure 1.

Xs.x; "X /

Xu.x; "X /

x Œx; y�

Xs.y; "X /

Xu.y; "X /

yŒy; x�

Figure 1. The bracket map.

The final axiom is that, for y; z in Xs.x; "X /, we have

d.'.y/; '.z// � ��1d.y; z/;

and for y; z in Xu.x; "X /, we have

d.'�1.y/; '�1.z// � ��1d.y; z/:

That is, on the set Xs.x; "X /, ' is contracting. It is tempting to say that on Xu.x; "X /, ' is
expanding, but it is better to say that its inverse is contracting.

Brought to you by | University of Glasgow Library
Authenticated

Download Date | 8/31/17 11:57 AM



Kaminker, Putnam and Whittaker, K-theoretic duality for hyperbolic dynamical systems 269

2.2. Definition. A Smale space is a compact metric space .X; d/ with a homeomor-
phism ' such that there exist two constants "X > 0; � > 1 and the map Œ � ; � � satisfying the
conditions above.

A Smale space .X; d; '/ is said to be irreducible if the set of periodic points under ' are
dense and there is a dense '-orbit.

The sets Xs.x; "/ and Xu.x; "/ are called the local contracting and expanding sets,
respectively. We note for later convenience, that if y is in Xs.x; "/, for some x; y; ", then
for all k � 0, 'k.y/ is in Xs.'k.x/; ��k"/. Similarly, if y is in Xu.x; "/, for some x; y; ",
then for all k � 0, '�k.y/ is in Xu.'�k.x/; ��k"/.

2.3. Lemma. There is a constant 0 < "0X � "X=2 such that, if d.x; y/ < "0X , then both
d.x; Œx; y�/; d.y; Œx; y�/ < "X=2 and hence Œx; y� is in Xs.x; "X=2/ and in Xu.y; "X=2/.

Proof. The functions d.x; Œx; y�/; d.y; Œx; y�/ are both defined on the set of pairs .x; y/
with d.x; y/ � "X , which is compact, and are continuous. Moreover, on the set where x D y,
they have value zero. The existence of "0X satisfying the first conditions follows from uniform
continuity. The last part follows from the definitions.

We now define global stable and unstable equivalence relations on X . Given a point x
in X we define the stable and unstable equivalence classes of x by

Xs.x/ D
®
y 2 X j lim

n!C1
d.'n.x/; 'n.y// D 0

¯
;

Xu.x/ D
®
y 2 X j lim

n!C1
d.'�n.x/; '�n.y// D 0

¯
:

We will often denote stable equivalence by x �s x0 and unstable equivalence by y �u y0.
To see the connection between these global stable and unstable sets, we note that, for any x
in X and " > 0, Xs.x; "/ � Xs.x/ and Xu.x; "/ � Xu.x/. Moreover, y in X is in Xs.x/
(or Xu.x/) if and only if there exists an n � 0 such that 'n.y/ is in Xs.'n.x/; "/ (or '�n.y/
is in Xu.'�n.x/; "/, respectively).

3. C �-algebras

We describe the construction of C �-algebras from a Smale space. In Section 1, we indi-
cated that the C �-algebras S.X; '/ and U.X; '/ are the C �-algebras of the stable and unstable
equivalence relations, respectively. This is correct in spirit, but for the purposes of this paper,
it is a half-truth. We will find it much easier to work with equivalence relations which are
equivalent to these (in the sense of Muhly, Renault and Williams [19]) but which are étale. To
do this, we simply restrict to the stable and unstable equivalence classes of '-invariant sets of
points (see [26]). Some care must be taken because these unstable classes are endowed with
a different (and more natural topology) than the relative topology ofX . Specifically, we choose
sets, P and Q, consisting of periodic points and their orbits. We note that, at this point, there
are no limitations on P andQ, however, later we require that they be disjoint from one another.
We shall then construct étale groupoids of stable and unstable equivalence, Gs.X; ';Q/ and
Gu.X; '; P /. TheC �-algebras of these groupoids will be denoted S.X; ';Q/ andU.X; '; P /,
respectively.
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Let .X; d; '/ be a Smale space and let P and Q be finite '-invariant sets. Consider

Xs.P / D
[
p2P

Xs.p/; Xu.Q/ D
[
q2Q

Xu.q/:

The set Xs.P / is endowed with locally compact and Hausdorff topology by declaring that the
collection of sets Xs.x; "/, as x varies over Xs.P / and 0 < " < "X , forms a neighbourhood
base. Similarly for Xu.Q/. The stable and unstable groupoids are then defined by

Gs.X; ';Q/ D ¹.v; w/ j v �s w and v;w 2 Xu.Q/º;

Gu.X; '; P / D ¹.v; w/ j v �u w and v;w 2 Xs.P /º:

Let .v; w/ be in Gs.X; ';Q/. Then for some N � 0, 'N .w/ is in Xs.'N .v/; "0X /. By the
continuity of ', we may find ı > 0 sufficiently small such that

'N .Xu.w; ı// � Xu.'N .w/; "0X /

so that the map
hs.x/ D '�N Œ'N .x/; 'N .v/�

is well-defined on the set Xu.w; ı/. This map takes v to w and since it is clearly continuous
we may further restrict ı so that the image lies inXu.v; "X=2/. Moreover, it is the composition
of three maps, 'N , Œ � ; 'N .v/�, and '�N , which are open on local unstable sets, and hence it
is open. It is easy to verify that this map is a local homeomorphism and that interchanging the
roles of v and w gives another local homeomorphism. Where composition of the two maps is
defined it is the identity, in either order. Let

V s.v; w; hs; ı/ D ¹.hs.x/; x/ j x 2 Xu.w; ı/º:

It will help to have a picture of the map hs; see Figure 2.

3.1. Lemma. The collection of sets V s.v; w; hs; ı/ as above forms a neighbourhood
base for a topology on Gs.X; ';Q/ in which it is an étale groupoid.

We also remark that if Q meets each irreducible component of .X; d; '/, then this
groupoid is unique up to the notion of equivalence given in [19]. In [28], it is shown that
these groupoids are amenable.

Analogous results obviously hold for Gu.X; '; P /.
Let Cc.Gs.X; ';Q// be the continuous functions of compact support on Gs.X; ';Q/,

which is a complex linear space. A product and involution are defined on Cc.Gs.X; ';Q// as
follows, for f; g 2 Cc.Gs.X; ';Q// and .x; y/ 2 Gs.X; ';Q/,

f � g.x; y/ D
X
z�sx

f .x; z/g.z; y/;

f �.x; y/ D f .y; x/:

This makesCc.Gs.X; ';Q// into a complex �-algebra. Any function inCc.Gs.X; ';Q//may
be written as a sum of functions, each having support in an element of the neighbourhood base
described in Lemma 3.1.
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S

U

w

x

S

U

v

hs.x/ D ��N Œ�N .x/; �N .v/�

S

U U

�N .w/

�N .x/

�N .v/

Œ�N .x/; �N .v/�

�N��N

Figure 2. The local homeomorphism hs W Xu.w; ı/! Xu.v; ı/.

3.2. Definition. Let .X; d; '/ be a Smale space and let P and Q be '-invariant sets
of periodic points. We define S.X; ';Q/ and U.X; '; P / to be the (reduced) C �-algebras
associated with the étale groupoidsGs.X; ';Q/ andGu.X; '; P /, respectively [29]. When no
confusion will arise, we denote them by S and U .

We now want to define a canonical representation of these C �-algebras. Let Xh.P;Q/
denote the set Xs.P / \Xu.Q/. Since .X; d; '/ is assumed to be irreducible, Xh.P;Q/ is
dense in X (see [33]). Viewing Xh.P;Q/ as a subset of the Gs.X; ';Q/ equivalence classes
of the points in P , we consider the restriction of the regular representation of S.X; ';Q/
to equivalence classes of P in Gs.X; ';Q/. This means that we consider the Hilbert space
H D `2.Xh.P;Q//, and for a in Cc.Gs.X; ';Q//, � in H , we define

.a�/.x/ D
X

.x;y/2Gs.X;';Q/

a.x; y/�.y/ .� in H /:

Notice that we suppress the notation for the representation of Cc.Gs.X; ';Q// as bounded
operators on B.H /.

Next, viewing the same setXh.P;Q/ as a subset of theGu.X; '; P /-equivalence classes
of the points in Q, we can consider the restriction of the regular representation of U.X; '; P /
to the same Hilbert space H . For b in Cc.Gu.X; '; P //, � in H , we define

.b�/.x/ D
X

.x;y/2Gu.X;';P /

b.x; y/�.y/ .x in H /:
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For each x in Xh.P;Q/, we let ıx denote the function on Xh.P;Q/ taking value 1 at x
and zero elsewhere. Of course, the set ¹ıx j x 2 Xh.P;Q/º forms a basis for the Hilbert space
H D `2.Xh.P;Q//. The following two lemmas follow directly from the definitions. We omit
the proofs.

3.3. Lemma. Let V s.v; w; hs; ı/ be a basic open set in Gs.X; ';Q/ and suppose a
is a continuous compactly supported function on V s.v; w; hs; ı/. For each x in Xh.P;Q/,
we have

aıx D a.h
s.x/; x/ıhs.x/;

where the right side is defined to be zero if hs.x/ is not defined. Define Source.a/ � Xu.w; ı/
to be the points for which a is non-zero on its domain and define Range.a/ � Xu.v; "X=2/ to
be the points in Xu.v; "X=2/ for which a.hs.x/; x/ıhs.x/ is non-zero. Observe that a is zero
on the orthogonal complement of Xu.w; ı/.

3.4. Lemma. Let V u.v; w; hu; ı/ be a basic open set in Gu.X; '; P / and suppose b
is a continuous compactly supported function on V u.v; w; hu; ı/. For each x in Xh.P;Q/,
we have

bıx D b.h
u.x/; x/ıhu.x/;

where the right side is defined to be zero if hu.x/ is not defined. Define Source.b/ � Xs.w; ı/
to be the points for which b is non-zero on its domain and define Range.b/ � Xs.v; "X=2/ to
be the points in Xs.v; "X=2/ for which b.hu.x/; x/ıhs.x/ is non-zero. Observe that b is zero
on the orthogonal complement of Xs.w; ı/.

We note that every element of either of the above C �-algebras can be uniformly approx-
imated by a finite sum of functions supported in basic neighbourhood sets. We also have a nice
geometric picture of the Hilbert space H in the sense that a natural basis is parameterized by
the points of Xh.P;Q/. In this spirit, the picture of the map hs , given in Figure 2, can now be
viewed as a picture of the operator a, up to the value of the function at specific points.

