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ABSTRACT
The authors present a system that adapts application shortcuts (apps) on the homescreen of an Android 
smartphone, and investigate the effect of UI displacements that are caused by the choice of adaptive model 
and the order of apps in the homescreen layout. They define UI displacements to be the distance that items 
move between adaptations, and they use this as a measure of stability. An experiment with 12 participants is 
performed to evaluate the impact of UI displacements on the homescreen. To make the distribution of apps in 
the experiment task less contrived, naturally generated data from a pilot study is used. The authors’ results show 
that selection time is correlated to the magnitude of the previous UI displacement. Additionally, selection time 
and subjective rating improve significantly when the model is easy to understand and an alphabetical order is 
used, conditions that increase stability. However, rank order is preferred when the model updates frequently 
and is less easy to understand. The authors present their approach to adapting apps on the homescreen, and 
initial insights into UI displacements.
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INTRODUCTION

The homescreen is the main menu that is displayed on a mobile device. On Android, a small 
number of apps can be placed on the homescreen for fast access, and the app drawer can be 
opened to display the entire list of apps. As a user installs more apps, the time and effort required 
to locate ones that do not feature on the homescreen will increase. Though only a small number 
of installed apps are used frequently (Falaki et al., 2010), the set that are frequently used changes 
over time (Shin, 2012). Therefore, the homescreen needs to be organised regularly. However, 
arranging icons on the homescreen can be annoying and time consuming, and some users do 
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not arrange their icons at all (Böhmer & Krüger, 2013b). Supporting the user with organising 
the homescreen will improve the usability of mobile devices.

With access to a user’s app launch history, a system can predict the apps that are most likely 
to be launched next and adapt these on the homescreen automatically. The adaptive menu can 
replace a section of the homescreen to provide fast access to a selection of apps. The selection 
of apps is chosen by an adaptive model, which can be trained on a variety of features. Some 
features can be related to app use, such as launch frequency, and others may be contextual. Shin 
et. al. (2012) provide a detailed overview of features relating to mobile app use. In this work, 
we investigate the impact of stability on the homescreen by comparing adaptive models and the 
order of the layout.

Adaptive Menus

Menu design is an established field in HCI. Sears and Shneiderman (1994) created Split Menus 
for desktop applications, and demonstrated that selection time can be decreased by moving or 
copying the top 4 frequently used apps to the top of the menu. Findlater and McGrenere (2004) 
compared static, adaptive and adaptable split menus, with the naturally generated data of a single 
MS Office user. The majority of their participants wanted a personalised menu, and were better 
at customising the adaptable interface after they had used the adaptive one. As the homescreen 
is an adaptable interface, this suggests that an adaptive component could support users with 
organising their app icons. Fukazawa et al. (2009) note that adaptations can be more appropriate 
for novice users. Findlater and McGrenere (2008) compared the impact of screen size in adap-
tive user interfaces, and found that an ‘adaptive interface is more beneficial when screen real 
estate is constrained’ and that ‘adaptive interfaces are low risk for small screens’ (p. 1254). This 
provides motivation for exploring adaptive menus on a mobile device.

Accuracy and predictability are conflicting factors that affect the design of an adaptive menu. 
Gajos et al. (2008) define these as follows: ‘a model’s accuracy is the percentage of time that 
the necessary UI elements are contained in the adaptive area,’ and ‘a model is predictable if it 
follows a strategy users can easily model in their heads’ (p. 1271). While accuracy is controlled 
by the model, predictability depends on how a user perceives the adaptations. Predictability can 
be influenced by ease of understanding, frequency of adaptations, and stability.

Accuracy and predictability have been explored by Gajos et al. (2008), with an adaptive 
split interface that copies MS Office functions into a designated adaptive toolbar. The content 
of the adaptive toolbar and the sequence of button presses were predetermined to ensure the 
desired level of accuracy (50% and 70%), and predictability was controlled by comparing a 
most recently used model with a random model. It was found that increased accuracy improved 
selection time more than increased predictability. However, the most recently used model sig-
nificantly increased subjective ratings, including control, predictability and the extent to which 
participants knew an item was in the toolbar. Gajos et al. (2006) found that accuracy can also 
increase the utility of the adaptive interface. In our experiments, we consider models that have 
high accuracy (approximately 85%).

Predictability can also depend on the frequency of adaptations, i.e. the rate at which updates 
to the user interface are applied. The impact of the frequency of adaptations can be illustrated 
by the results of Sears and Shneiderman (1994) and Findlater and McGrenere (2004), which 
show that increasing updates to the user interface from a slow pace (once per session) to a faster 
pace (up to once per interaction) decreases performance with the same interface. Gajos et al. 
(2006) discuss this result and ‘suspect that the cause stems from the fact that high frequency 
effectively reduces a mechanism’s predictability’. Holding back on updates to an adaptive menu 
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will preserve stability during periods of interaction. However, limiting updates to the UI will 
reduce accuracy, since the state of the model will only be reflected in the UI at certain points in 
time. In our experiment, we allow items to update after each interaction, and explore the impact 
of stability when updates are frequent.

