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Abstract A finite element (FE) model is developed to study the free vibration of a rotating lami-

nated composite beam with a single delamination. The rotary inertia and shear deformation effects,

as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into

account in the FE model. Comparison between the numerical results of the present model and the

results published in the literature verifies the validity of the present model. Furthermore, the effects

of various parameters, such as delamination size and location, fiber orientation, hub radius, mate-

rial anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results

provide useful information in the study of the free vibration of rotating delaminated composite

beams.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The rotating beams made of composite materials are widely

used for various engineering applications, such as robotic
manipulators, wind turbines, helicopter blades and aircraft
propellers. The improved mechanical properties of laminated

composites, such as strength-to-weight and stiffness-to-weight
ratios, in comparison with the conventional metallic materials
are some of the factors that have contributed to its advance-

ment. However, composites are subjected to a wide range of
damages induced during their fabrication or service life, which
may significantly reduce their structural performance. One of

the commonly encountered types of defects or damages in
the multi-layered composite structures is delamination.
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Nomenclature

L beam length

b · h rectangular cross-section of the beam
L1 delamination lengthwise location
L2 delamination length
r0 offset distance

M end mass
J moment of inertia of the end mass
O rotating speed

h beam thickness
hi thickness of the ith sub-beam
T kinetic energy

U potential energy
qi ith layer density
(u, w) the LCB mid-plane displacements in the x̂ and ŷ

directions, respectively

(wx̂;wŷ) the mid-plane bending slopes
Nx̂ in-plane force
ðMx̂; Mx̂ŷÞ bending and twisting moments

Qx̂ẑ resultant shear force
e0x̂ mid-plane strain
(jx̂; jx̂ŷ) bending and twisting curvatures

ex̂ẑ shear strain

Aij modified extensional stiffness

Bij modified bending–extension coupling stiffness
Dij modified bending stiffness
Aij transverse shear stiffness
Fi centrifugal force

x circular frequency
ks shear correction factor
(A, I) area and second moment of area, respectively

R radius of gyration
xs natural frequency of the non-rotating intact beam
E Young Modulus

(g0 ¼ XL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA=EI

p
; g ¼ XL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=ðE11h

2Þ
q

) dimensionless
rotating speed

(�x0 ¼ xL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qA=EI

p
; �x ¼ xL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E11h

2
q

) dimensionless
natural frequency

(e2, e3) distances between the neutral axis of the sub-
beams 2 and 3 with the neutral axis of the intact
part, respectively

ðr ¼ R=L; a ¼ r0=L; L2 ¼
L2=L; l ¼M=qbhL; r ¼ J=qbhL3Þ non-dimen-
sional parameters used in the numerical analysis
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Depending on its application, composite structures may
require the use of angle ply and unsymmetrical laminates.

Thus, bending–extension, bending–twist, and extension–twist
coupling terms need to be considered in the analysis of com-
posites [1–5]. Furthermore, the Poisson’s effect, which is often

neglected in one-dimensional laminated beam analysis, has
been found to be significant in the analysis of composite beams
with angle-plies and unsymmetrical layups [1–5].

Free vibration analysis of the intact rotating beams and
delaminated non-rotating beams based on the classical beam
theory (CBT) and the Timoshenko beam theory has received
a good amount of attention in the literature [6–22]. The free

vibrations of an isotropic beam with a through-width delam-
ination by using four Euler–Bernoulli sub-beams connected
at the delamination boundaries were studied by Wang et al.

[6]. According to this study interpenetration of the delami-
nated sub-beams was seen, which was physically impossible
to occur in the case of off-mid-plane delaminations. This is

because the delaminated regions were assumed to deform
‘‘freely’’ without touching each other (free mode) and thus
have different transverse deformations. To avoid this kind of
incompatibility, Mujumdar and Suryanarayan [7] proposed a

model in which they assumed that the delaminated layers are
constrained to have identical transverse deformations, which
was called the constrained mode in contrast with the free mode

by Wang et al. [6]. However, the constrained mode model
failed to predict the opening in the mode shapes found in the
experiments by Shen and Grady [8]. Analytical and numerical

solutions for beams with single and multiple delaminations
have been presented by many researchers based on the CBT
[9–14] and Timoshenko beam theory [15–17]. These studies

emphasize on the influence of the free and constrained modes
between the delaminated layers. It should be noted that the
Timoshenko beam theory takes into account the shear
deformation and rotary inertia effects, which are ignored in
the CBT, making it suitable to study the static and dynamic

behavior of thick beams. Moreover, in this case, the equation
of motion is complex, and even obtaining an approximate
solution is much more difficult than the CBT.