The sets of periodic pointsP andQ are chosen to be '-invariant and so the spacesXs.P /
andXu.Q/ are also. Moreover, it is clear that ' induces homeomorphisms of both these spaces.
It is also clear that ' � ' induces automorphisms of Gs.X; ';Q/ and Gu.X; '; P /. These in
turn define automorphisms of theC �-algebras, S.X; ';Q/ andU.X; '; P /, denoted ˛s and ˛u,
respectively. Specifically, suppose a is a continuous compactly supported function on a basic
set V s.v; w; hs; ı/ and x is in Xh.P;Q/; then we have

˛s.a/ıx D a.h
s
ı '�1.x/; '�1.x//ı'ıhsı'�1.x/:

Similarly, if b is a continuous compactly supported function on a basic set V u.v; w; hu; ı/ and
x is in Xh.P;Q/, then we have

˛u.b/ıx D b.h
u
ı '�1.x/; '�1.x//ı'ıhuı'�1.x/:

For the same reasonXh.P;Q/ is also '-invariant and this implies that there is a canonical
unitary operator u on H defined by u� D � ı '�1, for any � in H . We note that

uıx D ı'.x/; x 2 Xh.P;Q/:
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We also note, without proof, that

uau� D ˛s.a/; a 2 S.X; ';Q/;

ubu� D ˛u.b/; b 2 U.X; '; P /:

These covariant pairs define crossed product C �-algebras.

3.5. Definition. The stable and unstable Ruelle algebras, denoted by RS .X; ';Q/ and
RU .X; '; P /, respectively, are the crossed products

RS .X; ';Q/ D S.X; ';Q/ Ì˛s
Z and RU .X; '; P / D U.X; '; P / Ì˛u

Z:

We remark that the Ruelle algebras, as defined here, are Morita equivalent to the Ruelle
algebras defined in [25]. Moreover, the Ruelle algebras were shown to be separable, simple,
stable, nuclear, and purely infinite when .X; d; '/ is irreducible [28], hence they also satisfy the
Universal Coefficient Theorem [37]. Moreover, according to the purely infinite case of Elliott’s
classification program, as developed by Kirchberg and Phillips, they are completely classified
by their K-theory groups.

Due to the definitions of stable and unstable equivalence we also note that

U.X; ';Q/ D S.X; '�1;Q/ and RU .X; ';Q/ D RS .X; '�1;Q/:

4. Noncommutative duality

In this section, we will review basic facts about duality which we will need. We will also
describe some properties possessed by algebras which have duals and discuss various examples.
Much of this material can be found in [15] or [11].

4.1. KK-theory. Let KK0.A;B/ denote the Kasparov KK-group for a pair of sepa-
rable C �-algebras A and B . Denote C0.0; 1/ by S . Then KK1.A;B/ D KK0.A˝S ; B/.
There are various ways of obtaining elements of KK0.A;B/. For example, any homomorphism
h W A! B determines an element Œh� 2 KK0.A;B/. If A is nuclear, then there is a natural
isomorphism KK1.A;B/ Š Ext.A;B/ (see [16]), where Ext.A;B/ is the group of classes of
C �-algebra extensions of the form

0! B ˝K ! E ! A! 0:

Thus, an extension determines an element of KK1.A;B/. One can retrieve the ordinary
K-theory and K-homology groups from KK-theory as

K�.A/ D KK�.C; A/;

K�.A/ D KK�.A;C/:

We will be using the Kasparov product,

KKi .A;B ˝D/ � KKj .D ˝ A0; B 0/
˝D
��! KKiCj .A˝ A0; B ˝ B 0/:

As usual, indices are to be taken modulo 2. In the course of proofs it will be necessary to be
more precise about explicit expressions for products.
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We refer to Connes’ book, [5, p. 428], for a presentation of this material, and [2] for
a more complete treatment.

Let 1D 2 KK0.D;D/ denote the class determined by the identity homomorphism. Then
there are natural maps

�D W KKi .A;B/! KKi .A˝D;B ˝D/

and
�D W KKi .A;B/! KKi .D ˝ A;D ˝ B/

obtained via x 7! x ˝ 1D and x 7! 1D ˝ x.

4.2. Duality classes.

4.1. Definition. Let A and B be separable C �-algebras. We say that A and B are
Spanier–Whitehead dual, or just dual, if there are duality classes � 2 KKi .A˝ B;C/ and
ı 2 KKi .C; A˝ B/ such that

ı˝B W K
j .B/! KiCj .A/;

˝A� W Kj .A/! KiCj .B/

yield inverse isomorphisms.

The main criterion is the following theorem, first presented in Connes’ book (cf. [5], see
also [11, 15]).

4.2. Theorem. Let � 2 KKi .A˝ B;C/ and ı 2 KKi .C; A˝ B/ be given, satisfying
the two conditions

ı ˝B � D 1A;

ı ˝A � D .�1/
i1B :

Then ı and � implement a duality between A and B .

Note that we are making use of the following standard conventions to make sense of
the formulas in Theorem 4.2. Let � W A˝ B ! B ˝ A be the isomorphism interchanging the
factors,

ı ˝B � D ��.ı ˝B ��.�//;

ı ˝A � D ��.�
�.ı/˝A �/:

4.3. Bott periodicity and duality maps. Because of our convention in the definition
of KK1.A;B/, for the sequel we will have to be explicit about how Bott periodicity fits into
this for the sequel. We will also have to be more precise about the maps between K-groups
induced by the duality elements.

Let T denote the Toeplitz extension

0!K.`2.N//! T ! C.S1/! 0;

which determines an element of KK1.C.S1/;C/. Observe that S � C.T / and we denote
the restriction of the Toeplitz extension to S by T0, which, by our conventions, is an element

Brought to you by | University of Glasgow Library
Authenticated

Download Date | 8/31/17 11:57 AM



Kaminker, Putnam and Whittaker, K-theoretic duality for hyperbolic dynamical systems 275

of KK.S ˝S ;C/. Now if ˇ 2 KK.C;S ˝S / is the Bott element, see [2, Section 19.2.5],
then we have

ˇ ˝S˝S T0 D 1C and T0 ˝ ˇ D 1S˝S

(for this see [2, Section 19.2]). That is, 1A Š �A.T0/ and 1B Š �B.T0/.
In the present paper we will be working only with odd duality classes� 2KK1.A˝B;C/

and ı 2 KK1.C; A˝ B/. We obtain maps between the various K-groups associated with A
and B via the Kasparov product and we will need to be more precise about their relation
to Bott periodicity. To this end, let A and B be C �-algebras. Consider the homomorphisms
�i W Ki .A/! KiC1.B/ and ıi W Ki .B/! KiC1.A/ defined by

�0.x/ D x ˝A �; x 2 K0.A/;

�1.x/ D ˇ ˝S˝S .��.x ˝A �//; x 2 K1.A/;

ı1.y/ D ˇ ˝S˝S .ı ˝B y/; y 2 K1.B/;

ı0.y/ D ı ˝B y; y 2 K0.B/:

The compositions of these maps is described in the following result from [11], which
generalizes one from [15].

4.3. Theorem ([11]). Let A and B be C �-algebras. Suppose � 2 KK1.A˝ B;C/
and ı 2 KK1.C; A˝ B/ satisfy the criterion in Theorem 4.2. Then,

ıiC1 ı�i D .�1/
i1Ki .B/;

�iC1 ı ıi D .�1/
iC11Ki .A/:

Interchanging the roles of A and B gives a similar result, and in either case we obtain
isomorphisms Ki .B/ Š KiC1.A/.

4.4. Consequences of duality. In this subsection, we will describe some algebraic con-
sequences of an algebra having a dual. Since this paper deals with Ruelle algebras associated
to hyperbolic dynamical systems, we will take advantage of the additional properties these
algebras have. In particular, they are separable, nuclear, purely infinite, and since they are alge-
bras obtained from amenable groupoids, they satisfy the Universal Coefficient Theorem, [31].
We will show that the Ruelle algebras are self-dual, hence satisfy a version of Poincaré duality.
This requires an additional hypothesis on the dynamical system which is very likely to hold in
general. Namely, we assume that K�.U.X; '; P // and K�.S.X; ';Q// are finite rank abelian
groups. Indeed, it will follow from results due to the second author on a special homology
theory for Smale spaces [27], and is the analog of the rationality of the zeta function of such
a system.

To start, we will assume that A is separable and possesses the following properties:

(a) The algebra A has an odd, separable, Spanier–Whitehead dual, D.A/.

(b) The Universal Coefficient Theorem holds for A and D.A/, with K-homology in the
middle.

It follows from this that:

(c) The Universal Coefficient Theorem holds for A and D.A/, with K-theory in the middle.

(d) K�.A/ and K�.A/ are finitely generated groups.
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Statement (c) follows by applying duality to the Universal Coefficient Theorem for
K-homology. We will give a proof of (d).

Proof. First note that the Universal Coefficient Theorem and separability of A imply
that Hom.K�.A/;Z/ and Ext.K�.A/;Z/ are both countable, as are the corresponding groups
with K�.A/ via duality. Let tK�.A/ denote the torsion subgroup of K�.A/. Applying now
Hom. � ;Z/ to the sequence

0! tK�.A/! K�.A/! K�.A/=tK�.A/! 0;

one deduces that Ext.K�.A/=tK�.A/;Z/ is countable.
It is shown in [21] that if a group H is torsion free and Ext.H;Z/ is countable, then H

is free. Applying this to K�.A/=tK�.A/, one gets that K�.A/ D tK�.A/˚K�.A/=tK�.A/.
It follows, since Hom.K�.A/;Z/ is countable, that Hom.K�.A/=tK�.A/;Z/ is countable as
well. Thus, K�.A/=tK�.A/ must be finitely generated, or else it would be uncountable.

Next one uses that for a torsion group T , Ext.T;Z/ is the Pontryagin dual of T , where T
is given the discrete topology, [13]. Thus, Ext.tK�.A/;Z/ is a compact topological group.
If it is infinite, then it is a perfect topological space, hence uncountable, so it must be finite.
Therefore, K�.A/ is finitely generated. Similarly, K�.A/ is finitely generated.