Stability

In our experiment, we consider the impact of predictability and stability in an adaptive home-
screen. As far as we are aware, stability has yet to be investigated on the homescreen. Zhang 
et al. (2013) considered stability in an app drawer with their Nihao Launcher, and found that 
‘a larger UI difference does not necessarily require longer app lookup time.’ However, the app 
drawer contains all apps installed on a smartphone, an average of 177 apps reported by Shin et 
al. (2012). In comparison, mobile users develop an accurate mental model of the selection of 
icons on the homescreen, making it possible to create a usable Imaginary Interface that relies 
on this memory alone (Gustafson et al., 2011). In the evaluation of the dynamic homescreen 
proposed by Shin et al. (2012), ‘participants stated that apps sometimes appeared and disappeared 
unexpectedly,’ and suggest that ‘an effort can be made to minimize the movement of icons that 
persist between predictions, in order to reduce user distraction’ (p. 181). Stability could help to 
improve the usability of an adaptive homescreen by reducing distraction and by helping users 
to maintain their mental model.

Stability can be enforced by the adaptive model, as demonstrated by AccessRank (Fitchett 
& Cockburn, 2012) and Hui et al. (2009). However, as stability acts as a feature within the 
model, it increases the model complexity. Another approach is to use visual highlighting or 
shrinking (Tsandilas & Schraefel, 2005), or to animate items gradually fading in (Findlater et 
al., 2009). To be spatially consistent, these techniques require all items to be displayed at once, 
which would make icons very small on a mobile device. Shin et al. (2012) explored highlighting 
on the adaptive homescreen, by indicating the app with the largest increase in probability. This 
was found to be confusing for participants, especially when the highlighting was inaccurate. 
Scarr et al. (2013) suggest a simpler approach to stability: ‘in situations where content changes 
slowly, the user would gain the benefits of developing spatial memory; in situations where items 
change frequently, the user could switch to an alphabetic arrangement (or a list view)’ (p. 3147). 
Ordering apps alphabetically is easy to understand, and helps to increase stability by updating 
the list only when an item is inserted or removed. We explore this technique in our experiments.

If items are inserted and removed very frequently, then alphabetical order could be a less 
predictable strategy than displaying the most likely item at the top of the list, i.e. rank order. 
Therefore, we must evaluate the benefits of stability on the homescreen to determine its value as 
the adaptive model becomes less easy to understand. This will help interaction designers decide 
when stability should be included in the design of an adaptive homescreen.

Adaptive Homescreen

The homescreen is the most common way of navigating apps on a smartphone, as found by Hang 
et al. (2013) in their study of app launching habits. Böhmer et al. (2011) found that users spend an 
average of 59.23 minutes per day on their device, with app use spread intermittently throughout 
the day. This presents a different use case to a desktop application, where the system is used in 
concentrated periods. Furthermore, apps can be installed and uninstalled on a smartphone, chang-
ing the range of functions that can be displayed over time (Shin et al., 2012). Mobile devices are 
used in a variety of contexts, and this also affects the apps that are likely to be used (Böhmer et 
al., 2011). To make accurate predictions, the adaptive model must update frequently to keep up 
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with the continuously changing context. Therefore, it is important to consider the design of an 
adaptive menu in a mobile context, and understand how frequent adaptations will affect usability.

Research Aims

We investigate the impact of stability as the adaptive model becomes less easy to understand. The 
adaptive model controls the movement of apps in the adaptive layout, and we control stability by 
varying the order: alphabetical order (alph) and ordering by the rank of the model (rank). Our 
research question asks: When items are added and removed very frequently, should we increase 
stability by displaying apps in alphabetical order? Our hypotheses are as follows:

1. 	 Rank order will decrease the perceived predictability of both models;
2. 	 Alphabetical order will improve selection time with both models;
3. 	 Alphabetical order will be preferred overall for both models.

We proceed by describing our research methods, including our stability measurements and 
data collection. Then we discuss the results of our main usability experiment with 12 participants, 
and conclude with directions for future work.

RESEARCH METHODS

There are many factors that could affect how a user will perceive stability on the homescreen. 
For example, one person might perceive an interface to be less stable when the target app moves, 
whereas another might find it more noticeable when movements surround the target app. This 
makes it difficult to quantify stability in a single measurement. We adopt a variety of measures 
to compare the stability of the interface to account for this. In this section, we will define the 
measures that we use to control stability in our experiment.

Similarity Measurements

List comparison measurements differ in two ways: weightedness and conjointness. In our ranked 
list of 8 apps, items can be inserted or removed, and so we require non-conjoint measures. 
Weightedness depends on the user: if she is more likely to look at the start of the list then we 
should consider a weighted measure, or a non-weighted measure if all positions are equally likely. 
A weighted measure would be appropriate when we are ordering by rank, and non-weighted 
when ordering alphabetically.

