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Abstract

Conditional autoregressive models are commonly used to represent spatial autocorre-
lation in data relating to a set of non-overlapping areal units, which arise in a wide variety
of applications including agriculture, education, epidemiology and image analysis. Such
models are typically specified in a hierarchical Bayesian framework, with inference based
on Markov chain Monte Carlo (MCMC) simulation. The most widely used software to
fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R pack-
age CARBayes. The main advantage of CARBayes compared with the BUGS software
is its ease of use, because: (1) the spatial adjacency information is easy to specify as a
binary neighbourhood matrix; and (2) given the neighbourhood matrix the models can
be implemented by a single function call in R. This paper outlines the general class of
Bayesian hierarchical models that can be implemented in the CARBayes software, de-
scribes their implementation via MCMC simulation techniques, and illustrates their use
with two worked examples in the fields of house price analysis and disease mapping.
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1. Introduction

Data relating to a set of non-overlapping spatial areal units are prevalent in many fields,
including agriculture (Besag and Higdon 1999), ecology (Brewer and Nolan 2007), education
(Wall 2004), epidemiology (Lee 2011) and image analysis (Gavin and Jennison 1997). There
are numerous motivations for modeling such data, including ecological regression (see Wake-
field 2007; Lee, Ferguson, and Mitchell 2009), disease mapping (see Green and Richardson
2002; Lee 2011) and Wombling (see Lu, Reilly, Banerjee, and Carlin 2007; Ma and Carlin
2007). The set of areal units on which data are recorded can form a regular lattice or differ
largely in both shape and size, with examples of the latter including the set of electoral wards
or census tracts corresponding to a city or county. In either case such data typically exhibit
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spatial autocorrelation, with observations from areal units close together tending to have sim-
ilar values. A proportion of this spatial autocorrelation may be modeled by including known
covariate risk factors in a regression model, but it is common for spatial structure to remain in
the residuals after accounting for these covariate effects. This residual spatial autocorrelation
can be induced by a number of factors, and violates the assumption of independence that is
common in many regression models. One possible cause is unmeasured confounding, which
occurs when an important spatially correlated covariate is either unmeasured or unknown.
The spatial structure in this covariate induces spatial autocorrelation into the response, which
hence cannot be accounted for in a regression model. Other possible causes of residual spa-
tial autocorrelation are neighborhood effects, where subjects’ behavior is influenced by that
of neighboring subjects, and grouping effects, where subjects choose to be close to similar
subjects.

The most common remedy for this residual autocorrelation is to augment the linear predictor
with a set of spatially correlated random effects, as part of a Bayesian hierarchical model.
These random effects are typically represented with a conditional autoregressive (CAR; Besag,
York, and Mollié 1991) model, which induces spatial autocorrelation through the adjacency
structure of the areal units. A number of CAR priors have been proposed in the literature,
including the intrinsic and Besag-York-Mollié (BYM) models (both Besag et al. 1991), as well
as alternatives developed by Leroux, Lei, and Breslow (1999) and Stern and Cressie (1999).
However, the CAR priors listed above force the random effects to exhibit a single global level
of spatial autocorrelation, ranging from independence through to strong spatial smoothing.
Such a uniform level of spatial smoothness for the entire region is unrealistic for real data,
which are instead likely to exhibit sub-areas of spatial autocorrelation separated by discon-
tinuities. Such localized spatial smoothing may occur where rich and poor communities live
side-by-side, and in this context the response variable is likely to evolve smoothly within each
community with a sudden change in its value at the border where the two communities meet.
A number of approaches have been proposed for extending the class of CAR priors to deal
with localized spatial smoothing, including papers by Lawson and Clark (2002) (combining
the intrinsic model with a ‘jump’ component for discontinuities), Brewer and Nolan (2007)
(variable smoothing via a spatially varying variance), Lu et al. (2007) (modeling the adja-
cency structure of the areal units using logistic regression), Reich and Hodges (2008) (variable
smoothing via a spatially varying variance in a spatio-temporal setting) and Lee and Mitchell
(2012) (modeling the partial correlation between random effects in adjacent areal units as a
function of their dissimilarity).

The models described above are typically implemented in a Bayesian setting, where infer-
ence is based on Markov chain Monte Carlo (MCMC) simulation. The most commonly used
software to implement this class of models is provided by the BUGS project (Lunn, Spiegel-
halter, Thomas, and Best 2009, WinBUGS and OpenBUGS), which has in-built functions
car.normal and car.proper to implement the intrinsic, BYM and Stern and Cressie (1999)
models, as well as allowing users to write code to implement their own spatial random ef-
fects models. The intrinsic and BYM models can also be implemented in BayesX (Brezger,
Kneib, and Lang 2005), while the R software (R Core Team 2013) has packages CARramps
(for Gaussian data, Cowles and Bonett 2012), hSDM (for binomial data, Vieilledent, Latimer,
Gelfand, Merow, Wilson, Mortier, and Jr. 2012) spatcounts (for count data including Pois-
son and zero-inflated Poisson distributions, Schabenberger 2009) and spdep (for Gaussian
data, Bivand 2013) that can also implement a restricted set of CAR models. These mod-
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els can also be implemented in R using integrated nested Laplace approximations (INLA,
http://www.R-INLA.org/), using the package INLA (Rue, Martino, and Chopin 2009).

However, each of these software packages either can only fit a limited set of CAR models or
require a degree of programming to implement them, which is the motivation for creating
the R package CARBayes. The main advantage of this package is its ease of use in fitting
CAR models, because: (1) the spatial adjacency information is easy to specify as a binary
neighborhood matrix; and (2) given the neighborhood matrix the models can be implemented
by a single function call in R. In addition, CARBayes can implement a much wider class of
CAR models than is possible using the other R packages listed above, as the response data can
follow binomial, Gaussian or Poisson distributions. We note that CARBayes is only designed
to fit CAR models (for a full list of models see Sections 2 and 3), and is in no way a competitor
to the general purpose BUGS software for Bayesian modeling.

