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In this work we report on a next-to-leading order calculation of WW + jet production at
hadron colliders, with subsequent leptonic decays of the W -bosons included. The calculation
of the one-loop contributions is performed using generalized unitarity methods in order
to derive analytic expressions for the relevant amplitudes. These amplitudes have been
implemented in the parton-level Monte Carlo generator MCFM, which we use to provide
a complete next-to-leading order calculation. Predictions for total cross-sections, as well
as differential distributions for several key observables, are computed both for the LHC
operating at 14 TeV as well as for a possible future 100 TeV proton-proton collider.

1. INTRODUCTION

In this paper we report on a calculation of the next-to-leading order (NLO) QCD corrections
to the process of W pair production in association with a jet using unitarity methods, taking into
account spin correlations in the leptonic decays of the W bosons. This process is important for a
number of reasons. Firstly, the rate for WW production at the LHC is significant and thus the
WW process (and more generally all the vector boson pair production processes) provide a useful
laboratory with which to probe the Standard Model (SM). Indeed, already in Run I of the LHC,
the ATLAS and CMS experiments have been able to investigate the properties of the WW process
in some detail [1–9]. The presence of an additional jet in the detector acceptance only slightly
reduces the cross-section, by around a factor of 2–3 for typical jet cuts. In addition, this process
also represents an important background to the production of a Higgs boson with subsequent
decay into W pairs, either through the gluon-fusion channel with an additional jet present, or
through weak boson fusion where only one of the forward jets is detected. Analyses of WW events
also provide strong constraints on anomalous triple and quartic gauge couplings [1, 6, 7, 10] and
represent important backgrounds for searches for additional scalars of higher mass [11, 12].

Aside from the immediate relevance to the LHC experimental program, the one-loop amplitudes
for the process at hand represent an important component of the NNLO corrections to the WW
process. Indeed, calculations of the corresponding two-loop amplitudes [13–18] have already allowed
first determinations of the NNLO contribution [15]. In such a calculation the one-loop WW +
3 parton amplitudes must be evaluated in the limit in which the gluon is soft, or the quark and
antiquark are collinear. This is true for both the sector-decomposition and antenna-subtraction
methods that have mostly been employed in NNLO calculations thus far and also for the recently-
introduced SCET-based N -jettiness method [19, 20]. For this reason it is important that the form
of the amplitudes be both numerically stable and efficiently evaluated.

http://arxiv.org/abs/1506.04801v2
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In this paper we evaluate the NLO corrections to the WW+jet process, using analytic unitarity
methods [21–26] in order to obtain the necessary one-loop amplitudes. This technique allows the
amplitude to be represented in a compact analytic form. Similar calculations have provided one-
loop amplitudes for a wealth of important processes such as the production of Higgs+2 jets [27–29],
tt̄ [30], Wbb̄ [31], and three-[32] and four-photon production [33]. The implementation of analytic
expressions for the virtual contributions addresses both of the issues previously mentioned: it is
relatively compact and improves numerical stability. As a result such calculations have already
been employed in NNLO calculations of the Higgs+jet [34–37] and W+jet [19] processes.

Previous calculations of the WW+jet process have employed either a numerical OPP proce-
dure [38], variants of traditional integral reduction methods [39–41] or a combination of the two
strategies [42]. Furthermore, results for the WW+jet process at NLO have already been made
available through the MCFM+ code [43], including also gluon-induced processes that formally
constitute a NNLO contribution. Here we improve on the implementation of the NLO corrections
by providing much faster code directly in the main release of MCFM [44], in such a manner that
it is also able to take advantage of the recent multi-threaded improvement to the code [45].

2. CALCULATION

In this paper we will consider the hadronic production of W pairs in association with a single
jet. The W bosons decay leptonically, with all spin correlations included. At tree level this process
corresponds to the partonic reaction,

q + q̄ → W+ +W− + g
|
|

|→ µ− + νµ
|→ νe + e+

(1)

with all possible crossings of the partons between initial and final states. Although we always
include the leptonic decays of the W bosons, for brevity we will refer to this as the WW+jet
process. At tree level this reaction proceeds through Feynman diagrams where bothW s are directly
emitted from the quark line, as well as diagrams where the W pair stems from an intermediate γ or
Z. Representative diagrams for these are shown in Fig. 1. Expressions for the tree-level amplitudes
have been presented previously [38, 46] and these have been implemented in our calculation.