Learnability (Cockburn et al., 2007) is a stability measurement between 0 and 1 that considers 
how possible it is to learn the position of items in a menu. This is calculated as ‘one minus the 
average distance that items move as a proportion of half of the total menu length’ (p. 629). A stable 
interface would have a value of 1, whereas an interface that moves items randomly would have 
a value of 0. We use Learnability to compare the overall stability of our experiment conditions.

We can also compare the distance between two lists using similarity measures. In their re-
view of similarity measures, Webber et al. (2010) identify Average Overlap (AO) as a weighted 
non-conjoint measure, that applies weight to higher ranked items by averaging over matches 
in list prefixes of length 1 - k. Kendall’s tau is a non-weighted measure, and Fagin et al. (2003) 
describe a way to transform this into a non-conjoint measurement, by considering a penalty for 
the case where items exist in one list but not the other. This penalty can be set to 0 to find the 
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minimum distance, K (min), or 0.5 to find the average distance, K (avg). We will use AO and K 
(min) to compare the similarity between adaptations in our experiment.

We would also like to measure the magnitude of movements in the list. Zhang et al. (2013) 
define UI difference to be the number of positions apps change between launches. This is a 
conjoint measurement, as it considers all apps in the app drawer. However, we require a non-
conjoint measure that accounts for items that are inserted or deleted. One option is to consider 
items that do not appear in the top-k to have moved to position k + 1, an approach taken by Fagin 
et al. (2003). Another approach is to assign a penalty of half the total menu length, as used by 
Fitchett and Cockburn (2012) in their calculation of Learnability. Rather than assigning a large 
penalty to insertions or deletions, we select a penalty of 1. This represents the appearance or 
disappearance of an item, rather than its movement from the end or middle of the list.

UI Displacement

We define the UI displacement to be a non-conjoint measure that assigns items that are inserted 
or removed to have a penalty of 1. We calculate this to be the mean sum of changes to the posi-
tion of apps, where a change is:
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We use both weighted and non-weighted UI displacement measures to compare our lists, 
to account for both orders: alphabetical and rank. The displacement magnitude (DM) measures 
the total movement of items, and the weighted displacement magnitude (WDM) increases this 
value as movements occur towards the start of the list, where they might be more noticeable. 
WDM follows the approach of AO, but altered to account for the size of displacement in the 
UI. In an experiment environment, we also know what the next app to be selected will be, and 
so we can measure the target displacement magnitude (TDM). These measurements are defined 
as follows, with it = position of an app at time t, k = the number of apps in the grid, and n = the 
total number of app launches in the series:
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Table 1 illustrates the use of each of these measurements with an example. These measure-
ments help us to control stability in the conditions of our experiment.
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Pilot Study and Data Gathering

To measure the time to select an app, we must record when a user starts to search for an icon and 
when the icon is selected. We must also eliminate distractions during the search. This requires a 
controlled experiment. However, it is important to consider how the adaptive homescreen will 
be used outside a research environment, with a user’s own apps. To make the distribution of 
apps in our experiment dataset less contrived, we chose to use naturally generated data, the same 
approach as Findlater and McGrenere (2004). We ran a pilot study to gather this data, which was 
also an opportunity to gain insight into the use of the adaptive homescreen in the wild.

We recorded the launch history of 6 Android 4.0+ smartphone users over a period of 4 weeks. 
App usage was detected on their personal device every 3 seconds (0.3 Hz), and the name and 
timestamp of the foreground app was stored in a database, as well as whether it was launched 
from the widget. Test subjects were aged 27 - 61, all had experience with an Android smartphone 
for at least 6 months, and two were female. After 2 weeks, our adaptive widget displayed in 
Figure 1(b) was placed on the homescreen.

All test subjects stated that they rarely arranged apps on their homescreen, and rarely unin-
stalled any. In the screenshots that we captured before and after we added the widget, the majority 

Table 1. An example calculation is demonstrated by launching an app shown in the adaptive 
homescreen widget in Figure 1(b), which we will consider to be using a most recently used model 
ordered by rank. If the Dialler is launched at index 2, three apps will change position: Dialler 
moves up 2 positions to index 0, resulting in a TDM of 2. Chrome and Clock then shuffle down 
one position each, resulting in a total DM of 4. These movements are weighted towards the start 
of the list which is more noticeable with rank order, and so the WDM is relatively high.

Measure Example: Dialler Launched Result
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of homescreens had at least one duplicate app, which is another indication that there was little 
interest in arranging app icons. In the feedback, S1 said that he ‘tr[ies] to avoid scrolling through 
the full list of installed apps on my phone as I have lots of them that I never use’. An adaptive 
homescreen could assist users who install many apps on their device. Overall, the widget was 
used for an average of 9% of all app launches in the second 2 weeks (SD=5.7%). Test subjects 
found it ‘to be very helpful’ [S1] and they ‘want[ed] to keep this widget as I like it’ [S2].