Therefore the aim of this paper is to present the software CARBayes, by outlining the class
of models that it can implement and illustrating its use by means of two worked examples.
The remainder of this paper is organized as follows. Section 2 outlines the general Bayesian
hierarchical model that can be implemented in the CARBayes package, while Section 3 gives
details about the software. Sections 4 and 5 give two worked examples of using the software,
including how to create the neighborhood matrix and produce spatial maps of the results.
Finally, Section 6 contains a concluding discussion, and outlines areas for future development.

2. Bayesian hierarchical models for spatial areal unit data

This section outlines the general Bayesian hierarchical model for spatial areal unit data that
can be implemented in the CARBayes package.

2.1. Level 1: Data likelihood

The study region S is partitioned into n non-overlapping areal units S = {S1, . . . ,Sn}, which
are linked to a corresponding set of responses Y = (Y1, . . . , Yn)>, and a vector of known
offsets O = (O1, . . . , On)>. The spatial pattern in the response is modeled by a matrix of
covariates X = (x>1 , . . . ,x

>
n )> and a set of random effects φ = (φ1, . . . , φn), the latter of which

are included to model any spatial autocorrelation that remains in the data after the covariate
effects have been accounted for. The vector of covariates for areal unit Sk are denoted by
x>k = (1, xk1, . . . , xkp), the first of which corresponds to an intercept term. The general model
that CARBayes can implement is an extension of a generalized linear model and is given by

Yk|µk ∼ f(yk|µk, ν2) for k = 1, . . . , n, (1)

g(µk) = x>k β + φk +Ok.

The responses Yk come from an exponential family of distributions f(yk|µk, ν2), and in CAR-
Bayes these can be the binomial, Gaussian or Poisson families. The expected value of Yk is
denoted by E(Yk) = µk, while ν2 is an additional scale parameter that is required if the Gaus-
sian family is used. The expected values of the responses are related to the linear predictor
via an invertible link function g(.), which in this software is either the logit (binomial family),
the identity (Gaussian family) or the natural log (Poisson family) function. The vector of
regression parameters are denoted by β = (β0, . . . , βp), and non-linear covariate effects can
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be incorporated into the above model by including natural cubic spline or polynomial basis
functions in X.

2.2. Level 2: Prior distributions

An independent Gaussian prior is specified for each regression parameter βj , that is βj ∼
N(mj , vj) for j = 0, . . . , p, and the default values specified by the software are (mj = 0, vj =
1000). The scale parameter ν2 for the Gaussian likelihood is assigned a uniform prior distri-
bution, that is ν2 ∼ U(0,Mν), where the diffuse specification Mν = 1000 is the default value.
We note that a commonly used alternative prior for variance parameters is the conjugate
inverse-gamma distribution, but it is not used here because it is difficult to choose the hyper-
parameters so that it is non-informative for very small values of ν2 (for details see Gelman
2006).

CARBayes can implement a number of different random effects models, with the simplest
being the independence prior

θk ∼ N(0, σ2), (2)

σ2 ∼ U(0,Mσ),

where θk replaces φk in the data likelihood (1). The variance parameter is assigned a uniform
prior on the interval (0,Mσ), where as before the default value is Mσ = 1000. This specifi-
cation is appropriate if the covariates included in model (1) have removed all of the spatial
structure in the response, leaving the random effects to account for the possible effects of
over-dispersion (for binomial and Poisson models). However, for most data sets there is likely
to be residual spatial autocorrelation, in which case one of the global or local CAR priors
described below is required.

Global CAR priors

Four different CAR priors are commonly used for modeling spatial autocorrelation in the
statistics literature, the intrinsic and BYM models (both Besag et al. 1991), as well as the
alternatives developed by Leroux et al. (1999) and Stern and Cressie (1999). Each model
is a special case of a Gaussian Markov random field (GMRF), and can be written in the
general form φ ∼ N(0, τ2Q−1), where Q is a precision matrix that may be singular (intrinsic
model). This matrix controls the spatial autocorrelation structure of the random effects, and
is based on a non-negative symmetric n × n neighborhood or weight matrix W . A binary
specification based on geographical contiguity is most commonly used, where wkj = 1 if
areal units (Sk,Sj) share a common border (denoted k ∼ j), and is zero otherwise. This
specification forces (φk, φj) relating to geographically adjacent areas (that is wkj = 1) to be
correlated, whereas random effects relating to non-contiguous areal units are conditionally
independent given the values of the remaining random effects. CAR priors are commonly
specified as a set of n univariate full conditional distributions f(φk|φ−k) for k = 1, . . . , n
(where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φn)), rather than via the multivariate specification
described above. The first CAR prior to be proposed was the intrinsic model (Besag et al.
1991), which is given by

φk|φ−k ∼ N

(∑n
i=1wkiφi∑n
i=1wki

,
τ2∑n
i=1wki

)
. (3)
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The conditional expectation is the average of the random effects in neighboring areas, while
the conditional variance is inversely proportional to the number of neighbors. The latter is
appropriate because if the random effects are spatially correlated, then the more neighbors an
area has the more information there is from its neighbors about the value of its random effect.
In common with the other variance parameters, τ2 is assigned a uniform prior on the interval
(0,Mτ ), with the default value being Mτ = 1000. The limitation with this model is that
it can only represent strong spatial autocorrelation, and is well known to produce random
effects that are overly smooth. Therefore, the same authors proposed an extension to allow for
both weak and strong spatial autocorrelation, by replacing φk in (1) with θk + φk, which are
respectively defined by (2) and (3). This model is known as the BYM or convolution model,
and is the most commonly used CAR model in practice. However, it requires two random
effects to be estimated for each data point, whereas only their sum is identifiable from the
data. Therefore, Leroux et al. (1999) and Stern and Cressie (1999) proposed alternative CAR
priors for modeling varying strengths of spatial autocorrelation, using only a single set of
random effects. The model by Leroux et al. (1999) is given by

φk|φ−k ∼ N

(
ρ
∑n

i=1wkiφi
ρ
∑n

i=1wki + 1− ρ
,

τ2

ρ
∑n

i=1wki + 1− ρ

)
, (4)

while the proposal of Stern and Cressie (1999) is

φk|φ−k ∼ N

(
ρ
∑n

i=1wkiφi∑n
i=1wki

,
τ2∑n
i=1wki

)
. (5)

In both cases ρ is a spatial autocorrelation parameter, with ρ = 0 corresponding to inde-
pendence, while ρ = 1 corresponds to strong spatial autocorrelation. A uniform prior on
the unit interval is specified for ρ, that is ρ ∼ U(0, 1), while the usual uniform prior on the
interval (0,Mτ ) is adopted for τ2. In both cases when ρ = 1 the intrinsic model proposed
by Besag et al. (1991) is obtained, while when ρ = 0 the only difference is the denominator
in the conditional variance. These global CAR models were compared in a recent review by
Lee (2011), who concluded that the model proposed by Leroux et al. (1999) was the most
appealing from both theoretical and practical standpoints.