The Ruelle algebras RS .X; ';Q/ and RU .X; '; P / are separable C �-algebras associ-
ated to amenable groupoids. Hence, by [37], they satisfy the Universal Coefficient Theorem
and (d) applies. Thus, we obtain:

4.1. Proposition. The groupsK�.RS .X; ';Q//,K�.RU .X; ';P //,K�.RS .X; ';Q//
and K�.RU .X; '; P // are finitely generated.

4.2. Proposition. If rank.K0.RS .X; ';Q/// D rank.K1.RS .X; ';Q///, then

RS .X; ';Q/ Š RU .X; '; P /:

Proof. The two algebras RS .X; ';Q/ and RU .X; '; P / satisfy the hypothesis of the
Kirchberg–Phillips Theorem, [22]. Thus we must only show that their K-theory groups are
isomorphic. Considering torsion first, note that, using duality and the Universal Coefficient
Theorem,

tK0.R
S .X; ';Q// Š Ext.K1.RS .X; ';Q//;Z/

Š tK1.RS .X; ';Q//

Š tK0.R
U .X; '; P //:

For the free part,

rank.K0.RS .X; ';Q/// D rank.Hom.K0.RS .X; ';Q///;Z/

D rank.Hom.K1.RU .X; '; P //;Z//

D rank.K1.RU .X; '; P ///

D rank.K0.RU .X; '; P ///:

A similar argument shows that K1.RS .X; ';Q// Š K1.RU .X; '; P //. Thus, by the Classifi-
cation Theorem, [22], we obtain that RS .X; ';Q/ Š RU .X; '; P /.
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Remark. Note that S.X; ';Q/ and U.X; '; P / are not isomorphic in general.

4.3. Corollary. The algebras RS .X; ';Q/ and RU .X; '; P / satisfy Poincaré duality.

Proof. The isomorphism betweenRS .X; ';Q/ andRU .X; '; P / is implemented by an
element � 2 KK.RS .X; ';Q/;RU .X; '; P //. Consider the duality classes

� 2 KK1.RS .X; ';Q/˝RU .X; '; P /;C/

and
ı 2 KK1.C; RS .X; ';Q/˝RU .X; '; P //:

Let Qı 2 KK1.C; RU .X; '; P /˝RU .X; '; P // and Q� 2 KK1.RU .X; '; P /˝RU .X; '; P /;C/
be defined by

Qı D ı� ˝RS .X;';Q/ �

and
Q� D ��1 ˝RS .X;';Q/ �

� :

Then it follows from the properties of ı and � that, for x 2 K0.RU .X; '; P // one has

Qı ˝RU .X;';P / .x ˝RU .X;';P /
Q�/ D x:

The question of when the hypothesis of Proposition 4.2 holds will now be addressed.

4.4. Proposition. Assume that K�.S.X; ';Q// and K�.U.X; '; P // have finite rank.
Then, one has

rankK0.RS .X; ';Q// D rankK1.RS .X; ';Q//;

rankK0.RU .X; '; P // D rankK1.RU .X; '; P //:

Proof. We will work out the case of RU .X; '; P /, the case of RS .X; ';Q/ being
similar.

Consider the Pimsner–Voiculescu [23] sequence tensored with Q,

K0.U.X; '; P //˝Q
1�.˛u/� // K0.U.X; '; P //˝Q ˛ // K0.R

U .X; '; P //˝Q

ı0

��

K1.R
U .X; '; P //˝Q

ı1

OO

K1.U.X; '; P //˝Q
ˇ

oo K1.U.X; '; P //˝Q:
1�.˛u/�

oo

One checks directly that

K0.R
U .X; '; P //˝Q D image˛ ˚ cokernel˛(4.1)

D cokernel.1 � .˛u/�/˚ ker.1 � .˛u/�/:

Similarly,

(4.2) K1.R
U .X; '; P //˝Q D cokernel.1 � .˛u/�/˚ ker.1 � .˛u/�/:

But one obtains from

0 ������! ker.1 � .˛u/�/ ������! K0.U.X; '; P //˝Q
1�.˛u/�
������! K0.U.X; '; P //˝Q

������! cokernel.1 � .˛u/�/ ������! 0
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that
K0.U.X; '; P //˝Q D image.1 � .˛u/�/˚ cokernel.1 � .˛u/�/

D image.1 � .˛u/�/˚ ker.1 � .˛u/�/:

Since K0.U.X; '; P // is assumed to be of finite rank, it follows that

rank.ker.1 � .˛u/�// D rank.cokernel.1 � .˛u/�//

and similarly
rank.ker.1 � .˛u/�// D rank.cokernel.1 � .˛u/�//:

Plugging these into (4.1) and (4.2) yields the result.

4.5. Dynamical duality and the Baum–Connes conjecture. There are relations
between the noncommutative duality we have been discussing and the Baum–Connes and
Novikov conjectures in topology. We consider a setting in which precise statements can be
made. Let � be a torsion free, finitely presented group. In this case, the Baum–Connes map,
after tensoring with Q, can be identified with

(4.3) �˝Q W K�.B�/˝Q! K�.C
�
r .�//˝Q;

where the map�˝Q is obtained by taking Kasparov product with the class of the Mishchenko
line bundle ı� 2 KK.C; C0.B�/˝ C �r .�//. Thus, the rational version of the Baum–Connes
conjecture here is equivalent to C0.B�/ being (rationally) a Spanier–Whitehead dual to the
noncommutative algebra C �r .�/. Strictly speaking, it is the Baum–Connes conjecture as
obtained by the Dirac-dual Dirac method, since just having the map �˝Q an isomorphism
might not imply the existence of the K-homology duality class.

In many cases where the Baum–Connes conjecture has been proved, use is made of
non-positive curvature. This often provides what is needed to define a K-homology duality
class which will give an inverse to the Baum–Connes map. The duality we study in the present
paper is based on hyperbolic dynamics. On the other hand, in [7], and many other works, injec-
tivity is proved for hyperbolic groups. Indeed, there is a relation between the duality obtained
here from hyperbolic dynamics and that from hyperbolic groups. Results in this direction have
been worked out in the thesis of Emerson and the paper by Higson, [14]. We will state a result in
a special case.

4.4. Theorem ([1,11,14,36]). Let � be a Fuchsian group with such thatD=� is a com-
pact, oriented surface, and suppose that the boundary of � is S1. Then one has the following
commutative diagram:

KK�.C0.D/;C/
�

//

à
��

KK.C; C �r .�//

i�
��

KK1.C.à�/ Ì �;C/
E˝C.à�/Ì�

// KK.C; C.à�/ Ì �/,

where E 2 KK1.C.à�/ Ì �/˝ C.à�/ Ì �/;C/ is the element constructed in [11].

Although the lower map was motivated by the dynamical duality, the explicit connection
is not apparent. In the case at hand, and possibly in much more generality, it follows from [36]
or [1], that there is a Smale space .X; '/ whose Ruelle algebras are stably isomorphic to the

Brought to you by | University of Glasgow Library
Authenticated

Download Date | 8/31/17 11:57 AM



Kaminker, Putnam and Whittaker, K-theoretic duality for hyperbolic dynamical systems 279

crossed product C.à�/ Ì � . This can be verified by using the Kirchberg–Phillips Theorem and
computing the K-theory groups. What is not yet known is whether there are naturally defined
isomorphisms for the vertical arrows making the diagram below commutative:

KK1.C.à�/ Ì �;C/ //

Š

��

KK.C; C.à�/ Ì �/

Š

��

KK1.RU .X; '; P /;C/ // KK.C; RS .X; ';Q//.

Note that, once an isomorphism is chosen for the left arrow, then there is a corresponding one
defined for the right, but at present there is no geometrical way to obtain them.

We note that S. Gorokhovsky, in his thesis, showed that Paschke duality also fits in the
present setting. Indeed, the Paschke dual of a C �-algebra A is a Spanier–Whitehead dual in the
sense described here.

5. The K-theory duality class

We give a description of the duality class ı in KK.S ; RS .X; ';Q/˝RU .X; '; P // for
the Ruelle algebras. Let P and Q be '-invariant sets of periodic points with P \Q D ;.

Before we begin with the technical details, let us explain the underlying idea of the
construction. Consider the product groupoid Gs.X; ';Q/ �Gu.X; '; P / which is equiva-
lent to the groupoid Gh.X; '/ in the sense of Muhly, Renault and Williams [19]. Since the
groupoid Gh.X; '/ is an étale groupoid with compact unit space, namely X itself, its groupoid
C �-algebra,H.X; '/, is unital. Thus,K0.H.X; '// has a canonical element determined by the
class of the identity. The above equivalence of groupoids implies that S.X; ';Q/˝U.X; '; P /
is Morita equivalent to H.X; '/ and we construct a projection in S.X; ';Q/˝ U.X; '; P /
corresponding to the class of the identity in H.X; '/. For details regarding the Morita equiva-
lence above see [25].

5.1. Definition. Suppose F D ¹f1;f2; : : : ; fKº are continuous, non-negative functions
onX andG D ¹g1; : : : ; gKº is a subset ofXh.P;Q/ D Xs.P / \Xu.Q/. For 0 < " � "0X=2,
we say that .F ; G/ is an "-partition of X if

(1) the squares of the functions in F form a partition of unity in C.X/; that is,

KX
kD1

f 2k D 1;

(2) the elements of G are all distinct,

(3) the support of fk is contained in B.gk; "=2/, for each 1 � k � K.

5.2. Lemma. There exists .F ; G/, an "0X=2-partition of X such that

.F ı '�1; '.G// D .¹fk ı '
�1
j 1 � k � Kº; ¹'.gk/ j 1 � k � Kº/

is also an "0X=2-partition of X . Moreover, G can be chosen so that G \ '.G/ D ;.
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Proof. Choose "0X=2 > "
0 > 0 small enough that, for any x in X ,

'.B.x; "0=2// � B.'.x/; "0X=4/:

Let Ux D B.x; "0=4/ so that ¹Uxºx2X covers X . Since X is compact, there is a finite sub-
cover, say ¹UkºKkD1. Now a partition of unity subordinate to ¹UkºKkD1 exists [3] and we define
F D ¹f1; f2; : : : ; fKº to be the square roots of these functions. Since Xh.P;Q/ is dense, we
may choose points gk in Xh.P;Q/ to be within "0=4 from the center of each ball Uk . Now
the support of each function in F is still contained in a ball of radius "0=2. Therefore, we have
an "0X=2-partition .F ; G/ such that .F ı '�1; '.G// is also an "0X=2-partition.