An average of 161 apps (SD=46) were installed on the devices, and 33 (SD=8) were actively 
used over the 4 weeks. This provides evidence that many installed apps were unused. We also 
found that 16.2 mins per day was spent in apps (SD=5.6 mins), and 8.7 mins on the homescreen 
(SD=6.3 mins).

An interesting insight from the pilot study was that, prior to installing the widget, average 
homescreen visits lasted 28s before an app was selected (SD=24.7s), or 8s before turning the 
screen off (SD=3.3s). Afterwards, average visits lasted only 15.4s (SD=13.8s), or 8.2s before 
the screen off event (SD=4.5s). Adaptations could have the potential to reduce selection time, 
by 12.6s in this case. However, the time to select an app from the homescreen can be influenced 
by interacting with widgets or by external distractions, among other reasons. This means that we 
are unable to verify timings on the homescreen without a controlled environment, and provides 
motivation for our experiment.

Though we have chosen to focus on smartphones, one participant of our study also allowed 
us to record app use on his Nexus 7 tablet. In general, he used it to launch fewer apps. However, 
he used the widget for 15% more launches on his tablet than on his smartphone. An adaptive 
widget has the potential to be valuable on a larger device.

Figure 1. The experiment app
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Dataset Selection

To make the distribution of apps in our experiment more representative of natural launch behav-
iour, our dataset contains actual app history that we collected during our pilot study. We selected 
the history of one test subject to use as the dataset for all participants of our experiment. Using 
a single dataset allowed us to compare participant selection times. Additionally, we were unable 
to combine the launch history of multiple test subjects into a dataset as this would disrupt the 
natural app cycles that may be important for the MFU-n model.

The launch history of S2 was chosen as our dataset since his smartphone usage was most 
representative of the target user group for an adaptive homescreen: S2 used the most downloaded 
apps (32 apps), he had 147 apps installed on his device, and he launched an average of 146 apps 
per day (SD=65). His most common app launches belonged to the Built-in, Social and Com-
munication categories. After we eliminated system apps, such as the Launcher, and launches 
that were repeated more than 3 times, the app launch history dataset contained 1,275 launches.

RESEARCH DESIGN

We designed a usability experiment to investigate the impact of stability on the homescreen as 
ease of understanding decreases. The experiment was conducted in a controlled lab environ-
ment and lasted 30 minutes. A within-subjects design with four conditions was used: MRU and 
MFU-n, ordered alphabetically and by rank. These were counter-balanced using a Latin square. 
In this section, we will describe the design of our experiment, including the adaptive models, 
the adaptive layout, and the experiment task.

Adaptive Models

With even a small number of features, it will become difficult to understand the behaviour of an 
adaptive model. We compare two models in our experiment which control the selection of apps 
in the menu. The models depend on features related to app use so that we can control them in a 
usability study, and they are accurate enough for short experimental conditions:

•	 Most Recently Used (MRU): Considers the last time that each app in the history was launched;
•	 Most Frequently Used Next (MFU-n): Counts the number of times that each app has been 

launched after the previously used one, i.e. sequentially used.

We considered Most Recently Used (MRU) to be easier to understand than Most Frequently 
Used Next (MFU-n), since it is difficult to keep track of which apps are commonly used after 
each other. In contrast, MFU-n has the potential to be more accurate over a longer period of 
time as it reacts to two pieces of context: launch frequency and the previously used app. These 
models vary in ease of understanding, and change frequently enough to be noticed in a short lab 
experiment. However, we did not know how their UI displacements would compare. To calculate 
the UI displacements, we used the dataset to simulate the adaptive homescreen. This allowed us 
to verify that MFU-n caused more UI displacements and updated more frequently than MRU.

We found that MRU updates slowly over short-term use. In comparison, MFU-n can display 
a completely different set of apps after each interaction. We also found a sparsity issue with 
MFU-n, resulting in an under-populated menu. This means that some apps are followed by fewer 
than 8 distinct apps in a single session, where a session is the period between turning the screen 
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on and off again. We could avoid this by using a hybrid model: for example, the overall most 
frequently used apps could fill the remaining spaces. However, this might not be desirable, as 
fewer apps reduce the clutter of irrelevant apps on the homescreen, which could reduce selec-
tion time. In our experiment, we allow for periods of low menu population and investigate the 
impact of this on usability.

Adaptive Algorithm

The following process occurs each time an app is selected:

1. 	 The model updates its ranking;
2. 	 If the ranking changes, then apps may or may not change position depending on the order;
3. 	 If any app changed position, then the layout is updated.