Local CAR priors

The CAR priors described above enforce a single global level of spatial smoothing for the set
of random effects, which for model (4) is controlled by ρ. This is illustrated by the partial
correlation structure implied by that model, which for (φk, φj) is given by

COR(φk, φj |φ−kj) =
ρwkj√

(ρ
∑n

i=1wki + 1− ρ)(ρ
∑n

i=1wji + 1− ρ)
. (6)

For non-neighboring areas (where wkj = 0) the random effects are conditionally independent,
while for neighboring areas their partial correlation is controlled by ρ. However, this repre-
sentation of spatial smoothness is likely to be overly simplistic in practice, as the random
effects surface is likely to include sub-regions of smooth evolution as well as boundaries where
abrupt step changes occur. The paper by Lee and Mitchell (2012) proposes a method for
capturing such localized spatial structure, including the identification of boundaries in the
random effects surface. The underlying idea is to model the elements of W corresponding
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to geographically adjacent areas as binary random quantities, rather than assuming they are
fixed at one. Conversely, if areal units (Sk,Sj) do not share a common border then wkj is
fixed at zero. From (6), it is straightforward to see that if wkj is estimated as one then (φk, φj)
are spatially correlated, and are smoothed over in the modeling process. In contrast, if wkj
is estimated as zero then no smoothing is imparted between (φk, φj), as they are modeled
as conditionally independent. In this case a boundary is said to exist in the random effects
surface between areal units (Sk,Sj). We note that if covariates are excluded from (1) then
any boundaries identified also relate to the mean surface µ = (µ1, . . . , µn) in the absence of an
offset term, because it has the same spatial structure as the random effects as g(µk) = β0+φk.

The model proposed by Lee and Mitchell (2012) is based on the Poisson log-linear specification
of (1) and the CAR prior (4), with the restriction that ρ is fixed at 0.99 (although CARBayes
can also estimate ρ in this model). This restriction was made by Lee and Mitchell (2012) to
ensure that the random effects exhibit strong spatial smoothing globally, which can be altered
locally by estimating {wkj |k ∼ j}. They model each wkj as a function of the dissimilarity
between areal units (Sk,Sj), because large differences in the response are likely to occur where
neighboring populations are very different. This dissimilarity is captured by q non-negative
dissimilarity metrics zkj = (zkj1, . . . , zkjq), which could include social or physical factors,
such as the absolute difference in smoking rates, or the proportion of the shared border that
is blocked by a physical barrier (such as a river or railway line) and cannot be crossed. Using
these measures of dissimilarity, {wkj |k ∼ j} are collectively modeled as

wkj(α) =

{
1 if exp (−

∑q
i=1 zkjiαi) ≥ 0.5 and k ∼ j

0 otherwise
, (7)

αi ∼ U(0,Mi) for i = 1, . . . , q.

The q regression parameters α = (α1, . . . , αq) determine the effects of the dissimilarity metrics
on {wkj |k ∼ j}, and if αi < − ln(0.5)/max{zkji}, then the ith dissimilarity metric has not
solely identified any boundaries because exp(−αizkji) > 0.5 for all k ∼ j. The aim of Lee
and Mitchell (2012) was to identify the locations of any boundaries (abrupt step changes) in
disease risk surfaces, so the available covariates were used to construct dissimilarity metrics
rather than being incorporated into the linear predictor. In contrast, if the aim of the analysis
was to explain the spatial pattern in the response, then covariates would be included in (1),
and only metrics directly describing the dissimilarity between two areas, such as the existence
of a physical boundary or the distance between the area centroids, would be included in (7).

3. CARBayes

3.1. Obtaining the software

The CARBayes software (Lee 2013) is an add-on package to the statistical software R (≥
2.10.0), and is freely available from the Comprehensive R Archive Network (CRAN, http:
//CRAN.R-project.org/package=CARBayes). In addition to the base implementation of
R, it requires the following packages: MASS (Venables and Ripley 2002), coda (Plummer,
Best, Cowles, and Vines 2006), spam (Furrer and Sain 2010) and truncdist (Novomestky and
Nadarajah 2012). Once R and the required packages have been installed, CARBayes can be
loaded using the following code.

http://CRAN.R-project.org/package=CARBayes
http://CRAN.R-project.org/package=CARBayes
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R> library("CARBayes")

Note, the packages listed in the previous paragraph are automatically attached or their names-
pace loaded when package CARBayes is loaded, as they are the only ones required for CAR-
Bayes to implement the Bayesian spatial models described in the previous section. However,
a complete spatial analysis will typically also include the creation of the neighborhood matrix
W from a shapefile, the production of spatial maps of the fitted values and residuals, and tests
for the presence of spatial autocorrelation. To achieve these tasks the following additional
packages are also required, which need to be loaded into R using the library() command
as above: boot (Canty and Ripley 2013; Davison and Hinkley 1997), deldir (Turner 2013),
foreign, grid, maptools (Bivand and Lewin-Koh 2013), Matrix (Bates and Mächler 2013),
nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2013), shapefiles (Stabler 2013),
sp (Bivand, Pebesma, and Gómez-Rubio 2013), spdep and splines. These packages have also
been loaded for the analyses presented in Sections 4 and 5.