Now, for given 0 < " � "0X=2, let .F ; G/ be an "-partition and define a function pG
on Gs.X; ';Q/ �Gu.X; '; P / by setting

pG..x; x
0/; .y; y0// D fi .Œx; y�/fj .Œx

0; y0�/;

for .x; x0/ 2 Gs.X; ';Q/; .y; y0/ 2 Gu.X; '; P /, if, for some i; j ,

x 2 Xu.gi ; "/; y 2 X
s.gi ; "/; x

0
2 Xu.gj ; "/; y

0
2 Xs.gj ; "/; Œx; y� D Œx

0; y0�

and to be zero otherwise. Notice that if a pair i; j exist for a given ..x; x0/; .y; y0//, then it is
unique, since gi D Œy; x� and gj D Œy0; x0�.

5.3. Lemma. Let 0 < " � "0X=2 and let .F ; G/ be an "-partition. Then the function pG
is in S.X; ';Q/˝ U.X; '; P /.

Proof. Let us fix a pair i; j and suppose there exist elements .x; x0/ 2 Gs.X; ';Q/ and
.y; y0/ 2 Gu.X; '; P / such that

x 2 Xu.gi ; "/; y 2 X
s.gi ; "/; x

0
2 Xu.gj ; "/; y

0
2 Xs.gj ; "/; Œx; y� D Œx

0; y0�:

We note that Œgi ; gj � is defined and is stably equivalent to gi and unstably equivalent to gj .
Since d.gi ; gj / < "X , it follows that d.gi ; Œgi ; gj �/ < "X and d.gj ; Œgi ; gj �/ < "X . So we
deduce from Lemma 3.1 there are local homeomorphisms

hs W Xu.gi ; "/! Xu.Œgi ; gj �; ı/ � X
u.Œgi ; gj �; "X=2/

and
hu W Xs.gj ; "/! Xs.Œgi ; gj �; ı

0/ � Xs.Œgi ; gj �; "X=2/

defined by
hs.x/ D Œx; Œgi ; gj �� D Œx; gj �;

hu.y0/ D ŒŒgi ; gj �; y
0� D Œgi ; y

0�;

for some 0 < ı; ı0 < "X=2. It is immediate that if we let x0 D hs.x/ and y D hu.y0/, then the
points satisfy the conditions above. On the other hand, if ..x; x0/; .y; y0// satisfy the conditions,
then we have

x0 D ŒŒx0; y0�; x0� D ŒŒx; y�; x0� D Œx; x0� D Œx; gj � D h
s.x/;

y D Œy; Œx; y�� D Œy; Œx0; y0�� D Œy; y0� D Œgi ; y
0� D hu.y0/:

This shows that points satisfying the conditions are realized by local homeomorphisms, one on
the local unstable set of gi and one on the local stable set of gj .
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Set "0 > 0. Consider the function on Xu.gi ; "/ �Xs.gj ; "/ sending the element .x; y0/
to fi .Œx; y�/fj .Œx0; y0�/. It is clearly a continuous function of compact support so that it can be
uniformly approximated within "0 by a function of the form

Ki;jX
kD1

ai;j;k.x; x
0/bi;j;k.y; y

0/;

where, for each fixed k, we have ai;j;k in Cc.Gs.X; ';Q// and bi;j;k in Cc.Gu.X; '; P //.
If there exists no ..x; x0/; .y; y0// for a fixed i; j , we define the above sum to be zero. Now it
follows that X

i;j

Ki;jX
kD1

ai;j;k ˝ bi;j;k

is within "0 of pG in norm. This completes the proof.

In the sequel, it will be convenient to have a description of the operator pG on the Hilbert
space `2.Xh.P;Q//˝`2.Xh.P;Q//, in terms of our usual basis, ¹ıw˝ız jw; z 2Xh.P;Q/º.
We also introduce a standard convention that the bracket map returns the empty set when the
bracket of two points is undefined. Of course, any operator applied to the Dirac delta function
of the empty set will return zero and we declare that any function of the empty set is also zero.
This convention will simplify many of the upcoming formulations.

5.4. Lemma. Let 0 < " � "0X=2 and let .F ; G/ be an "-partition. Suppose w; z are
in Xh.P;Q/. Then we have

pG.ıw ˝ ız/ D fk.Œw; z�/

KX
iD1

fi .Œw; z�/ıŒw;gi � ˝ ıŒgi ;z�

if there exists a 1 � k � K such that w 2 Xu.gk; "/, z 2 Xs.gk; "/ and is zero if there is no
such k. (If the k exists, it is unique, for given w; z. The expression on the right makes sense
using our standard convention.)

Proof. For any x; y in Xh.P;Q/, we compute

.pG.ıw ˝ ız//.x; y/ D
X

x02Xh.x/

X
y02Xh.y/

pG..x; x
0/; .y; y0//ıw.x

0/ız.y
0/

D pG..x; w/; .y; z//

D fi .Œx; y�/fk.Œw; z�/;

provided

x 2 Xu.gi ; "/; y 2 X
s.gi ; "/; w 2 X

u.gk; "/; z 2 X
s.gk; "/; Œx; y� D Œw; z�

and zero otherwise. If there is no k such that w 2 Xu.gk; "/; z 2 Xs.gk; "/, then the conclu-
sion holds. Let us continue under the assumption that there is such a k (which must be unique,
since Œz; w� D gk and the bracket map is (locally) unique in a Smale space). If, for some i ,
Œw; z� is not in the support of fi , then for any x; y as above for which Œx; y� D Œw; z�, we have

fi .Œx; y�/ D fi .Œw; z�/ D 0:
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On the other hand, if Œw; z� is in the support of fi , for some i , then

x D Œx; gi � D ŒŒx; y�; gi � D ŒŒw; z�; gi � D Œw; gi �;

y D Œgi ; y� D Œgi ; Œx; y�� D Œgi ; Œw; z�� D Œgi ; z�:

That is, for a given i , the choice of x; y is unique. For each such i , we have

.pG.ıw ˝ ız//.Œw; gi �; Œgi ; z�/ D fi .Œw; z�/fk.Œw; z�/;

and the left hand side is zero for all other values of x; y. The conclusion follows.

5.5. Lemma. Let 0 < " � "0X=2. If .F ; G/ is an "-partition, then pG is a projection.
If .F ı '�1; '.G// is also an "-partition, then

.u˝ u/.pG/.u
�
˝ u�/ D p'.G/:

Proof. To show that pG is a projection we use Lemma 5.4 to compute .pG/2.ıw ˝ ız/.
First of all, we have

pG.ıw ˝ ız/ D fk.Œw; z�/

KX
iD1

fi .Œw; z�/ıŒw;gi � ˝ ıŒgi ;z�

if w 2 Xu.gk; "/; z 2 Xs.gk; "/ and zero otherwise. We apply pG again, taking it through the
sum and looking at each term individually. That is, for fixed 1 � i � K, we must consider, for
what l is Œw; gi � in Xu.gl ; "/ and Œgi ; z� in Xs.gl ; "/. Since Œw; gi � is clearly in Xu.gi /, this
can only happen for l D i . Using this, we obtain

.pG/
2.ıw ˝ ız/ D fk.Œw; z�/

KX
iD1

fi .Œw; z�/pGıŒw;gi � ˝ ıŒgi ;z�

D fk.Œw; z�/

KX
iD1

fi .Œw; z�/fi .Œw; z�/

�

KX
jD1

fj .ŒŒw; gi �; Œgi ; z��/ıŒŒw;gi �;gj � ˝ ıŒgj ;Œgi ;z��

D fk.Œw; z�/

KX
iD1

fi .Œw; z�/
2
KX
jD1

fj .Œw; z�/ıŒw;gj � ˝ ıŒgj ;z�

D fk.Œw; z�/

KX
jD1

fj .Œw; z�/ıŒw;gj � ˝ ıŒgj ;z�

D pG.ıw ˝ ız/:

The second part of the proof is a computation and is omitted.

From Lemma 5.2, we may find F D ¹f1; : : : ; fKº, G D ¹g1; : : : ; gKº such that .F ; G/
and .F ı '�1; '.G// are both "0X=2-partitions of X with G \ '.G/ D ;. Since Xh.P;Q/
contains no periodic points, we know that neither doesG. By Lemmas 5.3 and 5.5, we have that
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both pG and p'.G/ are projections in S.X; ';Q/˝ U.X; '; P /. For each 0 � s � 1, consider
the collection

Fs D ¹.1 � s/
1=2f1; : : : ; .1 � s/

1=2fK ; s
1=2f1 ı '

�1; : : : ; s1=2fK ı '
�1
º

together with the set of points

Gs D ¹g1; : : : ; gK ; '.g1/; : : : ; '.gK/º:

Clearly, .Fs; Gs/ is an "0X=2-partition, for all 0 � s � 1. The important features of pGs
are

(i) pGs
is a path of projections in S.X; ';Q/˝ U.X; '; P /,

(ii) pGs
arises from the "0X -partition .Fs; Gs/, for all 0 � s � 1,

(iii) pG0
D pG and

(iv) pG1
D .u˝ u/pG.u

� ˝ u�/ D p'.G/.

Therefore pG and p'.G/ are homotopic projections in S.X; ';Q/˝ U.X; '; P /.
As pG and p'.G/ are homotopic, there is a partial isometry v in S.X; ';Q/˝U.X; '; P /

with initial projection v�v D pG and final projection vv� D p'.G/. By Lemma 5.5 we have
that .u˝u/pG.u�˝u�/ D p'.G/ and it is easy to check that the operator % D .u˝u/pGv� has
the property %�% D %%� D p'.G/. Note that the operator % is in RS .X; ';Q/˝RU .X; '; P /
but not in S.X; ';Q/˝ U.X; '; P / since u˝ u is in the former but not the latter.

We are now ready to define a �-homomorphism ı W S ! RS .X; ';Q/˝RU .X; '; P /.
To do this, it suffices to define a partial isometry V in RS .X; ';Q/˝RU .X; '; P / with the
same initial and final projection, V �V D V V � is a projection. Then sending z � 1 to V � V �V
extends uniquely to such a map. (To see this, we simply note that V C .1 � V �V / is a unitary
in the unitization of the range. So there is a unique �-homomorphism mapping z inC.S1/ to V ,
whose restriction to S Š C �.z � 1/ is as claimed.) Since % in RS .X; ';Q/˝RU .X; '; P /
has the property that %�% D %%� D p'.G/, we obtain the required �-homomorphism, which
we denote by ı.