For example, the rank of MRU updates when a selected app differs to the previously used 
app. If the rank changed, then the alphabetical order will only update if the most recent app is not 
already in the layout. Any updates to the UI execute before the user returns to the homescreen.

Adaptive Layout Design

Our adaptive widget is designed as a grid layout, which is available for Android 4.0+ smartphones. 
This can be seen in relation to the app drawer icon in Figure 1(b). The label above the grid re-
veals the model that is in use: it states either the name of the model, or for MFU-n, a reminder 
of which app was used previously. Positions in the grid are indexed left-to-right, top-to-bottom, 
as one would read a page of English text. Though Zhang et al. (2013) found that users do not 
necessarily read grid items as a list, this is a common approach to grid indexing that is used in 
the app drawer and that smartphone users are most familiar with. Alternate approaches are pos-
sible, such as prioritising items at the edges or the middle.

We placed the widget in the lower section of the screen, where it is comfortable to access 
icons in case of one-handed interaction (Böhmer & Krüger, 2013b). It also features above the 
app drawer, which minimises its distance to the full selection of apps, similar to a Split Menu 
(Sears & Shneiderman, 1994). Though split menus recommend a maximum of 4 items for users 
to scan quickly, we chose 8 apps, as used in a split interface (Gajos et al., 2008), to increase 
the accuracy of our simple models to 85%, and to create more opportunities to interact with the 
widget during our short lab conditions. As a model becomes more accurate, the need for a second 
row of items may become unnecessary. However, there could still be benefits to increasing the 
number of items, including to promote stability, or to outweigh the potential cost of entering the 
app drawer. The impact of varying the number of homescreen apps on accuracy is discussed in 
more detail by Shin et al. (2012). Though it is also possible to adapt folders or homescreen pages 
(Böhmer & Krüger, 2013b), we did not consider this since they require additional interactions 
that increase selection time (Hang et al., 2013).

Participants

The 12 participants were aged 21 - 40, all were smartphone users from a computing science 
background with no prior experience of our adaptive widget, and one was female. We did not 
allow test subjects from the pilot study to take part in the experiment.



This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License  (http://creativecommons.org/
licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and original publica-
tion source are properly credited.

10   International Journal of Mobile Human Computer Interaction, 8(3), 1-18, July-September 2016

Equipment

The experiment app was installed on the Nexus 4 smartphone that was used by all participants. 150 
apps filled 6 pages of the app drawer, which is close to the average reported by Shin et al. (2012).

Experiment Task

Participants were asked to perform tasks with an adaptive homescreen widget that changes the 
position of apps in a layout according to our chosen models and orderings. The task was designed 
as a game, similar to the one proposed by Böhmer and Krüger (2013a). There were 4 sets of 
60 selections, using the widget or the app drawer as required. We used a custom homescreen to 
ensure that apps could only be selected from these two menus, which we implemented with the 
open source ADW Launcher.

Participants were presented with a task UI that displayed the icon of the app that they should 
select next. Screenshots of the task UI and adaptive widget are shown in Figure 1. When a par-
ticipant selected the correct app, the task UI launched to display the next app in the series. If a 
selection was incorrect, participants were immediately informed by a short notification near the 
bottom of the screen. To ensure that the widget did not update if an incorrect app was selected, 
adaptations were controlled using a predetermined list of widget states, which was compiled by 
simulating the widget with the app launch history dataset.

As the participants of our experiment were required to use another person’s apps, our task 
provides time to become familiar with the target app before each selection task. Between tasks, 
the ‘OK’ and hardware ‘back’ buttons were disabled for 2.5s to enforce a minimum pause.

Participants could familiarise themselves with the icon of the next app to be selected before 
continuing with the selection task. The selection time for the previous task was also displayed 
during this period. This break replicates natural app use behaviour, since there is usually a period 
between clicking on an icon and returning to the homescreen where a user interacts with the app.

Participants were informed that the first 10 selections of each condition were for practice, 
which left (50*4*12) = 2400 selections to be analysed in our results. We wanted participants 
to select apps as quickly as possible,so we offered a prize for the user with the lowest overall 
selection time.

STATISTICAL DESIGN

This section explains how we measured our dependent variables in the experiment, and how we 
controlled our independent variables by selecting blocks of app launch data for each condition.

Task Dataset Selection

The task dataset comprises 4 blocks of 60 app launches, and each non-overlapping block is used 
in the selection task. Blocks were chosen from the second half of the dataset that we collected 
during the pilot study. The whole sequence of app launches leading to the start of each block 
was used to populate the model, and defined the starting state of the layout for each condition.

To evaluate the impact of stability, we required a noticeable difference in the average number 
of UI displacements between the conditions. We chose sequences of app launches that fit our 
criteria by running a simulation of the widget. To ensure that each condition had a high accuracy 
(approximately 85%), we selected blocks of app launches that had the required number of hits. 
We controlled stability by selecting a difference in DM of at least 25% between alphabetical and 
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rank order conditions. Our independent variables are summarised in Table 2 and the comparison 
of stability in each condition is visualised in Figure 2.