At next-to-leading order we must include the emission of an additional parton, either as a virtual
particle to form a loop amplitude, or as a real external particle. For the latter contribution we
use the matrix elements previously computed in Ref. [38] and employ the Catani-Seymour dipole
subtraction method [47] to isolate the soft and collinear singularities in dimensional regularization.
The computation of the one-loop amplitudes in analytic form is highly non-trivial and is the
central result of this paper. These contributions have been implemented in the code MCFM,
so that complete NLO predictions for both total cross-sections and differential distributions are
readily available.

The one-loop corrections to diagrams such as the one shown in Fig. 1(b) are relatively straight-
forward to compute. Rather than computing them explicitly, the contribution is obtained by
recycling existing results for q q̄ → Z(→ ℓ−ℓ+)+ g [48], with the leptonic Z decay current replaced
by the one for Z → W+W− → ℓ+νℓ−ν̄. The two remaining classes of diagrams to consider are
depicted in Fig. 2 and correspond to either an internal gluon propagator dressing of Fig. 1(a) or
diagrams that contain a closed fermion loop. The amplitude representing the closed fermion loops
is finite, which can easily be seen from the lack of a tree-level ggW+W− coupling in the SM.
Both of these sub-amplitudes are computed using generalized unitarity methods as follows. Each
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FIG. 1: Sample diagrams entering the calculation of the leading order amplitude for the WW+jet process,
corresponding to (a) W emission from the quark line and (b) emission from an intermediate Z boson or
photon.

u

ū
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FIG. 2: Sample diagrams entering the calculation of the one-loop amplitude for the WW+jet process. The
one-loop diagrams can be categorized according to whether a gluon dresses a leading-order amplitude (left),
or whether the diagram includes a closed fermion loop (right).

amplitude is decomposed in terms of the usual one-loop basis of box, triangle and bubble integrals,
i.e.

A({pi}) =
∑

j

djI
j
4 +

∑

j

cjI
j
3 +

∑

j

bjI
j
2 +R . (2)

In this equation Ijn represents a scalar loop integral with n propagators, commonly referred to as
box (n = 4), triangle (n = 3) and bubble (n = 2) integrals. The integral coefficients dj , cj and
bj can be obtained by the application of unitarity cuts in four dimensions [21–25]. The rational
remainder term R can be determined using similar cutting rules, after the inclusion of a fictitious
mass for the particles propagating in the loop [26]. Since the tree-level on-shell amplitudes that
appear in the cutting procedure are quite complex, this procedure has been performed using the
help of the S@M Mathematica package [49]. The evaluation of the scalar integrals appearing in
Eq. (2) has been performed with the aid of the QCDLoop Fortran library [50].
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FIG. 3: The notation used in the calculation of the WW+jet process, corresponding to Eq. (3).

2.1. Details

In this section we will present a number of the integral coefficients that were computed using the
unitarity techniques described previously. For the sake of brevity we will show coefficients that do
not involve lengthy algebraic manipulation and are therefore particularly compact. The remaining
coefficients can be inspected in the distributed MCFM code.

In order to establish the notation for these coefficients we first discuss the corresponding leading-
order results. We consider all particles outgoing and consider the process,

0 → q−(p1) + q̄+(p2) + ℓ−(p3) + ℓ̄+(p4) + ℓ−(p5) + ℓ̄+(p6) + g+(p7) , (3)

also shown in Figure 3, where momentum assignments are shown in parentheses and superscripts
denote the particle helicities and polarizations. This is the basic configuration for which we compute
all amplitudes; other helicity configurations are obtained by means of charge conjugation and parity
relations. Tree-level amplitudes for this process have been presented in detail in Refs. [38, 46], whose
notation we follow closely. The full amplitude can be written in terms of two primitive amplitudes,
A(a) and A(b) corresponding to diagrams of the two types depicted in Figure 1. The full amplitude
is obtained from the primitive ones by dressing with appropriate color and coupling factors [46].
The explicit forms, for the assignment of momenta shown in Eq. (3), are:

A(a)(1−q , 2
+
q̄ , 3

−

l , 4
+
l̄
, 5−l 6+

l̄
, 7+g )

=
1

s34 −m2
W

1

s56 −m2
W

1

s156

〈15〉
〈17〉

{

[6|1 + 5|3〉 [4|2 + 7|1〉
〈27〉 +

[65]〈51〉 [7|2 + 4|3〉 [42]
s234

}

,

A(b)(1−q , 2
+
q̄ , 3

−

l , 4
+
l̄
, 5−l 6+

l̄
, 7+g ) =

1

s34 −m2
W

1

s56 −m2
W

1

s127

1

〈17〉〈27〉×
{

〈15〉〈1|2 + 7|6]〈3|5 + 6|4] − 〈13〉〈1|2 + 7|4]〈5|3 + 4|6] − 〈35〉[46]〈1|(3 + 4)(2 + 7)|1〉
}

.

The coefficients discussed below all appear in the amplitude representing the diagrams of Fig-
ure 2 (left), i.e. they do not contain a closed loop of fermions. The decomposition of the amplitude
into the form shown in Eq. (2) contains five basis integrals corresponding to “three-mass” boxes,
i.e. four-point integrals with three non-lightlike external legs. This naturally leads to a plethora of
three-mass triangles, whose coefficients do not lend themselves easily to a compact representation
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in terms of straightforward spinor products. As a result, many of the coefficients are considerably
more complex than those presented here. To simplify the calculation slightly, we use the known
singular structure of the amplitude to determine one of the bubble coefficients from the remainder.

As a representative box integral coefficient we choose the one corresponding to the basis integral
I4 (s56, s34, 0, s17; s127, s234). We here show the leading color integral coefficient, which receives a
pre-factor of Nc. It can be written as,

d (s56, s34, 0, s17; s127, s234) =
1

s34 −m2
W

1

s56 −m2
W

〈12〉2 〈2|P |2]
2 〈27〉 〈17〉 ×

(

[42]− 〈2|P |4]
D

)(

〈3|2 + 4|6]− 〈23〉〈2|P |6]
D

) (

[71]〈15〉
〈2|P |7] +

〈25〉
D

)

(4)

where the compound momentum P and denominator factor D are defined by,

P = s17 p34 + s234p17, D = 〈2|(3 + 4) (1 + 7)|2〉. (5)

The factors of D can be put into a more familiar form by relating them to the product DD⋆, where
the complex conjugate of D is simply given by D⋆ = [2|(3 + 4) (1 + 7)|2]. The product can be
written as a trace of gamma matrices that evaluates to,

DD⋆ = 4s34(p2 · p17)2 + 4s17(p2 · p34)2 − 8(p2 · p17)(p2 · p34)(p17 · p34) . (6)

This is just the Gram determinant for this basis integral; its presence, when raised to a sufficiently
high power, can lead to numerical instability in phase space regions where it is very small. To
avoid any such issues we veto phase regions where cancellations between the terms in Eq. (6) (and
equivalent expressions for the other box integrals) occur at the level of 10−6 or more. In our studies
this occurs only very rarely, in about one in a million events, so that the effects of such a veto are
tiny compared to the anticipated level of precision.

For the calculation of the integral coefficients in four dimensions, the only triangle coefficients
that must be computed correspond to integrals with three massive external legs. Triangle integrals
with one or more lightlike legs only contribute to the overall pole structure, which is known a
priori. The three mass triangle coefficients are most easily expressed in terms of an extended set
of momenta that naturally appear in the unitarity approach [24]. For example, the coefficient of
the (leading-colour) basis integral I3(s34, s27, s156) is,

c(s34, s27, s156) =
1

2

1

s34 −m2
W

1

s56 −m2
W

∑

γ=γ1,2

s27[4K
♭
2][72][65]〈K♭

12〉〈K♭
13〉〈15〉2

(γ − s27) [7K
♭
2] 〈K♭

11〉〈K♭
17〉 〈27〉

(7)

where the additional momenta K♭
1 and K♭

2 are defined by,

K♭
1 =

γ [γ p27 + s27 p34]