5.6. Definition. The class ı in KK.S ; RS .X; ';Q/˝RU .X; '; P // is defined by the
�-homomorphism ı from S to RS .X; ';Q/˝RU .X; '; P / which is uniquely determined
by ı.z � 1/ D % � %�%, where

% D .u˝ u/pGv
�:

6. The K-homology duality class

In this section, for the K-homology duality class we construct an extension of the tensor
product RS .X; ';Q/˝RU .X; '; P /.

Recall that H D `2.Xh.P;Q//. From Section 3, we have representations of S.X; ';Q/,
U.X; '; P /, RS .X; ';Q/ and RU .X; '; P / as bounded operators on H .

The first observation is that, since these algebras are represented on the same Hilbert
space, we can consider how operators coming from S.X; ';Q/ and U.X; '; P / interact on H .
The following three lemmas elucidate these interactions. We have used a hyperbolic toral auto-
morphism to illustrated the main concepts in Lemma 6.1 and Lemma 6.3 in Figures 3 and 4,
respectively.
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For these three lemmas let us fix the following elements. Assume that a in S.X; ';Q/
and b in U.X; '; P / are both supported on basic sets; that is, for given points v;w 2 Xu.Q/
and v0; w0 2 Xs.P /, let the support of a be in V s.v; w; hs; ı/ and the support of b be
in V u.v0; w0; hu; ı0/. Note that

Source.a/ � Xu.w; ı/ and Range.a/ � Xu.v; ı/;

and
Source.b/ � Xs.w0; ı0/ and Range.b/ � Xs.v0; ı0/:

See Lemma 3.3 for further details.

6.1. Lemma ([25]). If a is in S.X; ';Q/ and b is in U.X; '; P /, then ab and ba are
compact operators on H .

Proof. We compute, for x in Xh.P;Q/,

a � b ıx D a.h
s
ı hu.x/; hu.x//b.hu.x/; x/ıhsıhu.x/

if x 2Xs.w0; ı0/, hu.x/ 2Xs.v0; ı0/, hu.x/ 2Xu.w; ı/ and hs ıhu.x/ 2Xu.v; ı/. Otherwise
the product is zero. In particular, the product is zero unless Range.b/ \ Source.a/ is non-zero.
However, uniqueness of the bracket implies that a local stable set and a local unstable set have
non-trivial intersection at one point, at most. Whence, the product is zero unless Xs.v0; ı0/
and Xu.w; ı/ intersect and if they do the product is a rank one operator. Now finite sums
of operators with supports as above form a dense set and therefore we obtain the compact
operators by taking limits. Taking adjoints gives that b � a is also compact.

.0; 0/

.0; 1/

.1; 0/

.1; 1/

Xu.w; ı/

Xu.v; ı/

hs

w

v

hu.x/

hs ı hu.x/

Xs.v0; ı0/

Xs.w0; ı0/
hu

v0

w0

x

Figure 3. Hyperbolic toral automorphism: ab is a compact operator.

6.2. Lemma. If a is in S.X; ';Q/ and b is in U.X; '; P /, then

lim
n!C1

˛�ns .a/ � b D 0 and lim
n!C1

b � ˛�ns .a/ D 0:
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Proof. We first aim to show that there exists an N in N such that, for all n � N , we
have ˛�n.a/ � b D 0. Indeed, since

˛�ns .a/ ız D a.h
s
ı 'n.z/; 'n.z//ı'�nıhsı'n.z/;

we see that the support of ˛�ns .a/ is V s.'�n.v/; '�n.w/; '�n ı hs ı '�n; ��nı/. It follows
that Source.˛�ns .a// � Xu.'�n.w/; ��nı/ and Range.˛�ns .a// � Xu.'�n.v/; ��nı/. That
is, the support of a is being exponentially contracted by repeated application of ˛s . Moreover,
we compute

˛�ns .a/ � b ız D a.h
s
ı 'n ı hu.z/; 'n ı hu.z//b.hu.z/; z/ı'�nıhsı'nıhu.z/

if z 2 Xs.w0; ı0/, hu.z/ 2 Xs.v0; ı0/, and hu.z/ 2 Xu.'�n.w/; ��nı/. It is zero otherwise.
Now set " > 0 small enough thatXu.Q; "/ \Xs.v0; ı0/ D ;, we know this is possible since v0

is in Xs.P / while no point in Q is in Xs.P / since P and Q are mutually disjoint and
'-invariant. Given " > 0, we can find an N in N, such that Xu.'�n.w/; ��nı/ � Xu.Q; "/
for all n � N. This implies that, for all n � N, we have ˛�n.a/ � b D 0. Now the general result
follows since elements of S.X; ';Q/ and U.X; '; P / are norm limits of linear combinations
of elements with the above form. A similar argument gives the result for b � ˛�n.a/.

6.3. Lemma ([17, 25]). For any a in S.X; ';Q/ and b in U.X; '; P /, we have

lim
n!C1

k˛ns .a/b � b˛
n
s .a/k D 0;

lim
n!C1

k˛ns .a/˛
�n
u .b/ � ˛�nu .b/˛ns .a/k D 0:

Proof. We shall prove the second equality only, from which the first is easily deduced.
Set " > 0. We compute

˛ns .a/ � ˛
�n
u .b/ ız D a.h

s
ı '�2n ı hu ı 'n.z/; '�2n ı hu ı 'n.z//

� b.hu ı 'n.z/; 'n.z//ı'nıhsı'�2nıhuı'n.z/;

˛�nu .b/ � ˛ns .a/ ız D b.h
u
ı '2n ı hs ı '�n.z/; '2n ı hs ı '�n.z//

� a.hs ı '�n.z/; '�n.z//ı'�nıhuı'2nıhsı'�n.z/:

Moreover, [25, Lemma 2.2] (with hu D 
1 and hs D 
2) states that, there exists an M such
that, for all n �M , we have

'n ı hs ı '�2n ı hu ı 'n.z/ D '�n ı hu ı '2n ı hs ı '�n.z/:

Now, suppose we are given "1 > 0 and z in Xh.P;Q/ such that '�n.z/ 2 Source.a/
and 'n.z/ 2 Source.b/. We can set N �M sufficiently large that, for all n � N , we may
define the following points:

x1 D z;

x2 D '
n
ı hs ı '�n.z/;

x3 D '
n
ı hs ı '�2n ı hu ı 'n.z/ D '�n ı hu ı '2n ı hs ı '�n.z/;

x4 D '
�n
ı hu ı 'n.z/
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.0; 0/

.0; 1/

.1; 0/

.1; 1/

Source.a/

Range.a/

hs

Source.b/

Range.b/hu

'�n.x1/

'�n.x4/

'�n.x2/

'�n.x3/

'n.x1/

'n.x2/

'n.x4/

'n.x3/

.0; 0/

.0; 1/

.1; 0/

.1; 1/

Source.˛ns .a//

Range.˛ns .a//

Source.˛�nu .b//

Range.˛�nu .b//

x1

x4

x3
x2

Figure 4. The points x1; x2; x3; x4 for a hyperbolic toral automorphism.

such that
x2 2 X

s.x1; "1/; x4 2 X
u.x1; "1/;

x1 2 X
s.x2; "1/; x3 2 X

u.x2; "1/;

x4 2 X
s.x3; "1/; x2 2 X

u.x3; "1/;

x3 2 X
s.x4; "1/; x1 2 X

u.x4; "1/:

We have illustrated the relationship between these points for the hyperbolic toral automorphism
in Figure 4. Since a and b are taking basis vectors to basis vectors, we have

k˛ns .a/ � ˛
�n
u .b/ � ˛�nu .b/ � ˛ns .a/k

D sup
z
ja.'�n.x3/; '

�n.x4//b.'
n.x4/; '

n.x1// � b.'
n.x3/; '

n.x2//a.'
�n.x2/; '

�n.x1//j:

Now a and b are uniformly continuous so we may choose N large enough that the above
condition is satisfied (the two versions of x3 are equal) and so that "1 is sufficiently small that
we have, for all n � N ,

ja.'�n.x3/; '
�n.x4// � a.'

�n.x2/; '
�n.x1//j <

"

2kbk
;

jb.'n.x4/; '
n.x1// � b.'

n.x3/; '
n.x2//j <

"

2kak
:

Now we compute

ja.'�n.x3/; '
�n.x4//b.'

n.x4/; '
n.x1// � a.'

�n.x2/; '
�n.x1//b.'

n.x3/; '
n.x2//j

D ja.'�n.x3/; '
�n.x4//b.'

n.x4/; '
n.x1// � a.'

�n.x3/; '
�n.x4//b.'

n.x3/; '
n.x2//

C a.'�n.x3/; '
�n.x4//b.'

n.x3/; '
n.x2// � a.'

�n.x2/; '
�n.x1//b.'

n.x3/; '
n.x2//j

� ja.'�n.x3/; '
�n.x4//jjb.'

n.x4/; '
n.x1// � b.'

n.x3/; '
n.x2//j

C ja.'�n.x3/; '
�n.x4// � a.'

�n.x2/; '
�n.x1//jjb.'

n.x3/; '
n.x2//j

<
kak"

2kak
C
kbk"

2kbk
D ":
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Therefore, we have shown that

lim
n!1

k˛ns .a/˛
�n
u .b/ � ˛�nu .b/˛ns .a/k D 0

which completes the proof.

This completes the interactions of S.X; ';Q/ and U.X; '; P / on H . Our goal is to
produce an extension of RS .X; ';Q/˝RU .X; '; P /. To accomplish this we shall represent
each of these C �-algebras as operators on a Hilbert space such that they commute modulo
compact operators. Consider the Hilbert space

H D H ˝ `2.Z/ D
M
n2Z

H :

We shall define representations of RS .X; ';Q/ and RU .X; '; P / as bounded operators on H

and show that the interaction of these algebras naturally gives rise to an extension of the tensor
product RS .X; ';Q/˝RU .X; '; P / by the compact operators of H .