3.2. Functionality

CARBayes can fit the general exponential family Bayesian hierarchical model outlined in the
previous section, where the response data can be binomial, Gaussian or Poisson. The names
of the functions have the form of ‘poisson.lerouxCAR’, where the first part specifies the
likelihood model while the second part after the ‘.’ specifies the random effects prior model.
The prior models listed below can be implemented by the software, where the ‘dist ’ in the
function name should be replaced by one of ‘binomial’, ‘gaussian’ or ‘poisson’.

1. dist.independent() – the independence model given by (2).

2. dist.iarCAR() – the intrinsic autoregressive model proposed by Besag et al. (1991) and
given by (3).

3. dist.bymCAR() – the BYM model proposed by Besag et al. (1991) and given by a linear
combination of (2) and (3).

4. dist.lerouxCAR() – the CAR prior proposed by Leroux et al. (1999) and given by (4).

5. dist.properCAR() – the CAR prior proposed by Stern and Cressie (1999) and given by
(5).

6. dist.dissimilarityCAR() – the local spatial smoothing model proposed by Lee and
Mitchell (2012) and given by (4) and (7).

The linear predictor for each of the Bayesian hierarchical models is specified as an R formula

object, in common with the glm() and gam() functions. The spatial neighborhood information
required to run the CAR models needs to be provided as an n× n neighborhood matrix W ,
which is simpler to construct than the series of list objects required by the BUGS software.
A full list of arguments for each function can be found in the manual accompanying the
package. In addition to the functions listed above, the package contains two further functions
combine.data.shapefile() and highlight.borders(). These functions aid in plotting
spatial maps of the data, and their use is illustrated in Sections 4 and 5 of this paper. Finally,
the package also contains the data files needed to recreate these analyses.
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3.3. Inference

Inference for all of the Bayesian hierarchical models is based on MCMC simulation, using
a combination of Gibbs sampling and Metropolis steps. The variance parameters are Gibbs
sampled from their full conditional truncated inverse gamma distributions, while the remain-
ing parameters are updated using Metropolis steps with univariate or multivariate random
walk proposal distributions. The exception to this is for Gaussian response data, where the
covariate regression parameters and the random effects can also be Gibbs sampled. The soft-
ware prints a message to the R console after every 1,000 MCMC iterations, which allows the
user to monitor the function’s progress. If the fitted model is printed, summary results are
shown including details of the model fitted, parameter estimates and uncertainty intervals.

4. Example 1: Property prices in Greater Glasgow

The utility of the CARBayes software is illustrated by modeling the spatial pattern in average
property prices across Greater Glasgow, Scotland, in 2008. This is an ecological regression
analysis, whose aim is to identify the factors that affect property prices and quantify their
effects.

4.1. Data and exploratory analysis

The data come from the Scottish Neighborhood Statistics (SNS) database (http://www.sns.
gov.uk/), but are also included with the CARBayes software. The study region is the Greater
Glasgow and Clyde health board, which is split into 271 intermediate geographies (IG). These
IGs are small areas that have a median area of 124 hectares and a median population of 4,239.
The data come in two parts. The first is a ‘comma separated value’ (CSV) file housedata.csv,
which contains the response and covariate data as well as a column containing the unique
identifier (IG) for each area. The second part of the data is a shapefile, which comprises
shp.shp containing the polygons, and dbf.dbf containing the lookup file linking each area
(via IG) to a polygon. These data can be read into R using the following code, provided that
the working directory has been set to the location of the data.

R> housedata <- read.csv(file = "housedata.csv", row.names = 1)

R> shp <- read.shp(shp.name = "shp.shp")

R> dbf <- read.dbf(dbf.name = "dbf.dbf")

Note, as these data are all included in the CARBayes package they can each be loaded into
R using the data() function instead, i.e., using the following code:

R> data("housedata", package = "CARBayes")

R> data("shp", package = "CARBayes")

R> data("dbf", package = "CARBayes")

The structure of housedata is shown below using the head() function, and with the above
read.csv() command, the unique identifier (IG) has been turned into the row names of the
data frame.

R> head(housedata)

http://www.sns.gov.uk/
http://www.sns.gov.uk/
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Percentiles
Variable 0% 25% 50% 75% 100%

House price (in thousands) 50.0 95.0 122.0 158.4 372.8
Crime rate (per 10,000) 85.0 303.5 519.0 733.0 8009.0
Number of rooms (median) 3.0 3.0 4.0 4.0 6.0
Property sales (%) 0.2 2.3 3.1 4.1 10.6
Drive time to a shop (minutes) 0.3 0.9 1.3 1.9 8.5

Table 1: Summary of the distribution of the data.

price crime rooms sales driveshop type

S02000260 112.250 390 3 68 1.2 flat

S02000261 156.875 116 5 26 2.0 semi

S02000262 178.111 196 5 34 1.7 semi

S02000263 249.725 146 5 80 1.5 detached

S02000264 174.500 288 4 60 0.8 semi

S02000265 163.521 342 4 24 2.5 semi

These data are summarized in Table 1, which displays the percentiles of their distributions.
The response variable in this study is the median price (in thousands) of all properties sold
in 2008 in each IG, with that year being chosen because covariate data for later years are
not available. The table shows large variation in this variable, with average prices ranging
between 50,000 and 372,800 British pounds across the study region. The first covariate in
this study is the crime rate in each IG, because areas with higher crime rates are likely to be
less desirable to live in. Crime rate is measured as the total number of recorded crimes in
each IG per 10,000 people that live there, and the values range between 85 and 1,994 with
the addition of a single large outlier of 8,009. The location of this outlier is the city center of
Glasgow, and the high crime rate is likely to be caused by the large number of visitors to this
part of the city both during the day and at night. Therefore, as this area has an artificially
high crime rate, it is removed from the data set using the following code.