The free vibration of rotating intact beam has received con-
siderable attention from researchers [18–22]. Kuo et al. [18]
have investigated the influence of taper ratio, elastic root

restraints, tip mass and rotating speed on the vibration of
rotating non-uniform beams based on the CBT. Natural fre-
quencies of rotating tapered Timoshenko beam have been pre-
sented for different combinations of the fixed, hinged and free

end conditions by means of a new tapered finite beam element
that accounts for the effect of shear deformation, rotary iner-
tia, and the centrifugal stiffening due to beam rotation [19]. Du

et al. [20] have presented a convergent power series expression
to solve analytically for the exact natural frequencies and
mode shapes of rotating Timoshenko beams. The effects of

angular velocity, shear deformation and rotary inertia on the
dynamic behavior of rotating beams have been evaluated.
The free vibration analysis of rotating tapered beams has been
investigated using the dynamic stiffness method by Su et al.

[21]. The range of considered problems included beams for
which the depth and/or width of the cross-section vary linearly
along the length. Das et al. [22] have presented analytical solu-

tion for the free vibration of a rotating beam with nonlinear
spring–mass system. The solution has been obtained by apply-
ing the method of multiple timescale directly to the nonlinear

partial differential equations and the boundary conditions.
Dynamic analysis of the rotating delaminated beam has

received limited attention. Recently, Liu and Shu [23]

presented analytical solutions for the free vibrations of
rotating isotropic beams with multiple delaminations. The
Timoshenko beam theory and both the free mode and the



Figure 1 A schematic of generally layered composite beam with

single delamination: (a) front view, and (b) top view.

Figure 2 The delaminated beam is modeled by four intercon-

nected sub-beams.
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constrained mode assumptions in delaminated region have

been used.
To the authors’ best knowledge, a free vibration analysis of

rotating layered composite beam (LCB) with general layups

and an arbitrary delamination to include the rotary inertia
and shear deformation effects, Poisson effect, and the bend-
ing–extension, bending–twist, and extension–twist coupling
effects has not been presented in the literature. Therefore,

the objectives of this research work were: (1) to develop a finite
element model to study the free vibration of a rotating LCB
with a single delamination; and (2) perform a parametric study

to investigate the influence of delamination size and location,
fiber orientation, hub radius, material anisotropy and rotating
speed, on the free vibration of the delaminated rotating LCB.

The research is presented as follows. First, the finite element
model is presented. Second, the numerical results are verified
with the published analytical results on the vibration of

delaminated beams and intact rotating beams. Finally, the
vibration of delaminated rotating LCB is investigated.
Figure 3 A three-nodded beam elem
2. Mathematical formulation

2.1. Geometrical modeling

Fig. 1 shows a laminated beam having a single delamination
through the width delamination. The delamination dimension

is L2 · b and it is located at L1 with respect to the left end of
the LCB.

In order to geometrically model the LCB with a single

delamination, consider Fig. 2 in which the delaminated LCB
can be viewed as a combination of four intact beams (i.e. four
sub-beams of 1–4) connected at the delamination boundaries
x = L1 and x = L1 + L2. In this way, we will have four

sub-beams of 1 to 4 with lengths and thicknesses of Li · hi
(i= 1–4) where L2 = L3, L4 = L–L1–L2, h1 = h4 = h.

One of the efficient ways of deriving dynamic characteris-

tics of a system is to use the finite element method (FEM).
In implementing this method, one has to derive the kinetic
and potential energies of the whole system to form the mass

and stiffness matrices. Then, the natural frequencies and the
corresponding mode shapes of the system are obtained using
the eigenvalue technique. The detailed procedures are pre-
sented in the following sub-sections.

2.2. Kinetic and potential energies

The kinetic energy T of the whole beam is given by

[1,3,5,16,17]

T ¼
X4
i¼1

1

2

Z Li

0

I1;iðu2i;t þ w2
i;tÞ þ I3;iðw2

x̂i;t þ w2
ŷi;tÞ

h i
dx̂ ð1Þ

where:

ðI1;i; I3;iÞ ¼ b

Z hi=2

�hi=2
qið1; ẑ2Þdẑ ð2Þ

and u and w are the LCB mid-plane displacements along the x̂
and ẑ directions, respectively, and wx̂ and wŷ are the bending

slopes along the x̂ and ŷ directions, respectively. The subscript

i represents the sub-beam’s number, i = 1–4 and the symbol
‘‘,’’ used as a subscript stands for the differentiation with
respect to any variable followed after it.