Recall that for ıx in H we have the unitary operator uıx D ı'.x/ and ˛s.a/ D uau�

and ˛u.b/ D ubu�. The bilateral shift on `2.Z/ will be denoted by B and is the operator given
by Bın D ın�1. We note that from this point forwards we will always use ım and ın as basis
vectors of `2.Z/ and ıx , ıy and ız as basis vectors of H D `2.Xh.P;Q//. Finally, let us also
define the operator

(6.1) U D
M
n2Z

un D

0BBBBBBB@

: : :

u�1

u0

u1

: : :

1CCCCCCCA
2 B.H ˝ `2.Z//:

Define �s W RS .X; ';Q/! B.H ˝ `2.Z//, for a in S.X; ';Q/, via

�s.a/ D
M
n2Z

˛ns .a/ D U.a˝ 1/U�; �s.u/ D 1˝ B:

Also define �u W RU .X; '; P /! B.H ˝ `2.Z//, for b in U.X; '; P /, via

�u.b/ D b ˝ 1; �u.u/ D u˝ B
�:

The reader is invited to check that these are covariant representations of the Ruelle algebras.
We shall now consider the interactions of S.X; ';Q/, U.X; '; P /, RS .X; ';Q/, and

RU .X; '; P / as operators on H .

6.4. Lemma. For any f in RS .X; ';Q/ and g in RU .X; '; P /, we have

Œ�s.f /; �u.g/� D �s.f /�u.g/ � �u.g/�s.f /

is a compact operator on H .

Proof. From Lemma 6.1 we know that on each coordinate of H , for a in S.X; ';Q/
and b in U.X; '; P /, we have �s.a/�u.b/ and �u.b/�s.a/ are compact operators. Denote
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the nth coordinate of
H D

M
n2Z

H

by Hn and set " > 0. Lemma 6.2 implies that there exists an N1 such that for n � N1 we have
that both k˛�n.a/bk < "=2 and kb˛�n.a/k < "=2. Therefore,

k.�s.a/�u.b/ � �u.b/�s.a//jH�n
k D k˛�n.a/b � b˛�n.a/k

� k˛�n.a/bk C kb˛�n.a/k < ":

Moreover, Lemma 6.3 implies that there exists an N2 such that for n � N2 we have

k.�s.a/�u.b/ � �u.b/�s.a//jHn
k D k˛n.a/b � b˛n.a/k < ":

Therefore, for a 2 S.X; ';Q/ and b 2 U.X; '; P / we have Œ�s.a/; �u.b/� is compact. More-
over, computations show that Œ�s.a/; �u.u/�D 0, Œ�u.b/; �s.u/�D 0 and Œ�u.u/; �s.u/�D 0.
The conclusion follows.

The proof of the next lemma is omitted other than to note that the result follows immedi-
ately from the irreducibility of the Smale space itself.

6.5. Lemma. If a is in S.X; ';Q/ and b is in U.X; '; P /, then both �s.a/�u.b/ and
�u.b/�s.a/ are never compact operators on H unless either a or b is the zero operator.

Let E be the C �-algebra generated by �s.RS .X; ';Q//, �u.RU .X; '; P //, and K.H /.
Note that neither �s.RS .X; ';Q// or �u.RU .X; '; P // contain any compact operators on H

other than the zero operator. Lemma 6.4 implies that �s.RS .X; ';Q// and �u.RU .X; '; P //
commute modulo the compact operators K.H /. From this we have that

E=K.H / Š RS .X; ';Q/˝RU .X; '; P /:

Therefore, we obtain an extension � in KK1.RS .X; ';Q/˝RU .X; '; P /;C/.

6.6. Definition. The class � in KK1.RS .X; ';Q/˝RU .X; '; P /;C/ is represented
by the extension

0!K.H /! E ! RS .X; ';Q/˝RU .X; '; P /! 0:

7. Proof of the main result

We give a proof of the main result, Theorem 1.1. We focus our attention on showing that

ı ˝RU .X;';P / � D 1RS .X;';Q/

and note that an analogous argument shows that ı ˝RS .X;';Q/ � D �1RU .X;';P /. The proof
is divided into roughly three parts. In the first we describe the element ı ˝RU .X;';P / � as an
extension. In the second part, we apply a type of untwisting to this extension. Finally, we show
that, up to unitary equivalence and Bott periodicity, the class we have obtained is represented
by 1RS .X;';Q/.
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7.1. Lemma. The class of ı ˝RU .X;';P / � in KK1.RS .X; ';Q/˝S ; RS .X; ';Q//

is represented by an extension

0 ����! RS .X; ';Q/˝K.H / ����! E 0
��ı�

0

����! RS .X; ';Q/˝S ����! 0:

Proof. Recall that the expanded product is

ı ˝RU .X;';P / � D ��.�S �RS .X;';Q/.ı/˝ �
RS .X;';Q/��.�//:

The Kasparov product is obtained by composing the �-homomorphism �S �RS .X;';Q/.ı/,
which is given by

ı ˝ 1 W S ˝RS .X; ';Q/! RS .X; ';Q/˝RU .X; '; P /˝RS .X; ';Q/;

and the representation

1˝ �u ˝ �s W R
S .X; ';Q/˝RU .X; '; P /˝RS .X; ';Q/! B.H ˝H ˝ `2.Z//

defining the extension �R
S .X;';Q/��.�/, given by

0! RS .X; ';Q/˝K.H /! RS .X; ';Q/˝ E

! RS .X; ';Q/˝RU .X; '; P /˝RS .X; ';Q/! 0:

Whence, the class ı ˝RU .X;';P / � is given by the extension

0! RS .X; ';Q/˝K.H /! E 0 ! RS .X; ';Q/˝S ! 0;

where E 0 is the C �-algebra generated by RS .X; ';Q/˝K.H / and the image of the map

.1˝ �u ˝ �s/ ı .ı ˝ 1/ ı �� W R
S .X; ';Q/˝S ! B.H ˝H ˝ `2.Z//:

We note that the image of a � uk ˝ z � 1 completely determines the map

.1˝ �u ˝ �s/ ı .ı ˝ 1/ ı �� W R
S .X; ';Q/˝S ! B.H ˝H ˝ `2.Z//:

Recall that both pG and v are elements of RS .X; ';Q/˝RU .X; '; P / (see Lemma 5.3).
Moreover, let us extend the element U, defined by (6.1), to H ˝H ˝ `2.Z/ via

U D
M
n2Z

un ˝ un D

0BBBBBBB@

: : :

u�1 ˝ u�1

u0 ˝ u0

u1 ˝ u1

: : :

1CCCCCCCA
2 B.H ˝H ˝ `2.Z//:

Now we describe the map

.1˝ �u ˝ �s/ ı .ı ˝ 1/ ı �� W R
S .X; ';Q/˝S ! B.H ˝H ˝ `2.Z//

on generators:

1˝ z 7! ..u˝ u/pGv
�/˝ 1;

a˝ 1 7! Œ..u˝ u/pG.u˝ u/
�/˝ 1/�ŒU.1˝ a˝ 1/U��;

u˝ 1 7! ..u˝ u/pG.u˝ u/
�/˝ B:
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Now that we have computed the product ı ˝RU .X;';P / � and established the notation in
the sequel, we begin the untwisting step. In particular, we shall define an automorphism

� W RS .X; ';Q/˝S ! RS .X; ';Q/˝S

which is homotopic to 1RS .X;';Q/˝S in KK.RS .X; ';Q/˝S ; RS .X; ';Q/˝S / and there-
fore taking the intersection product of ı ˝RU .X;';P / � with � does not change the class.
Indeed, for a 2 S.X; ';Q/, u implementing the action ˛s , and f .t/ 2 S D C0.0; 1/, define

�.a � uk ˝ f .t// D a � uk ˝ e2�iktf .t/:

We note that this map is given on generators by

1˝ z 7! 1˝ z;

a˝ 1 7! a˝ 1;

u˝ 1 7! u˝ z:

At this point we need to accomplish two things. First, we must show that � is homotopic to
1RS .X;';Q/˝S and second, we must compute the product

� ˝.RS .X;';Q//˝S .ı ˝RU .X;';P / �/:

7.2. Lemma. There exists an automorphism

� W RS .X; ';Q/˝S ! RS .X; ';Q/˝S

given by
�.a � uk ˝ f .t// D a � uk ˝ e2�iktf .t/:

Moreover, � is the identity in KK.RS .X; ';Q/˝S ; RS .X; ';Q/˝S /.

Proof. We will show a homotopy from � to the identity. Indeed, for r 2 Œ0; 1� define

�r.a � u
k
˝ f .t// D a � uk ˝ e2�ikrtf .t/:

We want to show that �r is a �-automorphism for every r in Œ0; 1� and t in .0; 1/. To see that
covariance is maintained, for all r in Œ0; 1� and t in .0; 1/, we compute

�r.u˝ 1/�r.a˝ f .t//�r.u˝ 1/
�
D .u˝ e2�irt /.a˝ f .t//.u� ˝ e�2�irt /

D uau� ˝ f .t/

D ˛s.a/˝ f .t/

D �r.˛s.a/˝ f .t//:

Therefore, the map �r satisfies the covariance conditions for all r 2 Œ0; 1� and t in .0; 1/, so
extends to a �-homomorphism on RS .X; ';Q/˝S . We can explicitly write a formula for
the inverse of �r on generators so that �r is actually a �-automorphism. Indeed, �r is clearly
faithful since RS .X; ';Q/˝S is simple and � is obviously onto. Now we must show that
each map

a � uk ˝ f .t/ 7! �r.a � u
k
˝ f .t// D a � uk ˝ e2�iktrf .t/
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is continuous. Let " > 0, and set ı D "=.kM/whereM is the maximum value of ka�uk˝f .t/k
for t 2 .0; 1/. For jr � r 0j < ı we compute

k�r.a � u
k
˝ f .t// ��r 0.a � u

k
˝ f .t//k

D ka � uk ˝ e2�iktrf .t/ � a � uk ˝ e2�iktr
0

f .t/k

D ka � uk ˝ .1 � e2�ikt.r
0�r//f .t/k

D j1 � e2�ikt.r
0�r/
jka � uk ˝ f .t/k

<
"

M
ka � uk ˝ f .t/k � ":

Finally,
�0.a � u

k
˝ f .t// D a � uk ˝ e2�ik0tf .t/ D a � uk ˝ f .t/;

�1.a � u
k
˝ f .t// D a � uk ˝ e2�ik1tf .t/ D �.a � uk ˝ f .t//;

so that�0 D Id and�1 D �. Therefore, the automorphism� is homotopic to 1RS .X;';Q/˝S

in KK.RS .X; ';Q/˝S ; RS .X; ';Q/˝S /.

7.3. Lemma. The class of

� ˝RS .X;';Q/˝S .ı ˝RU .X;';P / �/

in KK1.RS .X; ';Q/˝S ; RS .X; ';Q// is represented by an extension

0! RS .X; ';Q/˝K.H /! E 00 ! RS .X; ';Q/˝S ! 0:

Furthermore, this extension represents the same class in KK-theory as ı ˝RU .X;';P / �.