γ2 − s27 s34
, K♭

2 = −γ [γ p34 + s34 p27]

γ2 − s27 s34
. (8)

The values of γ appearing in these equations are determined by the condition that K♭
1 and K♭

2 are
lightlike,

γ1,2 = p27 · p34 ±
√

(p27 · p34)2 − s27 s34 . (9)

The expressions for the bubble coefficients are, in general, rather complicated due to the com-
plexity of the tree amplitudes that appear either side of the cut. However, the coefficient of the
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calculation parameters σNLO [pb]
MCFM default 14.571 (18)
MG5 default 14.547 (19)
MG5 mh × 10,mt × 10 14.615 (21)
MG5 mh × 100,mt × 100 14.563 (19)
DKU [39] default 14.678 (10)

TABLE I: Total NLO cross-sections for the process p p → W+ W− j at the 14 TeV LHC, with parameter
specifications as in Ref. [52] (“default”), except where noted otherwise.

bubble integral I2 (s156), that appears at leading colour, is rather simple. It is given by,

b (s156) =
1

s34 −m2
W

1

s56 −m2
W

〈56〉 [43]
〈27〉 〈7|P |1] ×

{

− 〈15〉[56]〈3|P |1]2
s156〈1|P |1]

[ 〈15〉[56]
2〈1|P |1] +

〈7|P |6]
〈7|P |1]

]

+
〈73〉2〈7|P |6] [76]

〈7|P |7]

[

1

〈7|P |7]

(〈3|P |7]
〈37〉 +

[76]s156
2 〈7|P |6]

)

+
〈3|P |1]

〈37〉 〈7|P |1]

]

}

, (10)

where the momentum across the cut is P = p1 + p5 + p6.

2.2. Validation

In order to verify the correctness of our calculation we have performed a variety of cross-
checks on both the one-loop amplitudes and the complete NLO calculation. These consist of both
independent calculations by other methods as well as comparisons with results previously reported
in the literature.

For the one-loop amplitude it is useful to perform cross-checks of the calculation at single points
in phase space. All amplitudes have been cross-checked with an independent numerical implemen-
tation of D-dimensional unitarity based on ref. [51], which allows a verification of individual basis
integral coefficients. We find agreement with both the results presented in Table 3 (Appendix B)
of Ref. [38] and those of Table 8 (Section 12.4) of Ref. [52] for the case of non-decaying W -bosons.

To make a direct comparison at the level of the complete NLO cross-section, we have performed
a calculation in the set-up of Ref. [52] using aMC@NLO/Madgraph 5 [53, 54]. We find complete
agreement between our result and Madgraph5, with integration errors for both being at the per
mille level, as shown in Table I. The calculations of Ref. [38, 52] also include contributions from top
and bottom quarks for diagrams with internal quark loops, as well as Higgs-induced diagrams for
Ref. [52]. In order to assess the effect of the loop of third generation quarks, and the Higgs boson,
we have artificially inflated the top quark and Higgs boson masses in order to marginalize their
effects on the NLO cross-section. Variations of the total cross-section are within the respective
integration error, cf. Table I. Therefore, although these contributions are not included in our
calculation, they do not have a significant effect at this level. We find a small difference, of about
0.75%, with the calculation of Ref. [52], as reported in Table I. We find larger differences with the
published results of Ref. [38], at the level of a few percent. Given the excellent agreement with the
other available results, we ascribe this to under-estimated Monte Carlo uncertainty in the earlier
calculation.



7

mW 80.385 GeV ΓW 2.085 GeV
mZ 91.1876 GeV ΓZ 2.4952 GeV
e2 0.095032 g2W 0.42635

sin2 θW 0.22290 GF 0.116638× 10−4

TABLE II: The values of the mass, width and electroweak parameters used to produce the results in this
paper.