The potential or strain energy of the beam U is given by [16]

U ¼
X4
i¼1

Z Li

0

A11;i

2
u2i;x̂ þ B11;iui;x̂wx̂i;x̂ þ B16;iui;x̂wŷi;x̂

�

þD16;iwx̂i;x̂wŷi;x̂ þ
D11;i

2
w2

x̂i;x̂ þ
D66;i

2
w2

ŷi;x̂

þA55;i

2
ðw2

x̂i þ w2
i;x̂ þ 2wx̂iwi;x̂Þ

�
dx̂þ 1

2
kðw2 � w3Þ2

þ
X4
i¼1

Z Li

0

1

2
Fiðx̂Þw2

i;x̂ dx̂ ð3Þ
ent and its intrinsic coordinates.



Table 1 Comparison of non-dimensional first natural frequencies of angle-ply LCB and its convergent (L/h= 15).

h (�) [25] [5] No. of elements

5 10 15 20 25 30 40 50

0 0.9820 0.979 1.0910 0.9870 0.9842 0.9787 0.9787 0.9787 0.9787 0.9787

15 0.9249 0.729 0.8134 0.7926 0.7731 0.7453 0.7249 0.7249 0.7249 0.7249

30 0.7678 0.485 0.5271 0.5043 0.4972 0.4931 0.4824 0.4824 0.4824 0.4824

45 0.5551 0.314 0.3968 0.3675 0.3341 0.3209 0.3138 0.3138 0.3138 0.3138

60 0.3631 0.263 0.3280 0.3034 0.2911 0.2798 0.2663 0.2628 0.2628 0.2628

75 0.2723 0.259 0.3176 0.2997 0.2741 0.2676 0.2602 0.2591 0.2591 0.2591

90 0.2619 0.261 0.2911 0.2863 0.2742 0.2635 0.2609 0.2609 0.2609 0.2609

Table 2 Comparison of first dimensionless frequencies of the rotating isotropic beam.

r g0 = 4 g0 = 8 g0 = 12

[20] [23] Present [20] [23] Present [20] Present

0.01 5.580 5.58 5.579 9.246 9.245 9.246 13.150 13.150

0.02 5.564 5.562 5.563 9.215 9.212 9.215 13.095 13.095

0.03 5.539 5.537 5.538 9.167 9.162 9.166 13.015 13.015

0.04 5.505 5.502 5.504 9.106 9.097 9.105 12.923 12.923

0.05 5.463 5.46 5.462 9.036 9.023 9.036 12.827 12.828

0.06 5.415 5.411 5.414 8.963 8.944 8.963 12.734 12.734

0.07 5.363 5.358 5.362 8.889 8.861 8.888 12.646 12.625

0.08 5.307 5.300 5.306 8.815 8.775 8.815 12.564 12.547

0.09 5.249 5.239 5.249 8.744 8.688 8.744 12.487 12.472

0.1 5.191 5.176 5.190 8.677 8.599 8.676 12.415 12.401

Table 3 Natural frequencies (Hz) of a delaminated non-

rotating beam.

Mode number Experimental results

[26]

Analytical [27] Present

Impulse Sine sweep

1st 16 17 15.73 15.45

2nd 98 99 94.86 93.65

3rd 223 223 224.77 221.08

4th 441 440 458.32 453.72

Table 4 Fundamental frequencies (Hz) of the LCB with

central delamination.

L2 Present Luo and Hanagud

[28]

Shen and Grady [8]

Free Cons. Free Cons. Average test Cons.

0.2 80.38 80.38 82.01 82.02 80.12 81.46

0.4 79.09 79.13 80.74 80.79 79.75 79.93

0.6 76.05 76.32 77.52 77.82 76.96 76.71

0.8 70.54 71.87 71.73 73.15 72.46 71.66
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The last term represents the strain energy due to the cen-

trifugal force Fi is [18]

Fiðx̂Þ ¼
Z L

x̂

I1;iX
2ðr0 þ x̂Þdx̂

¼ I1;iX
2 r0ðL� x̂Þ þ L2 � x̂2

2

� �
ð4Þ

It should be noted that all of the stiffnesses

A11;B11; B16; D16; D11; D66; A55 that are used in the potential
energy in Eq. (3) are defined in Refs. [1,3,5,16,17] and will

not be presented here for the sake of brevity. Moreover, refer-
ring to Eq. (3), the interaction between the delaminated sub-
beams 2 and 3 (Fig. 2) can be modeled as a distributed soft
spring with a stiffness of k [17] to obtain the vibration charac-

teristics based on the constrained mode. In this way, the poten-
tial energy for the sub-beams 2 and 3 can be expressed by
inclusion of this soft spring in terms of displacements. To

obtain the numerical results k = 0 is used for the free mode
and k= 1e 12 for the constrained mode. In other words, for
free mode there is not any restriction between sub-beams 2

and 3 in the delaminated region (free motion), whereas for
the constrained mode there is a spring with large stiffness that
prevents the penetration between sub-beams 2 and 3.