The proof is analogous to the proof of Lemma 7.1. However, we note that E 00 is the
C �-algebra generated by RS .X; ';Q/˝K.H / and the image of the map

.1˝ �u ˝ �s/ ı .ı ˝ 1/ ı �� ı� W R
S .X; ';Q/˝S ! B.H ˝H ˝ `2.Z//:

Furthermore, the image of a � uk ˝ z � 1 completely determines the above map, which is
described on generators by

1˝ z 7! ..u˝ u/pGv
�/˝ 1;(7.1)

a˝ 1 7! Œ..u˝ u/pG.u˝ u/
�/˝ 1/�ŒU.1˝ a˝ 1/U��;(7.2)

u˝ 1 7! ..u˝ u/pGv
�/˝ 1:(7.3)

To complete the proof we must show that the class

� ˝RS .X;';Q/˝S .ı ˝RU .X;';P / �/

in KK1.RS .X; ';Q/˝S ; RS .X; ';Q// is equivalent to �R
S .X;';Q/.T0/. Once we have

accomplished this then Bott periodicity implies the result, see Section 4.
We begin with a technical construction to produce a unitary operator. To this end, suppose

that .F ; G/ is an "0X -partition of X , as in Section 5.6. We define a vector, which we denote �G
in H D `2.Xh.P;Q// which takes the value .#G/�1=2 on the set G and zero elsewhere. Note
that �G is a unit vector. We let qG denote the rank one projection onto the span of �G .
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We define WG by setting, for all y in Xh.P;Q/,

WG.ıy ˝ �G/ D
X
k

fk.y/ıŒy;gk� ˝ ıŒgk ;y�;

where the sum is taken over all k such that y is in B.gk; "0X=2/. Recall that in an "0X -partition
of X the support of fk is contained in B.gk; "0X=2/. Using our standard convention (the
bracket returns zero if it is not defined), we will simply write the sum above as being over
all k D 1; 2; : : : ; K since fk.y/ will be zero if Œy; gk� and Œgk; y� fail to be defined. We also
set WG.ız ˝ �/ D 0, for � in H orthogonal to �G .

It is easy to verify that

W �G.ıy ˝ ız/ D

´
fk.Œy; z�/ıŒy;z� ˝ �G if y 2 Xu.gk; "0X=2/; z 2 X

s.gk; "
0
X=2/;

0 otherwise;

for all y; z in Xh.P;Q/. The following lemma summarizes the basic properties of WG .

7.4. Lemma. Suppose that .F ; G/ is an "0X -partition ofX andWG is defined as above.
Then:

(1) W �GWG D 1˝ qG ,

(2) WGW �G D pG ,

(3) if .F ı '�1; '.G// is also an "0X -partition, then

.u˝ u/WG.u˝ u/
�
D W'.G/;

(4) WG.S.X; ';Q/˝K/ � S.X; ';Q/˝K .

Proof. The first three items are the result of direct computations, which we omit. For
the fourth item, let a be in S.X; ';Q/ and suppose k is any compact operator. Now

WG.a˝ k/ D WG.1˝ qG/.a˝ k/ D WG.a˝ qG/.1˝ k/;

and so it suffices to show WG.a˝ qG/ is in S.X; ';Q/˝K . The C �-algebra S.X; ';Q/
has an approximate identity consisting of continuous functions of compact support on Xu.Q/.
Moreover, such functions are spanned by elements supported on sets of the form Xu.v; "0X=2/.
So it suffices to consider a point v in Xu.Q/, a function a in S.X; ';Q/ supported on a basic
set of the form V s.v; v; hs; "0X=2/ such that aıy D a.y; y/ıy if y is in Xu.v; "0X=2/ and zero
otherwise, and prove that WG.a˝ qG/ is in S.X; ';Q/˝K .

For k, define a function bk supported on a basic set of the form V s.Œv; gk�; v; h
s; "0X=2/

by bk.y0; y/ D a.y; y/fk.y/ if d.y; gk/ < "0X and Œy; gk� D y0 and to be zero otherwise. Also
define ek to be the rank one operator which maps �G to ıŒgk ;v� and is zero on the orthogonal
complement of �G . It follows that bk is in S.X; ';Q/and a computation shows that

WG.a˝ qG/ D
X
k

bk ˝ ek 2 S.X; ';Q/˝K:

7.5. Lemma. Let a be in S.X; ';Q/ and let .F ; G/ be an "0X -partition. Then we have

lim
n!1

k.1˝ ˛ns .a//WG �WG.˛
n
s .a/˝ 1/k D 0:
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Proof. It suffices to prove the result for a function a supported in a basic set of the
form V s.v; w; hs; ı/ and further, since we are taking limits as n goes to positive infinity, we
may also assume that v and w are within "0X=2 so that hs is given by the bracket map.

We observe that both operators .1˝ ˛ns .a//WG and WG.˛ns .a/˝ 1/ are zero on the
orthogonal complement of `2.Xh.P;Q//˝C � �G . We consider y in H D `2.Xh.P;Q//

and compute

.1˝ ˛ns .a//WG.ıy ˝ �G/

D .1˝ ˛ns .a//
X
k

fk.y/ıŒy;gk� ˝ ıŒgk ;y�

D

X
k

fk.y/a.Œ'
�nŒgk; y�; v�; '

�nŒgk; y�/ıŒy;gk� ˝ ı'nŒ'�nŒgk ;y�;v�

and also

WG.˛
n
s .a/˝ 1/.ıy ˝ �G/

D WGa.Œ'
�n.y/; v�; '�n.y//ı'nŒ'�n.y/;v� ˝ �G ;

D

X
k

fk.'
nŒ'�n.y/; v�/a.Œ'�n.y/; v�; '�n.y//ıŒ'nŒ'�n.y/;v�;gk� ˝ ıŒgk ;'nŒ'�n.y/;v��:

Let " > 0 be given. LetM be an upper bound on the function jaj. We may find a constant
"1 > 0 such that jfk.y/ � fk.z/j < "=2MK, for all y; z with d.y; z/ < "1 and 1 � k � K.
In addition, we select "1 > 0 such that ja.Œy; v�; y/ � a.Œz; v�; z/j < "=2K for all y; z with z
in Xu.y; "1/. We choose N sufficiently large so that ��n"X=2 < "1 and ��n"X < "0X , for all
n � N . With n � N , holding k fixed for the moment, we make the claim that if the coefficient
in either expression above

fk.y/a.Œ'
�nŒgk; y�; v�; '

�nŒgk; y�/ or fk.'
nŒ'�n.y/; v�/a.Œ'�n.y/; v�; '�n.y//

is not zero, then we have:

(1) Œy; gk� D Œ'nŒ'�n.y/; v�; gk�,

(2) 'nŒ'�nŒgk; y�; v� D Œgk; 'nŒ'�n.y/; v��,

(3) the map sending .y; gk/ to .Œy; gk�; 'nŒ'�nŒgk; y�; v�/ is injective,

(4) '�nŒgk; y� is in Xu.'�n.y/; "1/,

(5) d.'nŒ'�n.y/; v�; y/ < "1.

If fk.y/a.Œ'�nŒgk; y�; v�; '�nŒgk; y�/ is non-zero, then fk.y/must be non-zero and this
means that y is in B.gk; "0X=2/. Moreover, from the choice of "0X , we have that Œgk; y� is in
Xu.y; "X=2/ and hence '�n.Œgk; y�/ is in Xu.'�n.y/��n"X=2/. In addition, we know that
a.Œ'�nŒgk; y�; v�; '

�nŒgk; y�/ is non-zero and this means that '�n.Œgk; y�/ is inXu.w; "0X=2/
and it follows that '�n.y/ is inXu.w; "0X=2C �

�n"X=2/. Since ��n"X < "0X < "X=2, we see
that Œ'�n.y/; v� is also defined and is in Xs.'�n.y/; "X=2/. It follows that 'nŒ'�n.y/; v� is in
Xs.y; ��n"X=2/ and also in B.gk; "0X /.

If the second expression, that is, fk.'nŒ'�n.y/; v�/a.Œ'�n.y/; v�; '�n.y//, is non-zero,
then we must have that a.Œ'�n.y/; v�; '�n.y// is non-zero and so '�n.y/ is in Xu.w; "0X=2/.
Then Œ'�n.y/; v� is in Xs.'�n.y/; "X=2/ and hence 'nŒ'�n.y/; v� is in Xs.y; ��n"X=2/.
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In addition, if the coefficient is non-zero, the fk term is non-zero and this means that this
same point is in B.gk; "0X=2/ and hence, y is in B.gk; "0X=2C �

�n"X=2/. Since ��n"X < "0X ,
it follows that Œgk; y� is in Xu.y; "X=2/.

To summarize, if either term is non-zero, then Œgk; y� is defined and is in Xu.y; "X=2/,
'�n.y/ is inXu.w; "0X / and Œ'�n.y/; v� is defined and inXs.'�n.y/; "X=2/. Parts (4) and (5)
of the claim follow at once since ��n"X=2 < "1.