3. PHENOMENOLOGY

The results presented in this section have been obtained using the parameters shown in Table II.
Note that we do not include the effects of any third-generation quarks, either as external particles
or in internal loops. Since the effects of a non-diagonal CKM matrix are very small, we also do not
include them here. In calculations of LO quantities we employ the CTEQ6L1 PDF set [55], while
at NLO we use CT10 [56]. The renormalization and factorization scales are usually chosen to be
the same, µR = µF = µ, with our default scale choice µ = µ0 given by,

µ0 ≡
HT

2
=

1

2

∑

i

pi⊥ . (11)

The sum over the index i runs over all final state leptons and partons. This choice of scale captures
some of the dynamics of the process in a way that is missed in, for instance, a fixed scale choice
µ = mW or other common event-by-event scales [57]. Jets are defined using the anti-kT algorithm
with separation parameter R = 0.5 and must satisfy,

pjet
⊥

> 25 GeV , |ηjet| < 4.5 . (12)

Since many phenomenological studies of this process have already been performed, both at
NLO [38–41] and including the effects of a parton shower at NLO [42], in this paper we restrict
ourselves to a small number of pertinent applications. To this end we consider the immediate
prospects in Run 2 of the LHC by presenting cross-sections at 14 TeV under a range of possible
experimental cuts. For a longer-term view, we also consider the situation at a possible Future
Circular Collider with proton-proton collisions at 100 TeV.

The total cross-sections for WW+jet production at these colliders are collated in Table III. The
effect of the decays of the W bosons are not included and the jet is defined using the cuts given
in Eq. (12). The theoretical uncertainty is computed by using a series of scale variations about
the central choice µ0. In order to properly explore this uncertainty, we decouple µR and µF and
consider their variation separately. The uncertainty corresponds to the most extreme predictions
for the four choices,

{µR, µF} = {2µ0, 2µ0} , {µ0/2, µ0/2} , {2µ0, µ0/2} , {µ0/2, 2µ0} . (13)

At the LHC the uncertainty estimate corresponds to the first two variations in Eq. (13), i.e. when
the scales are varied together. At 100 TeV the last two scale variations are most important, due
to an accidental cancellation between the dependence on factorization and renormalization scales
when they are varied together in the same direction. At the LHC this estimate of the uncertainty
decreases from approximately 10% at LO to about 4% at NLO. At 100 TeV the estimates of the
uncertainty, both at LO and NLO, are approximately a factor of two larger. For reference, the
corresponding NLO cross-sections for inclusive WW production with the same input parameters
are approximately 120pb at 14 TeV and 1300pb at 100 TeV.
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√
s σLO [pb] σNLO [pb]

13 TeV 34.9+11.4%
−11.0%

42.9+3.7%
−3.7%

14 TeV 39.5+11.7%
−11.0%

48.6+3.8%
−4.0%

100 TeV 648+22.3%
−23.8%

740+4.5%
−9.3%

TABLE III: Cross-sections for the process pp → WW+jet at proton-proton colliders of various energies,
together with estimates of the theoretical uncertainty from scale variation according to Eq. (13). Monte
Carlo uncertainties are at most a single unit in the last digit shown shown in the table.

FIG. 4: Cross-sections at
√
s = 14 TeV (left) and 100 TeV (right), as a function of the transverse momentum

cut on the jet. The prediction at each order is shown as a solid line, with the dotted lines indicating the
scale uncertainty corresponding to a factor of two variation about the central scale.

To assess the effect of jet cuts at higher transverse momenta, we also present the cross-sections
at LO and NLO as a function of the minimum jet p⊥ in Figure 4. The size of the higher-order
correction increases with the minimum jet p⊥, although the relative uncertainty is approximately
the same. We note that the relative importance of the WW+jet final state, compared to inclusive
WW production, is greater at the 100 TeV collider.

We now turn away from more inclusive quantities and instead focus on particular sets of cuts
targetted at specific analyses. We first consider the case of 14 TeV LHC running, with a set of
cuts inspired by the ATLAS determination of the spin and parity of the Higgs boson presented
in Ref. [58]. The WW process constitutes the largest irreducible background in the H → WW ⋆

decay channel and a cocktail of cuts must be applied in order to access information about the
Higgs boson. Our analysis is limited to the consideration of the dominantWW+jet background and
somewhat simplified with respect to the experimental one. The cuts that we apply are summarized
in Table IV. These include constraints on the transverse mass of (X,Emiss