2.3. Element description

As shown in Fig. 3, the beam element has three nodes, and

each node has four degrees of freedom, namely,
ui; wi; wxi andwyi for ith node. The displacements u and w

and the rotations wx and wy can be interpolated in terms of

the intrinsic coordinate as

u ¼
X3
i¼1

NiðnÞui; w ¼
X3
i¼1

NiðnÞwi;

wx ¼
X3
i¼1

NiðnÞwxi; wy ¼
X3
i¼1

NiðnÞwyi ð5Þ



Table 5 First two natural frequencies of the delaminated

beam for different rotating speed and delamination lengths.

L2 0.2 0.4 0.6 0.8

g ¼ 0:01 (0.6817,

3.8750)b
Free 0.6816 0.6789 0.66908 0.6108

3.8585 2.7137 1.2921 0.8025

Cons.a 0.6817 0.6797 0.67587 0.6697

3.8731 3.8579 3.8160 3.7390

g = 1 (1.2666,

4.6021)

Free 1.2666 1.2655 1.2621 1.2525

4.5954 4.4555 3.5516 2.5808

Cons. 1.2666 1.2659 1.2640 1.2597

4.6003 4.4882 4.3226 4.3657

g = 2 (2.1967,

4.9852)

Free 2.1967 2.1964 2.1949 2.1889

4.9852 4.4922 4.3230 4.3662

Cons. 2.1967 2.1965 2.1956 2.1923

4.9852 4.4922 4.3230 4.3662

g = 3 (3.1596,

4.9871)

Free 3.1596 3.1596 3.1590 3.1552

4.9871 4.4928 4.3233 4.3664

Cons. 3.1597 3.1596 3.1592 3.1567

4.9871 4.4928 4.3234 4.3664

g = 4 (4.1322,

4.9883)

Free 4.1322 4.1315 4.1306 4.1290

4.9883 4.4943 4.3254 4.3674

Cons. 4.1322 4.1315 4.1307 4.1298

4.9883 4.4943 4.3254 4.3674

a Constrained mode model.
b Number in the parenthesis indicates the non-dimensionless

natural frequencies of the intact beam.

Figure 4 Location of the Timoshenko beam element under

consideration.

Figure 5 Nodes at the delamination boundaries.

Figure 6 Effect of angle of orientation and rotating speed on the

fundamental frequency (L/h= 15) (Solid Line: WPE; Dashed

Line: WOPE).

Figure 7 A LCB with [0/90/0/90] layups and a central delam-

ination (L/h= 15).

Dynamic behavior of a rotating delaminated composite beam including rotary inertia 1035
where Ni(n), with i= 1–3, are the Lagrangian interpolation or
shape functions associated with node i given by [24]

N1ðnÞ ¼ 1� 3nþ 2n2; N2ðnÞ ¼ 4ðn� n2Þ;
N3ðnÞ ¼ 2n2 � n ð6Þ

where n = x/Le and Le is the element length of the beam. The

vector of element degrees of freedom {d} is given by

fdg ¼ fu1;w1;wx1;wy1; u2;w2;wx2;wy2; u3;w3;wx3;wy3g
T ð7Þ

where the superscript T denotes the transpose of a vector or a
matrix.
The displacements and rotations of the beam can be related
to the nodal degrees of freedom throughout the use of the

shape functions to give

u ¼ bNucfdg ¼ bN1; 0; 0; 0;N2; 0; 0; 0;N3; 0; 0; 0cfdg
w ¼ bNwcfdg ¼ b0;N1; 0; 0; 0;N2; 0; 0; 0;N3; 0; 0cfdg
wx ¼ bNwx

cfdg ¼ b0; 0;N1; 0; 0; 0;N2; 0; 0; 0;N3; 0cfdg
wy ¼ bNwy

cfdg ¼ b0; 0; 0;N1; 0; 0; 0;N2; 0; 0; 0;N3cfdg

ð8Þ

One of the efficient ways of deriving dynamic characteris-

tics of a system using FEM is to employ the energy principle
[4,24]. In implementing this method, one has to derive the
kinetic and potential energies of the system, which will be pre-

sented in the following sections.