Table 2 shows that the average target position in each condition is lower when items are 
ordered by rank. This is as we would expect, since the most relevant apps are more likely to be 
near the start of the list, i.e. position 0. The table also shows that the grid population is lower on 
average in the MFU-n conditions. This is because fewer than 8 distinct apps can be used after 
the previous one, as found when we performed the model simulation.

In Figure 2, we see that Learnability is greater than 0 in all conditions, which means that 
they are more stable than a random algorithm. We can also see that Learnability is higher in the 
alphabetical conditions compared to rank order, and the UI displacements are lower. Based on 
these measurements, we are confident that alphabetical order makes our models more stable.

We notice that both orders of MFU-n have a similar AO. This means that a similar number of 
items change position near the start of the list, which might be surprising for alphabetical order. 
Changes towards the start of the list could increase if the layout is under-populated, and also if 
a completely different set of apps are displayed after each interaction. If we were to search from 
the start of the list, the stability of MFU-n could appear to be similar for both orders. However, 

Table 2. Summary of experiment conditions, with the mean of measures. The mean target position 
is lower with rank order, and mean grid population is lower with MFU-n.

Conditions

MRU (alph) MRU (rank) MFU-n (alph) MFU-n (rank)

Accuracy 0.86 0.83 0.86 0.9

Target position 4.82 0.02 4.10 0.88

Grid population 8 8 6.78 7.23

K (min) 0.06 0.39 0.12 0.46

AO 0.96 0.81 0.72 0.74

Learnability 0.99 0.85 0.86 0.77

TDM 0.13 2.02 0.57 1.12

DM 0.42 4.83 4.52 7.52

WDM 0.40 8.23 4.68 7.77

Figure 2. Alphabetical order is more stable than rank for all measures, except AO
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the target position for MFU-n (alph) is likely to be somewhere in the middle of the list, and the 
apps surrounding the target will act as alphabetical landmarks that will influence search in this 
condition. Therefore, we expect K (min) to be more reliable than AO, and that MFU-n (alph) 
will be perceived to be more stable than MFU-n (rank).

Task Measurements

For tasks where the app is in the widget, we record the selection time. This is measured as the 
time between clicking the OK or back button to clicking on the correct app icon. For tasks that 
require the use of the app drawer, we record the decision time of when it is opened. This denotes 
the time that a participant realises the app is not in the widget and that they have to use the app 
drawer. We also record errors, which are any incorrect selections and extra swipes or clicks that 
are performed.

At the end of each condition, we asked users to rate their subjective opinions on a 7-point 
Likert scale (1=low, 7=high). After the experiment, we asked participants to rank the conditions 
in order of preference (1=high, 4=low). We also recorded any comments made by participants.

Statistical Methods

We performed a 2 (alphabetical vs. rank order) x 2 (MRU vs. MFU-n) ANOVA to test 
the significance of selection time, with p < 0.05. We used a log transformation to control 
for non-normal distributions in this timed data. A two-tailed Mann-Whitney U-test was 
used to test our ordinal data, with p < 0.05 and U ≤ 37 selected for our 12 participants. 
To compare the correlation between selection time and UI displacements, we used the 
Pearson coefficient, with Evan’s (1996) guide for interpreting the r value (0.2 ≤ r ≤ 0.39 
for weak correlation).

RESULTS

Table 3 provides a summary of our results. The number of errors made during the experiment 
were negligible and so we do not report on them. We report the selection time, predictability 
and overall preference.

Selection Time

The overall mean selection time was 2.08s (SD=2.7s), and 1.39s (SD=0.9s) using the widget 
alone. Figure 3(a) compares the widget selection times to the UI displacements. It is clear 
that the mean selection time increases with the magnitude of the previous UI displacement. 
Selection time increases above the overall mean selection time when there are 6 or more UI 
displacements. The Pearson correlation for this effect is weakly significant (Evan, 1996) 
(r=0.208, p<0.001).

Figure 3(b) displays Boxplots of the widget selection times and decision times. Widget se-
lections were significantly faster in the MRU (alph) condition compared to the others (p<0.001), 
with a mean selection time of 1.21s (SD=0.71s). Decision time was also faster (1.46s) in this 
condition, but we would need a larger sample of selections from the app drawer to test if this 
result is significant.
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Predictability

The subjective ratings can be viewed in Table 3. As we expected, both MRU conditions were 
rated more predictable than MFU-n (U=2.5, p<0.001), and participants felt more in control when 
using this model (U=9.0, p<0.001).