For any 0 � m � n, we have

d.'m�n.y/; 'mŒ'�n.y/; x�/ � ��md.'�n.y/; Œ'�n.y/; v�/ � ��m
"X

2
�
"X

2
;

and
d.'m�n.y/; 'm�nŒgk; y�/ � �

�nCmd.y; Œgk; y�/ � �
�nCm "X

2
�
"X

2
:

From the triangle inequality, we have

d.'mŒ'�n.y/; v�; 'm�nŒgk; y�/ � "X :

This means that the bracket of these points is defined (in either order). First, taking bracket in
the order given and using the '-invariance of the bracket we have

Œ'mŒ'�n.y/; v�; 'm�nŒgk; y�� D '
mŒŒ'�n.y/; v�; '�nŒgk; y��

D 'mŒ'�n.y/; '�nŒgk; y��:

When m D n, the left hand side becomes

Œ'nŒ'�n.y/; v�; 'n�nŒgk; y�� D Œ'
nŒ'�n.y/; v�; Œgk; y�� D Œ'

nŒ'�n.y/; v�; y��

while the right hand side is

'nŒ'�n.y/; '�nŒgk; y�� D '
n.'�n.y// D y

as '�nŒgk; y� is in Xu.'�n.y/; ��n"X=2/. Now bracketing each with gk yields

Œy; gk� D ŒŒ'
nŒ'�n.y/; v�; y�; gk� D Œ'

nŒ'�n.y/; v�; gk�

and we have established part (1) of the claim.
On the other hand, if we bracket in the other order, and again use the '-invariance, we

obtain

Œ'm�nŒgk; y�; '
mŒ'�n.y/; v�� D 'mŒ'�nŒgk; y�; Œ'

�n.y/; v�� D 'mŒ'�nŒgk; y�; v�:

Setting m D n, the left hand side is

Œ'n�nŒgk; y�; '
nŒ'�n.y/; v�� D ŒŒgk; y�; '

nŒ'�n.y/; v�� D Œgk; '
nŒ'�n.y/; v�

while the right is
'nŒ'�nŒgk; y�; '

�n.y/�:

We have established the second part of the claim.
For the third part of the claim, let x D Œy; gk� and z D Œgk; 'nŒ'�n.y/; v��. We can

recover y and gk from x and z by observing that Œz; x� D gk and

Œx; z� D ŒŒy; gk�; Œgk; '
nŒ'�n.y/; v��� D Œy; 'nŒ'�n.y/; v�� D y;

since 'nŒ'�n.y/; v� is in Xs.y; "/.
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We may conclude from the first two parts of our claim that

.1˝ ˛ns .a//WG �WG.˛
n
s .a/˝ 1/.ıy ˝ �G/

D

X
k

.fk.y/a.Œ'
�nŒgk; y�; v�; '

�nŒgk; y�/

� fk.'
nŒ'�n.y/; v�/a.Œ'�n.y/; v�; '�n.y///ıŒy;gk� ˝ ıŒgk ;'nŒ'�n.y/;v��:

From part (3), we see that the vectors appearing one the right hand side of the expression
at the end of the last paragraph are pairwise orthogonal and the sums obtained for different
values of y are pairwise orthogonal. From this it follows that

k.1˝ ˛ns .a//WG �WG.˛
n
s .a/˝ 1/k

2

D sup
y2Xh.P;Q/

X
k

jfk.y/a.Œ'
�nŒgk; y�; v�; '

�nŒgk; y�/

� fk.'
nŒ'�n.y/; v�/a.Œ'�n.y/; v�; '�n.y//j2:

The estimate that, for fixed k and y,

jfk.y/a.Œ'
�nŒgk; y�; v�; '

�nŒgk; y�/ � fk.'
nŒ'�n.y/; v�/a.Œ'�n.y/; v�; '�n.y//j <

"

K

follows from the last two parts of our claim and standard techniques. This completes the proof
of the lemma.

We next define

bWG D
 

WG .1 �WGW
�
G/
1=2

�.1 �W �GWG/
1=2 W �G

!
which is a unitary operator. Moreover, it follows from part (4) of Lemma 7.4 that it is in the
multiplier algebra of S.X; ';Q/˝K .

7.6. Lemma. Let a be in S.X; ';Q/ and let .F ; G/ be an "-partition. Then we have

lim
n!C1

k..pG.1˝ ˛
n.a///˝ e1;1/bWG �bWG..˛n.a/˝ qG/˝ e1;1/k D 0:

Moreover, if .F ı '�1; '.G// is also an "0X -partition, then 1W'.G/ is also in the multiplier
algebra of the product S.X; ';Q/˝K and the analogous result holds with 1W'.G/, p'.G/,
and q'.G/.

Proof. First, notice that pG is in S˝U , while ˛n.a/ is in S . It follows from Lemma 6.3
that in the first term we have

lim
n!1

kpG.1˝ ˛
n
s .a// � .1˝ ˛

n
s .a//pGk D 0:

So it suffices to prove the result after interchanging the order of pG and 1˝ ˛ns .a/.
It follows from the fact that WGW �G D pG that the (new) first term above is

...1˝ ˛ns .a//pG/˝ e1;1/
bWG D ..1˝ ˛ns .a//˝ e1;1/.pG ˝ e1;1/bWG
D ..1˝ ˛ns .a//˝ e1;1/.WG ˝ e1;1/

D .1˝ ˛ns .a//WG ˝ e1;1:
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On the other hand, using the fact that W �GWG D 1˝ qG , the second term above is

bWG..˛ns .a/˝ qG/˝ e1;1/ DbWG..1˝ qG/˝ e1;1/.˛ns .a/˝ 1/˝ e1;1/
D .WG ˝ e1;1/..˛

n
s .a/˝ 1/˝ e1;1/

D WG..˛
n
s .a/˝ 1/˝ e1;1/:

The first statement now follows at once from Lemma 7.5 and the second statement follows
from combining the first statement with part (3) of Lemma 7.4.

Let us denote the map

.1˝ �u ˝ �s/ ı .ı ˝ 1/ ı �� ı� W R
S .X; ';Q/˝S ! B.H ˝H ˝ `2.Z//

by  . Observe that  .a � uk ˝ zl � 1/ determines the extension

0! RS .X; ';Q/˝K.H /! E 00 ! RS .X; ';Q/˝S ! 0;

representing the class
� ˝RS .X;';Q/˝S .ı ˝RU .X;';P / �/

in KK1.RS .X; ';Q/˝S ; RS .X; ';Q//. Therefore, using Lemma 7.6 and equivalence in
KK-theory, we have

 .a � uk ˝ zl � 1/ D .1W'.G/ ˝ 1/�. .a � uk ˝ zl � 1/˝ e1;1/.1W'.G/ ˝ 1/
D .W'.G/ ˝ 1/

�. .a � uk ˝ zl � 1//.W'.G/ ˝ 1/:

Now, combining Lemma 6.1, Lemma 6.2, and Lemma 7.6, we compute

.W �'.G/ ˝ 1/U.1˝ a˝ 1/U
�.W'.G/ ˝ 1/ D

´
U.a˝ 1˝ 1/U�.1˝ qG ˝ 1/ if n � 0;

0 if n < 0;

where equality is up to the ideal RS .X; ';Q/˝K.H /. To further simplify notation, let us
also define

U D W �'.G/..u˝ u/pGv
�/W'.G/ 2 B.H ˝H /:

Using the notation and computations from the preceding paragraph together with the
maps described in (7.1)–(7.3), we obtain, for a in S.X; ';Q/,

 .a�uk˝zl�1/ D .U˝B�/lCkU.a˝1˝1/U�.1˝B/k�.U˝B�/kU.a˝1˝1/U�.1˝B/k

as a bounded operator on the Hilbert space H ˝ qG ˝ `
2.N/, where we have replaced `2.Z/

by `2.N/ since the operator .a � uk ˝ zl � 1/ is zero on the subspace ¹1˝ qG ˝ ın j n < 0º.
Therefore, note that B is a one sided shift on `2.N/.

We are left to show that we have the following isomorphism of extensions, where E 000 is
the C �-algebra generated by the image of  and the ideal RS .X; ';Q/˝K.H ˝ `2.N//,

0 // RS .X; ';Q/˝qG˝K.`2.N//

Š

��

// E 000
� //

ˇ
��

RS .X; ';Q/˝S // 0

0 // RS .X; ';Q/˝K.`2.N// // RS .X; ';Q/˝C �.B � 1/ // RS .X; ';Q/˝S // 0.
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Indeed, the quotient map � W E 000 ! RS .X; ';Q/˝S is given on generators by

U ˝ 1 7! u˝ 1; 1˝ B 7! u˝ z; U.a˝ 1˝ 1/U� 7! a˝ 1;

and the map ˇ is given on generators by

U ˝ 1 7! u˝ 1; 1˝ B 7! u˝ B; U.a˝ 1˝ 1/U� 7! a˝ 1:

The reader is left to show that ˇ is an isomorphism and that the above diagram commutes. The
second extension represents the class �R

S .X;';Q/.T0/, which is KK-equivalent to 1RS .X;';Q/

by Bott periodicity. This completes the proof.

8. Concluding remarks and questions

8.1. Existence of the duality classes. As we saw in Section 5, the construction of the
K-theory duality element did not require the expanding and contracting nature of the dynamics.
An essential property was that the stable and unstable relations intersected at a countable set
of points. Recall that a transversal to a foliation is a set which meets each leaf in a countable
set, so the condition that each stable equivalence class meets each unstable class in a countable
set is a transversality condition. Based on the example of transverse foliations, a notion of
transverse groupoids has been suggested and it is hoped that the axioms will be sufficient for
the construction of a K-theory duality class in KKi .C �.G1/; C �.G2// when G1 and G2 are
transverse groupoids.

On the other hand, the existence of the class � requires hyperbolicity. This is what
might be expected from the Dirac-dual Dirac approach to the Baum–Connes conjecture. In that
case, the construction of the dual Dirac element, which is the analog of our �, requires the
use of a non-positively curved space. For such a space the geodesic flow will be hyperbolic.
It would be interesting to find fundamentally different types of conditions which would lead to
a K-homology duality class, or to understand why there no other possibilities.

8.2. Crossed products and dynamics. The relation between a hyperbolic group acting
(amenably) on its Gromov boundary and hyperbolic dynamical systems is an interesting sub-
ject. One might hope that in general one could do as Bowen and Series did, and recode the
action of certain Fuchsian groups on their boundaries to obtain a single transformation with
an associated Markov partition, hence one gets a subshift of finite type. Spielberg showed
that the Ruelle algebras for the subshift are isomorphic to crossed product algebras. This was
extended by Laca–Spielberg and Delaroche, but in those cases it was necessary to use the fact
that the algebras satisfied the hypothesis of the Phillips–Kirchberg Theorem, and show that
their K-theories were the same, to deduce that they were isomorphic. This suggest that the
appropriate setting for relating amenable actions of hyperbolic groups on their boundaries to
hyperbolic dynamics is via identifying the crossed product C �-algebras with Ruelle algebras
of Smale spaces.

8.3. Ruelle algebras as building blocks for algebras associated to diffeomorphisms
of manifolds. Let f WM !M be an Axiom A diffeomorphism of a compact manifold, as
defined by Smale [34]. Recall that M can be expressed as a union of submanifolds

M �M1 � � � � �Mn;
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where each Mi nMiC1 contains a basic set, Si , such that .f jSi ; Si / is an irreducible Smale
space. Thus, for each i , we have a Ruelle algebra, Rui . These algebras are determined by their
K-theory, analogously to how spheres are determined by their homology groups. It would
be interesting to find a natural algebra associated to the diffeomorphism f which could be
constructed from these Ruelle algebras with additional algebraic data. One possibility is to
build the algebra as iterated extensions, with elements of Kasparov groups playing the role of
k-invariants from topology.
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