2.4. Stiffness and mass matrices of the element

To obtain the stiffness matrix of the beam element, we start by
substituting the Eq. (8) in Eq. (3) to get the following expres-

sion for the stiffness matrix [4,24]:

U ¼ 1

2
fdgT½Ke�fdg ð9Þ

where the element stiffness matrix is given by



(a) Delamination located at interface 1 (b) Delamination located at interface 2

(c) Delamination located at interface 3

Figure 8 The influence of thicknesswise location and delamination length on the natural frequencies for different rotating speeds (Free

Mode: ; Constrained Mode: ).

½Ke� ¼
Z 1

0

A11bNu;xcTbNu;xc þ B11bNu;xcTbNwx ;xc þ B11bNwx ;xc
TbNu;xc

� �
Ledn

þ
Z 1

0

B16bNu;xcTbNwy ;xc þ B16bNwy ;xc
TbNu;xc þD11bNwx ;xc

TbNwx ;xc
h i

Ledn

þ
Z 1

0

D16bNwx ;xc
TbNwy ;xc þD16bNwy ;xc

TbNwx ;xc þD66bNwy ;xc
TbNwy ;xc

h i
Ledn

þ
Z 1

0

A55ðbNwx
cTbNwx

c þ bNwx
cTbNw;xc þ bNw;xcTbNw;xc þ bNw;xcTbNwx

cÞ
� �

Ledn

þ I1X
2

Z 1

0

ðr0Lþ L2=2� r0Ls � L2
s=2Þ � ðr0 þ LsÞLen� ðLenÞ2=2

h i
bNw;xcTbNw;xcLedn

ð10Þ
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and Ls which is in the last term in Eq. (10) is the
beam element location in the axial direction, as shown in

Fig. 4
On the other hand, by substituting Eq. (8) in Eq. (1) and
integrating over the element length, the element mass matrix
is derived as



Figure 9 Effect of material anisotropy and rotating speed on the

fundamental frequency (Free Mode: ; Constrained Mode:

).

Dynamic behavior of a rotating delaminated composite beam including rotary inertia 1037
T ¼ 1

2
fdgT½Me�fdg ð11Þ

where the element mass matrix is

½Me� ¼
Z 1

0

I1 bNucTbNuc þ bNwcTbNwc
� �

þ I3 bNwx
cTbNwx

c
��

þbNwy
cTbNwy

c
	i

Ledn ð12Þ
2.5. Displacement continuity conditions

The displacement continuity conditions have to be satisfied at

the junction between the undelaminated segment sub-beam 1
and the delaminated segments sub-beam 2 and sub-beam 3,
and similarly at the junction between the undelaminated seg-

ment sub-beam 4 and the delaminated segments sub-beams 2
and 3. Considering the whole beam’s elements at the connect-
ing nodes i, j, k and l for sub-beams 1, 2 and 4, as shown in

Fig. 5, the overall element nodal displacement vectors and
the stiffness and mass matrices of sub-beams 1–4 are {D}i,
[K]i and [M]i (i = 1, 2, 3, 4), respectively.

At the connection nodes i–j and k–l, the displacement

continuity conditions are as follows:
ujnode j ¼ ðu� e2wxÞjnode i; wjnode j ¼ wjnode i; wxjnode j ¼ wxjnode i; wy




node j
¼ wy




node i

ujnode k ¼ ðu� e2wxÞjnode l; wjnode k ¼ wjnode l; wxjnode k ¼ wxjnode l; wy




node k

¼ wy




node l

ð13Þ
where e2 is the distance between the mid-planes of the sub-
beams 1 and 2. The following transformation relations for
the element stiffness and mass matrices can be established
[4,24]:

½K�2 ¼ ½T1�T½K�2½T1�
½M�2 ¼ ½T1�T½M�2½T1�

ð14Þ
Assuming the dimension c1 · c1 for the stiffness and mass
matrices of sub-beam 2 and based on the Eq. (13), the trans-
formation matrix T1 has the dimension of c1 · c1 and is given

as
All T1(i, j) = 0 except;

T1ði; jÞ ¼ 1 i ¼ j

T1ð1; 3Þ ¼ �e2
T1ðc1 � 3; c1 � 1Þ ¼ �e2

8><
>: ð15Þ

A similar treatment can be carried out for the connection
nodes i–m and n–l and the following transformation relations

for the element stiffness and mass matrices can be established:

½K�3 ¼ ½T2�T½K�3½T2�
½M�3 ¼ ½T2�T½M�3½T2�

ð16Þ

in which the transformation matrix T2 has the dimension of
the stiffness and mass matrices of sub-beam 3 (i.e. c2 · c2)

and is given as
All T2(i, j) = 0 except

T2ði; jÞ ¼ 1 i ¼ j

T2ð1; 3Þ ¼ e3

T2ðc2 � 3; c2 � 1Þ ¼ e3

8><
>: ð17Þ

where e3 is the distance between the mid-planes of the sub-

beams 1 and 3. The matrices ½K�i and ½M�i ði ¼ 2; 3Þ are used

to assemble the total stiffness and mass matrices.

3. Eigenvalue equations

Based on the procedure outlined in the previous sections, the
total equation of motion for the delaminated beam is

½M�fDg;tt þ ½K�fDg ¼ f0g ð18Þ

where [K] and [M] are the total stiffness and mass matrices,
respectively, after applying the boundary conditions.

Assuming a general solution fDg ¼ fD0geixt for the Eq. (18),

and taking x2 ¼ k; we obtain

j½K� � k½M�jfD0g ¼ f0g ð19Þ

where x is the natural frequency and fD0g is the corresponding
mode shape. The nontrivial solutions for the Eq. (19) can be
obtained by solving equation det([K]–k[M]) = 0, which then

yields the eigenvalues of the system (x2
i ¼ ki).
4. Numerical results and discussion

The natural frequencies obtained from the FE model of the
LCB are compared with the experimental and theoretical
results presented by other investigators in order to demon-

strate the accuracy of the present FE model. The verification
and validation of the present model, which are presented in
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Figure 10 The influence of hub radius on the natural frequencies (Free Mode: ; Constrained Mode: ).

1038 R.A. Jafari-Talookolaei, C. Della
Section 4.1 consist of two parts: part one consists of a conver-
gence study to be able to determine the suitable number of ele-

ments that will be used in the FE model and then verify the
results of the present model with published results on rotating
intact (undelaminated) beam; and part two consists of ver-

ifying and validating the results of the present model with pub-
lished analytical and experimental data on non-rotating intact/
delaminated beam. The study on the vibration characteristics
of the rotating delaminated beam is presented in Section 4.2.

Unless mentioned otherwise, the numerical results are pre-
sented for AS4/3501 Graphite-Epoxy LCB with the following
mechanical properties [1]:

E11 ¼ 144:8 GPa; E22 ¼ 9:65 GPa; G12 ¼ 4:14 GPa;

G13 ¼ 4:14 GPa;

G23 ¼ 3:45 GPa; t12 ¼ 0:33; q ¼ 1389:23 kg=m3

ð20Þ

In all subsequent problems the width of the beam is taken
as unity, the thickness of all layers in the LCB is equal and

the shear correction factor is taken to be ks = 5/6 [1]. The
shear correction factor has been used to calculate the shear

stiffness A55 in Eq. (3). Also, the calculated natural frequencies

in these examples are presented in a dimensionless form �x:
4.1. Verification and validation

The convergence analysis is conducted for non-rotating intact
LCB by setting the rotational speed to zero. The dimensionless
fundamental natural frequencies of symmetric laminated

angle-ply beams ½h=� h�S are compared with the analytical

solutions presented in Refs. [5] and [25]. As shown in
Table 1, the natural frequencies for the delaminated beam that

are obtained from Eq. (19) converge to the exact values as the
number of elements increases. It is worth mentioning that all of
the results in this paper use the 50 beam elements in the dis-

cretized model to obtain the converged results. As the angle
of orientation increases from 0� to 90�, the dimensionless
fundamental frequency decreases. The present angle-ply results

are in good agreement with Ref. [5] but deviate from the results
presented in Ref. [25]. This is due to the fact that the laminated
beam theory considered in Ref. [25] neglects Poisson’s effect.

Moreover, the material couplings have been considered par-
tially in Ref. [25]. These lead to significant error in the analysis
of beams with angle-ply layups especially for the layout angle
between 30� and 60� [1–5,16,17].