The MFU-n conditions were rated significantly lower in satisfaction (U=13.0, p<0.001), 
usefulness (U=26.5, p=0.008), efficiency (U=30.5, p=0.015) and were more frustrating (U=34.5, 
p=0.029). Despite the MFU-n model being as accurate as MRU, participants were ‘not sure how 
it was adapting’ and ‘didn’t like that the homescreen changed unpredictably sometimes’ [P9].

The perceived predictability significantly increased when apps were ordered by rank, par-
ticularly in the case of MRU (U=29.0, p=0.01), as displayed in Figure 4(b). This was mentioned 
in the feedback to the MRU (alph) condition, where one participant commented, ‘it was difficult 

Table 3. Summary of results: mean of measured data, median of subjective data and mode of 
overall preference. The results of our two independent variables (order and ease of understand-
ing) are isolated in the right side of the table by averaging between the two orders and models.

Conditions Averaged over Ordering Averaged over 
Understandable

MRU 
(alph)

MRU 
(rank)

MFU-n 
(alph)

MFU-n 
(rank) Alph. Rank Sig.? MRU MFU-n Sig.?

Time
Selection (s) 1.21 1.44 1.45 1.42 1.33 1.43 * 1.33 1.43 *

Decision (s) 1.46 2.15 1.87 2.04 1.66 2.09 1.80 1.95

Subjective

Awareness 5.5 7.0 6.5 5.5 5.75 6.0 6.0 6.0

Predictable 5.0 7.0 2.5 3.0 3.75 5.0 * 5.75 3.0 *

Useful 6.0 6.0 4.5 5.0 4.5 5.25 5.75 4.25 *

Satisfied 5.0 6.0 3.5 4.0 4.25 4.75 5.5 3.75 *

Efficient 6.0 6.0 4.5 5.0 4.75 5.5 6.0 4.25 *

Control 5.0 6.0 2.0 3.0 3.5 4.5 5.5 2.5 *

Frustrating 2.0 2.0 2.5 3.0 2.5 2.5 2.0 3.0 *

Overall Pref. 1.0 2.0 4.0 3.0 2.5 2.5 1.5 3.5 *

Figure 3. Selection times
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to remember what the least recently used app was [and so] it was difficult to predict which 
would be dropped when a new app was opened’ [P10]. Conversely, another participant noticed 
that MRU (rank) ‘seemed to sort the frequently used ones within reach of my right thumb’ [P9]. 
Ordering MRU by rank did have its drawbacks, as some participants felt that it caused apps to 
‘move from the end of the widget to the start [and] was quite annoying’ [P8]. Additionally, P2 
‘could [only] predict the adaptive change for apps I had just used but could not remember the 
last 8 apps used’.

The ratings for the awareness of the adaptations are displayed in Figure 4(a). For MRU, 
participants were significantly more aware of updates when apps were ordered by rank (U=33.0, 
p=0.017), which is consistent with the measured number of UI displacements. In comparison 
with MFU-n, participants were more aware of movements when apps were ordered alphabeti-
cally, when the measured number of UI displacements was lower. Though this awareness was 
not significantly more (U=46.5, p=0.124), it is still an interesting result, as it is in conflict with 
our expectations and it is consistent with the measured AO for MFU-n.

Overall Preference

Figure 5 displays the ratings for overall preference. In addition to being the fastest, participants 
preferred MRU (alph) overall, with 50% of participants rating this most preferable, and 25% 
rated this their second preference. This combination of model and ordering was the ‘best version 
of adaptive widget because [it was] very predictable’ [P9].

Figure 4. MRU (rank) is rated significantly greater in: (a) Awareness; (b) Predictability; and 
(c) Control

Figure 5. MRU (alph) is preferred most overall, and MFU-n (alph) is least preferred
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At the lower end of the scale, MFU-n (alph) was both the slowest and the least preferred 
overall, rated least preferable by 50% of participants and third preferable by 25%. In this condi-
tion, participants said, ‘often I had seen the position of an app just before I was told to press it, 
however it had then moved’ [P2], and ‘the widget was not always fully populated and it felt as 
though major changes (>2 apps) occurred frequently’ [P10].

There was no significant preference between MRU (rank) and MFU-n (rank). Although MRU 
(rank) was preferred more than the alphabetical order of MFU-n (U=32.5, p=0.018), it was not 
preferred significantly more than MFU-n with rank order (U=40, p=0.056).

Summary of Results

Our results can be summarised as follows:

1. 	 Rank order improved perceived predictability for both models;
2. 	 Alphabetical order only improved selection time when the model updated infrequently;
3. 	 Alphabetical order was preferred overall only when the model updated infrequently.