T ) systems, mX
T , where
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variable cut
p⊥,j > 25 GeV
|ηj | < 4.5
|ηℓ| < 2.5
p⊥,ℓ1 > 22 GeV
p⊥,ℓ2 > 15GeV
mℓℓ ∈ [10, 80] GeV
pmiss
⊥

> 20GeV
∆Φℓℓ < 2.8
mℓℓ

T < 150 GeV

max[mℓ1
T ,mℓ2

T ] > 50 GeV

TABLE IV: Cuts applied in the 14 TeV analysis, corresponding to the “full” set of cuts. The jet cuts,
corresponding to the first two lines in the table, are the only ones applied for the “basic” cross-section.

cuts σLO [fb] σNLO [fb] K
basic 462.0(2) 568.4(2) 1.23
full 67.12(4) 83.91(5) 1.25
spin-2 58.21(4) 71.32(5) 1.23

TABLE V: Cross-sections at 14 TeV, for the cuts specified in Table IV (basic, full) and also in Eq. (15)
(spin-2). Monte Carlo uncertainties are indicated in parentheses and are smaller than the per mille level.

X ∈ (ℓℓ, ℓ1, ℓ2), with pℓℓ = pℓ1 + pℓ2 . This quantity is defined by1,

mX
T =

√

2 pX
⊥
Emiss

T

(

1− cos∆Φ(−→p X
T ,

−→
Emiss

T )
)

. (14)

In the results that follow we shall always consider the decay of each W boson into a single lepton
family, i.e. the Born level quark-antiquark process we consider is the one shown in Eq. (1). The
cross-sections under these cuts are given in Table V. In order to assess their effect, we also show
for comparison the cross sections obtained using only the jet cuts, i.e. the top two lines of the cuts
in Table IV. In addition, we consider the imposition of an additional constraint on the transverse
momentum of the putative Higgs boson,

pH⊥ ≡
∑

pT miss + pT,ℓℓ < 125 GeV . (15)

Such a cut is useful when testing the spin-2 hypothesis for the Higgs boson [58]. The table also
shows the K-factor, defined by K = σNLO/σLO, which we find is rather insensitive to which set of
cuts is applied.

Going beyond the pure cross-section calculation, it is interesting to examine the effect of NLO
corrections on a a few key differential distributions. We shall consider a number that have already
entered in the discussion of the cuts – mℓℓ

T , ∆Φℓℓ and mℓℓ – as well as the transverse momentum of

the lead jet, pj1
⊥
. These quantities are shown in Figure 5 where, for comparison, the LO prediction

has been rescaled by the K-factor from Table V. This indicates that there is very little difference

1 See, for instance, Eq. (3) of Ref. [11].
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FIG. 5: Kinematic distributions at 14 TeV, using the full set of cuts specified in the text. The NLO prediction
is shown as the solid (red) histogram, while the dashed (blue) histogram corresponds to the LO prediction
rescaled by the K-factor from Table V.

variable cut
p⊥,j > 30 GeV
|ηj | < 4.5
|ηℓ| < 2.5
p⊥,ℓ1 > 50 GeV
p⊥,ℓ2 > 10GeV
pmiss
⊥

> 20GeV
mℓℓ

T > 80 GeV

TABLE VI: Cuts applied in the 100 TeV analysis, corresponding to the “full” set of cuts. The jet cuts,
corresponding to the first two lines in the table, are the only ones applied for the “basic” cross-section.

between the shapes of the distributions at each order, with the exception of the transverse momen-
tum of the leading jet. In contrast this does receive significant corrections, which is expected since
additional radiation beyond a single jet is only present at NLO.

The corresponding distributions after the application of the spin-2 cuts, i.e. the addition of the
transverse momentum cut in Eq. (15), are shown in Figure 6. The additional cut has little effect
on the distributions, except for pj1

⊥
. This exhibits a discontinuity at 125 GeV, reflecting the fact

that the NLO prediction is not reliable in this region due to the kinematic limitation present at
LO (pj1

⊥
= pH

⊥
).