The first non-dimensional natural frequencies of a clamped-
free rotating intact beam based on the Timoshenko beam the-
ory are compared with the analytical results of Du et al. [20]
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Figure 11 First mode shape of a rotating LCB with delamination located at interface 3 for two different lengths and five different

rotating speeds.
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and Liu and Shu [23]. For the purpose of comparison, the

dimensionless parameters �x0 and g0 are considered for natural
frequency and rotating speed, respectively. Moreover,
the effect of Timoshenko beam theory is represented by

r= R/L, where R is the radius of gyration. Table 2 shows
good agreement between the present results and the results
that are published in the literature [20,23].
The first verification and validation of the present FE

model on a delaminated beam are performed by comparing
the results of the present model with published experimental
data [26] and analytical results [27] on a delaminated non-ro-

tating beam with clamped-free boundary conditions. The lami-
nated beam is an eight-ply [0/90/90/0]s Glass-Epoxy beam and
is 266.7 mm long, 25.4 mm wide and 1.778 mm thick. The
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material properties are given in Ref. [27]. The distance between
the center of the delamination and the clamped end is

117.5 mm. Table 3 presents the results for a 101.6-mm mid-
plane delamination. It should be noted that when the delam-
inations are located at the mid-plane of the LCB, the

frequencies predicted by the ‘free mode’ and the ‘constrained
mode’ are identical, which have also been observed in previous
studies [9–11,27]. It can be seen that the present results are in

good agreement with the published analytical and experimen-
tal data.

The second verification and validation consider an eight-ply

T300/934 graphite/epoxy cantilever LCB with layups of [0/90/
0//90/90/0/90/0] and dimensions of 127 · 12.7 · 1.016 mm3.
The material properties are adopted from Ref. [8]. The delam-
ination is centrally located, and four normalized delamination

lengths, 0.2, 0.4, 0.6 and 0.8, are considered. Table 4 shows a
good agreement between the present ‘‘free mode’’ and ‘‘con-
strained mode’’ fundamental frequencies of the delaminated

LCB with the experimental data [8] and analytical results
[28] that are presented in the literature.

From these comparisons, an assurance is given that the

developed program is working properly; hence, in the next sec-
tion analysis is further pursued on the dynamic behavior of
rotating delaminated LCB.
4.2. Results for rotating delaminated beam

Fig. 6 shows the effects of the angle of orientation of the fibers,
h, and the rotating speed, g, on the non-dimensional frequency

of the rotating delaminated beam, x/xs, based on the free
mode model. In this figure, x is the natural frequency of the
rotating delaminated beam and xs is the natural frequency
of the non-rotating intact beam. Furthermore, the value of

xs is calculated for h ¼ 0�. The Poisson effect is also consid-
ered here, where WPE and WOPE stand for the case with
and without the Poisson’s effects, respectively. A delaminated

beam with layups [h/�h/�h//h] and central delamination with

dimensionless length L2 ¼ 0:2 is considered here. The double

slash ‘‘//’’ is used to indicate the thicknesswise location of
the delamination. Similarly with the results presented in
Table 1, the natural frequency x/xs decreases as the angle of

orientation h increases from 0� to 90�. As expected, the
Poisson’s effect produces no significant changes on the
fundamental frequency for the unidirectional (h = 0�) or
cross-ply (h = 90�) LCB. However, the fundamental frequency

for an angle-ply beam where Poisson’s effect is not considered
deviates significantly from the exact value (i.e. considering
Poisson’s effect), especially if layout angle is between 30� and
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Figure 12 Second mode shape of a rotating LCB with delamination located at interface 3 for two different lengths and five different
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60�. Note that the difference between WPE and WOPE
decreases as the rotating speed increases. Fig. 6 also shows that
natural frequency increases as the rotating speed g increases

which is due to the stiffening effect of the rotating beam.
Now we consider a beam comprised of four laminas with

layups shown in Fig. 7. The effect of thicknesswise location

and delamination length on the dynamic response of the
LCB is depicted in Fig. 8. Based on the results, the natural fre-

quency x/xs decreases as the delamination length L2 increases.

Furthermore, when the delamination is located at interface 1
or 2, the natural frequencies of the beam using the free mode
and constrained mode are almost the same, that is no ‘‘open-
ing’’ is seen. But when the delamination is located at interface

3, the difference between the results of the free mode and the
constrained mode increases as the delamination length
increases and this difference increases more as the rotating

speed decreases. When the delamination is located at interface
1 the bending stiffness of sub-beams [0] and the [90/0/90] is
almost the same, whereas, when the delamination is located
at interface 3, the difference between the bending stiffness
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values of the clustered sub-beam 2 with [0/90/0] layups and
sub-beam 3 with [90] layup becomes relatively high. This indi-
cates that the difference between the bending stiffness of the

sub-beams in the delamination region significantly affects the
difference between the free and constrained mode frequencies.
Fig. 8(c) further shows the natural frequencies obtained from
the free mode model represent the lower bound and the con-

strained mode model signifies the upper bound of the exact
solutions, which have been mentioned in previous studies [9–13].