R> housedata <- housedata[!rownames(housedata) == "S02000655", ]

Other covariates included in this study are the median number of rooms in a property, the
percentage of properties that sold in a year, and the average time taken to drive to the nearest
shopping center. Finally, a categorical variable measuring the most prevalent property type in
each area is available, with levels: ‘flat’ (68% of areas), ‘terraced’ (7%), ‘semi-detached’ (13%)
and ‘detached’ (12%). The next step in the analysis is to combine the data with the shapefile
using the CARBayes function combine.data.shapefile(), which allows spatial maps of the
variables in the data frame housedata to be produced. The function requires the row names
of housedata to appear in the first column of the lookup table in the dbf part of the shapefile.
We note that housedata only relates to a subset of the areas in the shapefile, which contains
intermediate geographies for the whole of Scotland. The data and shapefile can be combined
with the code

R> data.combined <- combine.data.shapefile(data = housedata, shp = shp,

+ dbf = dbf)
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Figure 1: Map displaying median property prices in Greater Glasgow (in thousands).

which produces an object data.combined of class ‘SpatialPolygonsDataFrame’, which is an
object type from the sp package. A spatial map of this response variable can be plotted using
the functionality of the sp package, using the following R code.

R> northarrow <- list("SpatialPolygonsRescale", layout.north.arrow(),

+ offset = c(220000, 647000), scale = 4000)

R> scalebar <- list("SpatialPolygonsRescale", layout.scale.bar(),

+ offset = c(225000, 647000), scale = 10000,

+ fill = c("transparent", "black"))

R> text1 <- list("sp.text", c(225000, 649000), "0")

R> text2 <- list("sp.text", c(230000, 649000), "5000 m")

R> spplot(data.combined, "price",

+ sp.layout = list(northarrow, scalebar, text1, text2),

+ at = seq(min(housedata$price) - 1, max(housedata$price) + 1,

+ length.out = 8),

+ col.regions = c("#FEE5D9", "#FCBBA1", "#FC9272", "#FB6A4A", "#EF3B2C",

+ "#CB181D", "#99000D"))

The plotting is achieved by the spplot() function, with the preceding lines adding a North
arrow, a scale bar and accompanying text. The resulting plot is shown in Figure 1, which
suggests that Glasgow has a number of property sub-markets, whose prices are not related to
those in neighboring areas. An example of this is the two groups of darker red regions (more
expensive properties) North of the river Clyde (the thin white line running South East), which
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are the highly sought after Westerton / Bearsden (Northerly cluster) and Dowanhill/Hyndland
(central cluster) districts.

4.2. Non-spatial modeling

The natural log of the median property price variable is treated as the response and assumed
to be Gaussian, and an initial covariate only model is built in a frequentist framework using
linear models. Initial plots of the data using the pairs() command suggest that the natural
logs of both the crime rate and the drive time to a shopping center are linearly related to the
response, and the transformation of the variables is achieved with the following commands.

R> housedata$logprice <- log(housedata$price)

R> housedata$logcrime <- log(housedata$crime)

R> housedata$logdriveshop <- log(housedata$driveshop)

In the fitted model all of the numeric covariates are significantly related to the response at the
5% level, suggesting they all play an important role in explaining the spatial pattern in median
property price. The predominant property type variable also appears to be important, with
areas where the level is ‘detached’ (the baseline level) having significantly higher property
prices than the other three levels. This covariate model can be fitted to the data using the
following R code:

R> form <- paste("logprice ~ logcrime + rooms + sales + factor(type) +",

+ "logdriveshop")

R> model <- lm(formula = form)

A Moran’s I permutation test for spatial autocorrelation was then applied to the residuals
from this model based on 10,000 random permutations, using the functionality of the spdep
package. The Moran’s I statistic equals 0.2768 with a corresponding p value of 0.000099,
which suggests that the residuals contain substantial positive spatial autocorrelation. Code to
implement the test is shown below. The first two lines turn the ‘SpatialPolygonsDataFrame’
object data.combined into an ‘nb’ and then a ‘listw’ object inheriting from class ‘nb’, which
is required by the moran.mc() function.

R> W.nb <- poly2nb(data.combined, row.names = rownames(housedata))

R> W.list <- nb2listw(W.nb, style = "B")

R> resid.model <- residuals(model)

R> moran.mc(x = resid.model, listw = W.list, nsim = 10000)

Monte-Carlo simulation of Moran's I

data: resid.model

weights: W.list

number of simulations + 1: 10001

statistic = 0.2768, observed rank = 10001, p-value = 9.999e-05

alternative hypothesis: greater
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4.3. Spatial modeling with CARBayes

The residual spatial autocorrelation can be accounted for by adding a set of random effects
to the model, using the functions outlined in Section 3. We illustrate this by applying model
(5) to the data, because it allows a direct comparison of the CARBayes and BUGS software
packages, as the latter has the inbuilt function car.proper to implement this model. The
code to implement this model in CARBayes is shown below, where the first line creates the
binary neighborhood matrix W.mat from the W.nb object.

R> W.mat <- nb2mat(W.nb, style = "B")

R> model.spatial <- gaussian.properCAR(as.formula(form), data = housedata,

+ W = W.mat, burnin = 20000, n.sample = 100000, thin = 10)

Inference for this model is based on 8,000 MCMC samples, which were obtained by running the
chain for 100,000 samples, with 20,000 being discarded as the burn-in period and the remaining
80,000 being thinned by 10 to reduce the autocorrelation. When the result is printed, it
produces the summary output shown below. The first part of the output is a description of
the model that was fitted, including the likelihood and random effects specifications, as well
as the covariates included in the linear predictor. The second part summarizes the parameters
(except for the random effects) by means of posterior medians, 95% credible intervals, and
acceptance rates.

R> model.spatial

#################

#### Model fitted

#################

Likelihood model - Gaussian (identity link function)

Random effects model - Proper CAR

Regression equation - logprice ~ logcrime + rooms + sales + factor(type) +

logdriveshop

############

#### Results

############

Posterior quantiles and DIC

Median 2.5% 97.5% n.sample % accept

(Intercept) 4.7531 4.2710 5.2326 8000 100

logcrime -0.1114 -0.1721 -0.0508 8000 100

rooms 0.2225 0.1728 0.2731 8000 100

sales 0.0023 0.0017 0.0029 8000 100

factor(type)flat -0.2547 -0.3640 -0.1399 8000 100

factor(type)semi -0.1623 -0.2625 -0.0656 8000 100

factor(type)terrace -0.2900 -0.4144 -0.1661 8000 100

logdriveshop -0.0019 -0.0577 0.0553 8000 100

nu2 0.0239 0.0144 0.0332 8000 100

tau2 0.0512 0.0239 0.0983 8000 100
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rho 0.9853 0.9420 0.9979 8000 60

DIC = -153.3135 p.d = 96.831

Model output

In addition to producing the summary table above, fitting the model returns a list with the
following components, which can be viewed using the summary() function as shown below.