DISCUSSION

Our results have several implications for the design of adaptive homescreens, which we highlight 
in this section:

•	 Alphabetical order is effective when updates are infrequent: Participants preferred 
alphabetical order for the MRU model, which added and removed items very infrequently. 
This result is unsurprising since it is the version that is most commonly used for quick-
launch menus. Additionally, decision time was lowest with MRU (alph), and highest with 
MRU (rank), which highlights the effectiveness of alphabetical order when a model updates 
items infrequently;

•	 Rank order is effective when updates are frequent: Participants were faster and preferred 
when the MFU-n model was ordered by rank, the condition that caused the most UI displace-
ments. This result is contrary to our hypothesis, and the suggestion of Scarr et al. (2013). 
We believe that it is important to support a search strategy that is easy to understand, even 
if this strategy does not increase stability. When items update frequently, participants found 
it easier to look towards the start of the list than to use alphabetical order. This result will 
inform the design of more reactive, adaptive homescreens. Further work will be required 
to test if this will generalise to other approaches of stability;

•	 Rank order increases predictability: Our subjective results show that predictability 
increased when both models were ordered by rank. This result was contrary to our first 
hypothesis, as we expected alphabetical order to increase predictability by stabilising the 
interface and allowing items to be indexed by app name. However, rank order was more 
transparent about which app would be dropped when another was inserted. In comparison, 
alphabetical order did not reveal the relative value of items, and so items could unpredict-
ably appear and disappear at any position. MFU-n was even less predictable when ordered 
alphabetically, since many items could appear and disappear at once, making the alphabetical 
landmarks very unstable;

•	 Large movements were irritating: Though participants could understand how apps moved 
in the layout, some found it irritating when the magnitude of movement was large, particularly 
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when items moved from the end of the menu to the start in MRU (rank), which has a DM 
of 14. Further work will be required to investigate this effect, particularly as users use their 
apps intermittently in the wild. A compromise might be to use a stable ranking algorithm, 
such as AccessRank (Fitchett & Cockburn, 2012), but allow items to move towards the start 
of the list while minimising large movements;

•	 Fewer grid items are easier to recall: With MRU, participants were unable to recall all 
8 recently used apps, and this limited their ability to know whether an app was still in the 
menu. If a user expects an app to be in the list when it was not, then this could impact selec-
tion time and subjective opinion. Fewer items in the menu could reduce this effect, such as 
the 4 items recommended for a Split Menu (Sears & Shneiderman, 1994). This number of 
menu items will impact the accuracy of the adaptive model, which should be considered in 
the design of the adaptive homescreen;

•	 Fewer grid items reduce decision time: The time to decide that an app is not in the layout 
was faster in both MFU-n conditions compared to MRU (rank). We expect that this is because 
the MFU-n model did not fully populate the layout, as fewer items to check would make 
this decision easier. The decision time could be faster with rank order if there were fewer 
items. However, fewer items will reduce the accuracy of the adaptive model. This suggests 
a trade-off, as an accurate model creates fewer occasions that an app is not in the grid. This 
trade-off should be considered when selecting the number of items on the homescreen;

•	 UI displacements increase selection time: Selection time increased with the magnitude of 
the previous UI displacement, and was above average when there were around 6 or more 
displacements, which was close to the mean DM for MFU-n (rank). We found this to be 
weakly significant, and further work would be required to find this threshold. With an es-
timate of how frequently the interface can update before negatively affecting performance, 
practitioners will be able to decide whether alphabetical order will improve the usability 
of their adaptive menu.

Research Contribution

We summarise the contributions of this work as follows:

•	 We present an adaptive homescreen widget that displays a selection of app icons;
•	 We define a non-conjoint similarity measure for comparing UI displacements in an adap-

tive split menu;
•	 The results of our experiment show that participants were faster and preferred rank order 

when the adaptive model updates items frequently.

CONCLUSION AND FUTURE WORK

An adaptive homescreen can help mobile users to make better use of their limited screen space. 
However, adaptations make the UI less stable and less easy to understand. In this work, we 
considered the impact of stability on selection time and subjective rating as items are added 
and removed frequently. We defined UI displacement measurements that help us control stabil-
ity in a usability experiment. We demonstrate that the combination of the layout order and the 
dynamics of the model cause stability to decrease. A pilot study allowed us to gather naturally 
generated data to use in our experiment, and to test our adaptive widget in the wild. We used the 
UI displacement measurements to analyse this dataset, and to select blocks of app launches for 
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our experiment conditions. Our results show that when items update infrequently, participants 
were faster and preferred items ordered alphabetically. However, when updates were frequent, 
participants were faster and preferred rank order. This result will inform the design of more 
reactive adaptive homescreens.

In our experiment, we only considered simple models of app launch history. As we make 
UIs increasingly sensitive to context, we decrease the ease of understanding for the user. Future 
work in this area will involve testing the impact of UI displacements on predictive models. 
Additionally, as our results are limited to a controlled usability environment, we must evaluate 
stability in adaptive homescreens with more users, over a longer period of time, and with each 
users own app launch data. In our pilot study, we found that one participant used the widget for 
more app launches on his tablet than on his smartphone. The impact of UI displacements on 
different form factors will be another important area for future work.
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