For our 100 TeV analysis, we take as inspiration the CMS search for additional heavy resonances
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FIG. 6: Kinematic distributions at 14 TeV, using the spin-2 set of cuts specified in the text. The labelling
is as in Figure 5.

presented in Ref. [11]. Such resonances can appear in models with extended Higgs sectors, where
the simplest realization contains an additional scalar which is a singlet under all SM gauge groups
[59, 60] (see also [61, 62] and references therein). This can be interpreted as a limiting case
for more generic BSM scenarios, e.g. models with either additional gauge sectors [63] or matter
content [64, 65]. In such models, the decay modes for the additional heavy scalar are dominated
by WW decays with branching ratios of order 80% or higher [62]; therefore the process considered
here constitutes a dominant SM background. Furthermore, as the parameter space of such models
is severely constrained by electroweak precision measurements [66], direct production cross-sections
at the LHC are typically of order a few tens of femtobarns, even for additional scalar masses below
1 TeV. Therefore, such models may be hard to constrain at the LHC and would remain to be
investigated at a future 100 TeV proton-proton collider.

The cuts for our 100 TeV analysis are shown in Table VI, where we have adopted the p⊥ and
mT cut values used in searches for heavy resonances with masses greater than 200 GeV.2 For the
sake of simplicity we do not adopt the separation into strict jet bins performed in Ref. [11], nor
do we discard two-jet events that fail the vector boson fusion selection cuts.3 The cross-sections
at 100 TeV are shown in Table VII. We again find that K-factors do not depend strongly on

2 Note that in Ref. [11], the mℓℓ
T cut at 80 GeV in the case of heavy resonances is erroneously reported as a cut on

E⊥,miss. We thank X. Janssen for clarifying this point.
3 The vector boson fusion selection cuts correspond to mjj > 500 GeV and ∆ηjj > 3.5 [11]. In our case such
cuts can only apply to real radiation contributions that are present at NLO. We find that these amount to about
90 fb, which can be used as an order of magnitude estimate of contamination for the pure VBF-type signal from
quark-induced WW + 2 jets at leading order.
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cuts σLO [pb] σNLO [pb] K
basic 6.815(1) 7.939(5) 1.16
full 1.237(1) 1.471(1) 1.19

TABLE VII: cross-sections at 100 TeV, for the cuts specified in Table VI. Monte Carlo uncertainties are
indicated in parentheses and are smaller than the per mille level.

FIG. 7: Kinematic distributions at 100 TeV, using the full set of cuts specified in the text. The labelling is
as in Figure 5.

the choice of cuts. In Figure 7 we again display differential distributions in our usual kinematic
quantities, mℓℓ

T , ∆Φℓℓ, mℓℓ, and pj1
⊥
, showing both NLO as well as rescaled LO results. We observe

that a correct description of the ∆Φℓℓ and pj1
⊥

distributions requires the inclusion of the full NLO
corrections. On the other hand, the distributions for mℓℓ

T and mℓℓ are both well described using a
rescaled LO calculation.

4. CONCLUSIONS

In this paper we have presented a calculation of WW production in association with a jet at
next-to-leading order in QCD using generalized unitarity methods. These methods allow the one-
loop amplitude to be determined in a relatively compact analytic form. As examples, we have
shown several expressions for the coefficients of box, triangle, and bubble scalar integrals that
appear in the amplitudes. Our calculation has been implemented in the parton level Monte Carlo
generator MCFM, which contains analytic expressions for the complete virtual amplitude. The
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MCFM code is significantly faster than previous publicly available implementations of the one-
loop amplitudes. To demonstrate the effect of including NLO corrections, we have studied several
cases of phenomenological interest where the WW+jet process serves as an important background.
These included studies of the CP properties and spin of the recently-discovered Higgs boson at the
LHC, as well as searches for additional scalar resonances at a 100 TeV proton-proton collider. We
have provided cross-section predictions for both scenarios, and examined a number of kinematic
distributions relevant for the experimental analyses. For several of these, and especially the p⊥
distribution of the first jet, the fixed order NLO description is significantly different from the
prediction obtained at LO.

Apart from the phenomenological studies, the full analytic expression for the virtual amplitude
is an important ingredient in the determination of the WW production cross-section at next-to-
next-to-leading order. These contributions will be made available in the release of the next version
of the MCFM code.
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