R> summary(model.spatial)

Length Class Mode

formula 3 formula call

samples 5 -none- list

fitted.values 1350 -none- numeric

random.effects 1350 -none- numeric

residuals 1350 -none- numeric

W.summary 72900 -none- numeric

DIC 1 -none- numeric

p.d 1 -none- numeric

summary.results 55 -none- numeric

model 2 -none- character

accept 5 -none- numeric

The first element of this list is the fixed effects regression model specified by the formula
argument. The next five elements are matrices containing the thinned and post burn-in
MCMC samples for each set of parameters. For example, samples.beta is an 8, 000×8 matrix
containing the MCMC samples for all the regression parameters. The next three elements
in the list fitted.values, random.effects and residuals comprise matrices of dimension
n× 5 (here n = 270), which summarize the posterior distribution of the fitted values, random
effects and residuals respectively. Each row corresponds to a single area, while the columns
represent the posterior mean, standard deviation and 50th, 2.5th and 97.5th percentiles of the
distribution. The DIC element displays the deviance information criterion (DIC; Spiegelhalter,
Best, Carlin, and Van der Linde 2002), which is a Bayesian measure of overall model fit used
for model comparison. This quantity trades off the overall fit to the data against the effective
number of parameters in the model, in a similar way to the AIC and BIC criteria. The list
also contains p.d, which is the estimated effective number of parameters in the model. The
DIC criterion is used for comparing the overall fit of multiple models applied to the same
data, and lower values indicate a better fitting model. For further details about Bayesian
modeling see Gelman, Carlin, Stern, and Rubin (2003).

Parameter estimates

The printed output above shows that all covariates exhibit substantial effects on the response
except the natural log of the time taken to drive to a shopping center, as their 95% credible
intervals do not include zero. For example, increasing the average number of rooms by one is
estimated to increase the average property price by 24.9%, because the ratio of the average
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Figure 2: Posterior samples and density plot for ρ.

property prices that differ only in having m and m+ 1 rooms is equal to exp(0.2224) = 1.249.
Similarly, IGs that predominately comprise flats have lower median property prices by around
22.4% (1 − exp(−0.2542) = 0.224), compared with the baseline category of ‘detached’. The
above output also shows that the random effects have modeled substantial spatial autocor-
relation, as the posterior median for the spatial autocorrelation parameter ρ is 0.9852. The
entire posterior distribution (as summarized by the MCMC output) can be viewed using the
code

R> plot(model.spatial$samples$rho)

and the resulting plot is displayed in Figure 2. The matrix of MCMC samples is returned
as an ‘mcmc’ object, which is defined in the coda package. Plotting this object thus yields a
trace plot (left panel) and a density estimate (right panel), and further MCMC diagnostics
are available from the coda package. The estimated parameters are not highly correlated with
each other, for example, the correlations between the regression parameters range between
−0.87 and 0.63, with the middle 50% ranging between −0.09 and 0.17. The validity of
the parameter estimates from the CARBayes software were assessed by fitting the same
model in the BUGS software. The results of this comparison are displayed in Table 2, which
shows the point estimates (posterior medians) from the two software packages as well as the
percentage absolute difference relative to the larger of the two estimates. Results are shown
for the covariate effects (β), both variance parameters (τ2, ν2), and the correlation parameter
(ρ). Overall, the table shows good agreement between the two sets of point estimates, with
percentage absolute differences less than two for seven out of the ten parameters. The large
disparity between the two software packages over the estimation of the regression coefficient
for drive time to a shopping center is artificial, as both estimates are very close to zero
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Parameter CARBayes BUGS % difference

logcrime −0.1111 −0.1132 1.8
rooms 0.2224 0.2221 0.1
sales 0.0023 0.0023 0.0
flat −0.2542 −0.2501 1.6
semi −0.1626 −0.1596 1.8
terrace −0.2913 −0.2893 0.7
driveshop −0.0013 0.0024 154.2
ν2 0.0237 0.0247 4.0
τ2 0.0518 0.0447 13.7
ρ 0.9852 0.9901 0.5

Table 2: Comparison of the parameter estimates (posterior medians) from the CARBayes and
the BUGS software packages. The final column displays the absolute percentage difference in
the estimates relative to the larger of the two estimates.

(they differ in the sign). These estimates are accompanied by relatively wide 95% credible
intervals, and both software packages suggest that this covariate has no effect on the response.
The other biggest difference between the software packages concerns their estimation of the
random effects variance τ2, which is just under 14% larger using CARBayes. Currently, the
CARBayes package is much slower than the BUGS software (the model ran in this section
runs 17 times faster in BUGS), but a re-engineering of CARBayes using C++ is planned for
the near future, which will make the speeds more comparable.

Acceptance rates for the MCMC algorithm

The acceptance rate for ρ quantifies the proportion of times the value proposed by the
Metropolis updating step was accepted as the new value of the Markov chain. In contrast, due
to the conjugacy between the Gaussian likelihood and the prior distributions for (β,φ, ν2, τ2),
Gibbs sampling is employed for updating these parameters, which is the reason for the 100%
acceptance rate. If the likelihood was either binomial or Poisson then Metropolis updating
steps would be used for (β,φ) instead, and the acceptance rates would then be of interest to
the analyst. The obvious acceptance rate of 100% is shown here for consistency of presentation
with the summary output across different models.