Fig. 9 shows the effect of material anisotropy on the first

non-dimensional frequencies of the rotating delaminated
beam. In this case again we take a central delamination with

L2 ¼ 0:6 located at the interface 3 with beam slenderness ratio
of L/h = 15. The layup configuration and thicknesswise loca-
tion of the delamination, as shown in Fig. 7 are also consid-
ered in all of the following examples. Fig. 9 shows the effect

of material anisotropy on the first natural frequency of the
delaminated beam. The value of E11 is varied, while the other
elastic constants are the same as those of AS4/3501 Graphite-

Epoxy material presented in relation (20). It should be said
that in calculating �x; �xs the value of E11 = 144.8 GPa is used.
As it is shown the effect of increasing material anisotropy is to

increase the natural frequencies of the beam. Moreover, it can
be concluded that the differences of natural frequency between
the constrained mode and the free mode assumptions decrease

when rotating speed becomes higher.
Fig. 10 shows the normalized fundamental frequency of the
LCB with a single central delamination versus a. This repre-
sents the influence of hub radius on the natural frequency of

beams with a single delamination for delamination lengths

L2 ¼ 0:2; 0:4; 0:6; 0:8;. For high rotating speed, the natural fre-
quency increases as the hub radius increases. However, for low

rotating speed g = 0.01, the natural frequency is almost con-
stant for different hub radius ratios. For long delamination
(Fig. 10(c) and (d)), the difference between natural frequen-

cies based on the free and constrained modes becomes smaller
as rotating speed increases. It shows that the opening of the
delaminated layers becomes negligible with a large rotating

speed. The reason for the trend of natural frequencies for dif-
ferent parameters is due to the increase of stiffnesses of the
sub-beams caused by the centrifugal force.

The first and second mode shapes of a thick LCB

(L/h = 15) with a delamination located at Interface 3 and
based on the free mode model are shown in Figs. 11 and 12.

Two delamination lengths L2 ¼ 0:2 and 0:8 and five rotating
speeds g ¼ 0:01; 1; 2; 3; 4 are considered. In the delaminated
region, solid and dashed lines represent the amplitude of

sub-beams 2 and 3, respectively. In these two figures, vertical
axis indicates the normalized deflection for each point of the
delaminated beam. For the considered beam, the correspond-
ing dimensionless natural frequencies have been presented in

Table 5. The opening in the mode shapes using the free mode
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explains the difference between the constrained and free mode
frequencies. For a large opening, the difference between the
two frequencies is large, whereas for a small opening, the dif-

ference between the two frequencies is small. From these
results, we can see that the first and second modes of such
beam do not show significant opening in the cases when the

rotating speed increases. It should be noted that this difference
is significant for long delamination length and small rotating
speed. The opening modes can also explain the difference

between the ‘‘free mode’’ and ‘‘constrained mode’’ frequencies
that are presented in Figs. 8–10, where the opening in the
delaminated region cannot be seen when the beam is subjected
to a bigger centrifugal force. This phenomenon is physically

admissible.

5. Conclusions

In this paper, a finite element model for a rotating composite
beam with a through-width delamination is presented. The
model includes the rotary inertia and transverse shear effects,

as well as material coupling effects. Parametric studies have
been conducted to study the effects of the speed of rotation,
delamination length and locations, material anisotropy and

beam hub radius on the vibration characteristics of the beam.
Based on the results the following conclusions are made:

1. The beam with delamination experiences reduction in natu-
ral frequencies due to the loss of stiffness and this reduction
is more significant as the delamination length increases.
However, as the rotating speed increases the natural fre-

quency increases that is due to the stiffening of the sub-
beams caused by the centrifugal force.

2. The thicknesswise location of the delamination has con-

siderable effect on the vibrational characteristics of the
delaminated beam. Indeed, when the stiffness of sub-beams
2 and 3 is close to each other, there is no significant delam-

ination opening and closing during the vibration and hence
the free and constrained modes predict the same values for
natural frequencies.

3. The difference between frequencies based on the free and
constrained modes is not affected by changing the hub
radius. In other words, if the opening phenomenon is seen
in the vibrational motion of the delaminated region, the

hub radius does not have any influence on it.
4. It is observed that by increasing the rotating speed the free

and constrained modes predict the same values for natural

frequencies and therefore the opening between sub-beams 2
and 3 is not seen.
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