5. Example 2: Identifying high-risk disease clusters

The second example illustrates the utility of the local CAR model proposed by Lee and
Mitchell (2012), which can identify boundaries that represent step changes in the (random
effects) response surface between geographically adjacent areal units. The aim in this analysis
is to identify boundaries in the risk surface of respiratory disease in Greater Glasgow, Scotland
in 2010, so that the spatial extent of high-risk clusters can be identified. The identification of
boundaries in spatial data is affectionately known as Wombling, after the seminal paper by
Womble (1951).
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5.1. Data and exploratory analysis

The data again relate to the Greater Glasgow and Clyde health board, and are also freely
available to download from http://www.sns.gov.uk/ (and are included with the CARBayes
software). However, the river Clyde partitions the study region into a Northern and a Southern
sub-region, and no areal units on opposite banks of the river border each other. This means
that boundaries could not be identified across the river, and therefore here we only consider
those areal units that are on the Northern side of the study region. This leaves 134 areal
units in the new smaller study region, and the data on respiratory disease risk are contained
in the file respiratorydata.csv. Note, the shapefiles are those used for the property price
analysis. These data sets can be read in using code similar to that presented in Section 4,
and the respiratory disease data are read into a data frame called respdata. They can be
viewed using head(respdata), which gives the following output.

observed2010 expected2010 incomedep2010

S02000618 105 105.12944 15

S02000613 85 69.41011 22

S02000623 37 87.85767 8

S02000626 90 89.41669 26

S02000636 41 97.55097 8

S02000645 47 84.86336 8

In common with the previous example these data are contained in the CARBayes package,
and can be loaded into R using the data() function. They contain the numbers of hospital
admissions in 2010 in each IG due to respiratory disease (International Classification of Disease
tenth revision codes J00–J99), which is stored in the observed2010 column. However, these
observed numbers will depend on the size and demographic structure of the populations living
in each IG, and these factors need to be adjusted for before estimating disease risk. This is
typically achieved by computing the expected numbers of hospital admissions in each IG
based on this demographic information, using either internal or external standardization. For
these data we use external standardization, based on age and sex standardized rates for the
whole of Scotland. These expected numbers are stored in the expected2010 column, and the
simplest measure of disease risk is the standardized incidence ratio (SIR), which is the ratio of
the observed to the expected numbers of hospital admissions. The SIR is added to respdata

using the code below, which also creates the spatial objects that are required for the analysis
(see Section 4 for details).

R> respdata$SIR2010 <- respdata$observed2010/respdata$expected2010

R> data.combined <- combine.data.shapefile(data = respdata, shp = shp,

+ dbf = dbf)

R> W.nb <- poly2nb(data.combined, row.names = rownames(respdata))

R> W.mat <- nb2mat(W.nb, style = "B")

A map of the SIR for these data is displayed in Figure 3, which was created using similar code
to that provided in Section 4 for mapping the median property price data. Values of the SIR
above one relate to areas exhibiting above average risks, while values below one correspond to
below average risks. The figure shows evidence of localized spatial structure in these disease
data, with numerous different locations where high and low risk areas border each other. This

http://www.sns.gov.uk/
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Figure 3: Map displaying the SIR for respiratory disease risk in the Northern half of Greater
Glasgow in 2010.

in turn suggests that boundaries are likely to be present in these data, and their identification
is the goal of this analysis. The method proposed by Lee and Mitchell (2012) identifies these
boundaries using dissimilarity metrics, which are non-negative measures of the dissimilarity
between all pairs of adjacent areas. In this example we use the absolute difference in the
percentage of people in each IG who are defined to be income deprived (i.e., are in receipt
of a combination of means tested benefits), because it is well known that socio-economic
deprivation plays a large role in determining people’s health. The income data for each IG
are contained in the incomedep2010 column in respdata.

5.2. Spatial modeling with CARBayes

Let the observed and expected numbers of hospital admissions be denoted by Y = (Y1, . . . , Yn)
and E = (E1, . . . , En) respectively. Then as the observed numbers of hospital admissions
are counts, a Poisson likelihood model given by Yk ∼ Poisson(EkRk) is appropriate, where
Rk represents disease risk in areal unit Sk. A log-linear model is specified for Rk, that is,
ln(Rk) = β0 +φk, and for a general review of disease mapping see Wakefield (2007). We note
that in fitting this model in CARBayes, the offset is specified on the linear predictor scale
rather than the expected value scale, so in this analysis the offset is log(E) rather than E.
The dissimilarity metric used here is the absolute difference in the level of income deprivation,
which can be created from the vector of area level income deprivation scores using the following
code.

R> Z.income <- as.matrix(dist(cbind(respdata$incomedep2010,

+ respdata$incomedep2010), method = "manhattan", diag = TRUE,

+ upper = TRUE)) * W.mat/2

The function to implement the localized CAR model is called poisson.dissimilarityCAR(),
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and it takes the same arguments as the global CAR models except that it additionally requires
the dissimilarity metrics. These are required in the form of a list of n× n matrices, and the
model is run using the following code.

R> form <- "observed2010 ~ offset(log(expected2010))"

R> model.dissimilarity <- poisson.dissimilarityCAR(as.formula(form),

+ data = respdata, W = W.mat, Z = list(Z.income = Z.income), rho = 0.99,

+ fix.rho = TRUE, burnin = 20000, n.sample = 100000, thin = 10)

Inference for this model is based on 8,000 MCMC samples, which were obtained by running
the chain for 100,000 samples, with 20,000 being discarded as the burn-in period and the
remaining 80,000 being thinned by 10 to reduce the autocorrelation. The first line of the
above code specifies the formula with an offset (the natural log of the expected numbers
of cases) but no covariates, the latter being required so that boundaries identified in the
random effects surface can also be interpreted as boundaries in the risk surface (that is
R = (R1, . . . , Rn)). The arguments rho = 0.99 and fix.rho = TRUE fix ρ to enforce strong
global spatial autocorrelation, which is altered locally by estimating the elements of W as
zero, for further details see Lee and Mitchell (2012). Printing the result produces the following
summary output.

R> model.dissimilarity

#################

#### Model fitted

#################

Likelihood model - Poisson (log link function)

Random effects model - Localised CAR

Dissimilarity metrics - Z.incomedep

Regression equation - observed2010 ~ offset(log(expected2010))

############

#### Results

############

Posterior quantiles and DIC

Median 2.5% 97.5% n.sample % accept alpha.min

(Intercept) -0.2202 -0.2410 -0.1996 8000 61.4 NA

tau2 0.1383 0.0836 0.1982 8000 100.0 NA

Z.incomedep 0.0516 0.0467 0.0621 8000 61.3 0.0158

DIC = 1057.11 p.d = 99.54436

The main difference between this and the corresponding output from the property price
analysis is the addition of a column in the parameter summary table headed alpha.min.
This column only applies to the dissimilarity metrics, which is why it is NA for the remaining
parameters. The value of alpha.min is the threshold value for the regression parameter
α, below which the dissimilarity metric has had no effect in identifying boundaries in the
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response (random effects) surface. A brief description is given in Section 2.2, while full
details are given in Lee and Mitchell (2012). For these data the posterior median and 95%
credible interval lie completely above this threshold, suggesting that the income deprivation
dissimilarity metric has identified a number of boundaries. The number and locations of these
boundaries are summarized in the element of the output list called W.posterior (obtained
with the code model.dissimilarity$W.summary$W.posterior), which is an n×n symmetric
matrix containing the posterior median for the set {wkj |k ∼ j}. Values equal to zero represent
a boundary, values equal to one correspond to no boundary, while NA values correspond to non-
adjacent areas. The locations of these boundaries can be overlaid on a map of the estimated
disease risk (that is the posterior median of R) using the following code.

R> border.locations <- model.dissimilarity$W.summary$W.posterior

R> risk.estimates <- model.dissimilarity$fitted.values[, 3]/

+ respdata$expected2010

R> data.combined@data <- data.frame(data.combined@data, risk.estimates)

R> boundary.final <- highlight.borders(border.locations = border.locations,

+ ID = rownames(respdata), shp = shp, dbf = dbf)

R> boundaries = list("sp.points", boundary.final, col = "white", pch = 19,

+ cex = 0.2)

R> northarrow <- list("SpatialPolygonsRescale", layout.north.arrow(),

+ offset = c(220000, 647000), scale = 4000)

R> scalebar <- list("SpatialPolygonsRescale", layout.scale.bar(),

+ offset = c(225000, 647000), scale = 10000,

+ fill = c("transparent", "black"))

R> text1 <- list("sp.text", c(225000, 649000), "0")

R> text2 <- list("sp.text", c(230000, 649000), "5000 m")

R> spplot(data.combined, "risk.estimates", sp.layout = list(northarrow,

+ scalebar, text1, text2, boundaries), scales = list(draw = TRUE),

+ at = seq(min(risk.estimates) - 0.1, max(risk.estimates) + 0.1,

+ length.out = 8),

+ col.regions = c("#FFFFB2", "#FED976", "#FEB24C", "#FD8D3C", "#FC4E2A",

+ "#E31A1C", "#B10026"))

The first line saves the matrix of border locations, while the second and third add the esti-
mated risk values to the data.combined object. The next two lines identify the boundary
points (using the CARBayes function highlight.borders()), and format them to enable
plotting. The remaining commands relate to the plotting, and are similar to those used to
produce the earlier spatial maps. The result of these commands are displayed in Figure 4,
which shows the fitted risk surface and the locations of the boundaries (denoted by white
dots). The model has identified 103 boundaries in the risk surface, which is 28.6% of the total
number of borders in the study region. The majority of these visually seem to correspond
to sizeable changes in the risk surface, suggesting that the model has the power to distin-
guish between boundaries and non-boundaries. The notable boundaries are the demarcation
between the low risk city center/west end of Glasgow in the middle of the region and the
deprived neighboring areas on both sides, which include Easterhouse/Parkhead in the East
and Knightswood/Drumchapel in the West. The other interesting feature of this map is that
the boundaries are not closed, suggesting that the spatial pattern in risk is more complex
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Figure 4: Map displaying the estimated spatial pattern in disease risk and the location of the
boundaries.

than being partitioned into groups of non-overlapping areas of similar risk.

6. Discussion

This paper has presented the R package CARBayes, which can fit a number of commonly
used CAR models to spatial areal unit data, as well as the localized spatial smoothing
model proposed by Lee and Mitchell (2012). The response data can be binomial, Gaus-
sian or Poisson, with the canonical link functions logit, the identity and natural log re-
spectively. The availability of areal unit data has grown dramatically in recent times, due
to the launch of freely available online databases such as Neighborhood Statistics in the
UK (see http://www.neighbourhood.statistics.gov.uk/ and http://www.sns.gov.uk/),
and Surveillance Epidemiology and End Results (SEER, http://seer.cancer.gov/) in the
USA. This increased availability of spatial data has fueled a growth in modeling in this area,
leading to the need for user friendly software such as CARBayes for use by both statisticians
and non-statisticians alike.

A number of other software packages can also fit CAR models to spatial data, including
BUGS, BayesX and R packages CARramps, hSDM, INLA, spatcounts and spdep. However,
these software packages either can only fit a limited selection of CAR models, or require a
degree of programming which may be beyond some users of spatial data. Thus a gap in the
market exists for user friendly software that can fit a wide class of CAR models, which was the
motivation behind the CARBayes software. The user friendly features of CARBayes have been
illustrated by the two worked examples presented in Sections 4 and 5, which include (i) models
can be implemented using a single function call; (ii) the spatial information required by the
models is straightforward to create from a shapefile; (iii) only a small number of arguments
are required to run a default analysis; and (iv) the software reports on the progress of model

http://www.neighbourhood.statistics.gov.uk/
http://www.sns.gov.uk/
http://seer.cancer.gov/
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fitting, and produces a summary table of the results when it has finished.

As previously mentioned, future development for the software will re-engineer it in C++
(currently it is written exclusively in R), which should result in a dramatic reduction in the
computing time required to fit the models. In addition, the software will focus on moving into
the spatio-temporal domain, because there is relatively little existing software (especially in
R) that can fit spatio-temporal models for areal unit data (an example for geostatistical data
is spTimer, Bakar and Sahu 2013). The development of statistical modeling techniques for
such data is also in its infancy, with prominent early examples being Bernardinelli, Clayton,
Pascutto, Montomoli, Ghislandi, and Songini (1995) and Knorr-Held (2000).
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