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CONNECTED HOPF ALGEBRAS AND

ITERATED ORE EXTENSIONS

K.A. BROWN, S. O’HAGAN, J.J. ZHANG AND G. ZHUANG

Abstract. We investigate when a skew polynomial extension T = R[x;σ, δ] of

a Hopf algebra R admits a Hopf algebra structure, substantially generalising a
theorem of Panov. When this construction is applied iteratively in characteris-

tic 0 one obtains a large family of connected noetherian Hopf algebras of finite

Gelfand-Kirillov dimension, including for example all enveloping algebras of
finite dimensional solvable Lie algebras and all coordinate rings of unipotent

groups. The properties of these Hopf algebras are investigated.

1. Introduction

1.1. This paper develops lines of research begun in [Zh1] and in [Pa]. Zhuang
in [Zh1] initiated the study of connected affine Hopf k-algebras of finite Gelfand-
Kirillov dimension (or GK-dimension, for short), over an algebraically closed field
k of characteristic 0; that study was continued in [WZZ], and is taken further
here. In [Pa], Panov asked the question: given a field F and a Hopf F -algebra R,
for which algebra automorphisms σ and σ-derivations δ can the skew polynomial
algebra T = R[x;σ, δ] be given a structure of Hopf algebra extending the given
structure on R? (See (2.1) for the definition of skew polynomial algebra.) Here, we
answer Panov’s question in some special cases. In the following two paragraphs we
discuss these two themes in more detail, starting with the second.

1.2. Hopf Ore extensions. Let R, σ, δ and T be as in the previous paragraph.
The main theorem of [Pa] answered the above question under the additional hy-
pothesis that x is a skew primitive element of T - that is, there are group-like
elements a, b ∈ R such that ∆(x) = a⊗x+x⊗b, where ∆ denotes the coproduct of
T . Our main result in this direction is Theorem 2.4. The following, which appears
as part of Corollary 2.7, is a consequence of that theorem and of other lemmas in
§2.

Theorem. Let R be a Hopf F -algebra which is a domain. Let T = R[x;σ, δ] be a
skew polynomial algebra over R.

(i) Suppose that T admits a Hopf algebra structure, with R a Hopf subalgebra.
Suppose also that

(1) ∆(x) = a⊗ x+ x⊗ b+ v(x⊗ x) + w,

where a, b ∈ R and v, w ∈ R ⊗ R. Then, (possibly after a change of the
variable x),
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(a) ∆(x) = a⊗ x+ x⊗ 1 + w, where a is a group-like element of R and
w =

∑
w1 ⊗ w2 ∈ R⊗R;

(b) ε(x) = 0 and S(x) = −a−1(x+
∑
w1S(w2));

(c) There is a character χ : R −→ F such that

σ = τ `χ = ad(a) ◦ τ rχ;

that is, σ is a left winding automorphism of R, and is the composition
of the corresponding right winding automorphism with conjugation by
a;

(d) σ, δ, w and a satisfy a specific set of identities.
(ii) Conversely, given σ, δ, w and a as in (i), T can be given a Hopf algebra

structure extending the structure on R, with ∆, ε, S as above.

The identities referred to in (i)(d) of the theorem are (21), (22) and (23) in
Theorem 2.4. We call a Hopf algebra T which is a skew polynomial algebra over
a Hopf subalgebra R, as in part (i) of the above theorem, a Hopf Ore extension
(HOE) of R - see Definition 2.1.

1.3. The coproduct of the indeterminate. A very obvious question immedi-
ately arises from Theorem 1.2: Given a Hopf F -algebra T = R[x;σ, δ], with R a
Hopf subalgebra, can we always change the variable x so that ∆(x) has the form
(1)? We don’t know the answer to this question. But we do show, in Lemma 1 of
paragraph 2.2, that ∆(x) does have the form (1), provided we allow the first two
terms to be a(1⊗ x) and b(x⊗ 1) with a and b in R⊗R, and provided we require
R⊗R to be a domain.

A central motivation for us in this work has been the study of connected Hopf
k-algebras (that is, Hopf k-algebras whose coradical is k), where k is algebraically
closed of characteristic 0. For these, we can indeed give a positive answer to the
above question. The following result appears as Proposition 2.8.

Theorem. Let k be algebraically closed of characteristic 0, and R a connected Hopf
k-algebra and let T = R[x;σ, δ] be a Hopf algebra containing R as a Hopf subalgebra.
Then

∆(x) = 1⊗ x+ x⊗ 1 + w

for some w ∈ R⊗R. Consequently, T satisfies all the conclusions of Theorem 1.2,
with a = 1. Moreover, T is connected.

1.4. Iterated Hopf Ore extensions. The preservation of the connected property
in Theorem 1.3 makes it very natural to adopt an inductive definition. Thus we
define an iterated Hopf Ore extension (IHOE) to be a Hopf F -algebra H containing
a chain of Hopf subalgebras

(2) F = H(0) ⊂ · · · ⊂ H(i) ⊂ H(i+1) ⊂ · · · ⊂ H(n) = H,

with each of the extensions H(i) ⊂ H(i+1) := H(i)[xi+1;σi+1, δi+1] being a HOE.
From repeated applications of Theorem 1.3, using also Theorem 2.6, we obtain:

Theorem. If H is an IHOE as in (2), (with the base field algebraically closed of
characteristic 0), then H is a connected noetherian Hopf algebra of GK-dimension
n. After changes of the defining variables {xi} but not of the chain (2), for each
i = 1, . . . , n,

(3) ∆(xi) = 1⊗ xi + xi ⊗ 1 + wi−1,
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where wi−1 ∈ H(i−1) ⊗ H(i−1), for i = 1, . . . , n, with w0 = w1 = 0. Moreover,

the data {xi, σj , δj , wi−1 : 2 ≤ j ≤ n, 1 ≤ i ≤ n} satisfy the conditions listed in
Theorem 2.4, with a = 1.

1.5. Classical IHOEs. Theorem 1.4 thus provides a large supply of connected
Hopf algebras. As we now recall, many, but not all, of the classically familiar
connected Hopf algebras are IHOEs. First, consider the case when H is an affine
commutative Hopf k-algebra, k as usual algebraically closed of characteristic 0. The
arguments and references needed for the following are detailed in Examples 3.1(i);
the non-trivial part is due to Lazard [Laz].

Theorem. Let H be the coordinate ring of the affine algebraic group G over the
algebraically closed field k of characteristic 0. Then the following are equivalent.

(i) H is an IHOE;
(ii) H is a polynomial algebra over k;
(iii) H is a connected Hopf algebra;
(iv) G is unipotent.

In particular, notice that every commutative polynomial Hopf k-algebra is an
IHOE - this is the dual form of the fact that every unipotent group G over k
has a chain of normal subgroups of length dimG with each link in the chain iso-
morphic to the additive group of k. In contrast to this, for cocommutative Hopf
k-algebras with the appropriate finiteness condition, the connected ones are indeed
all “noncommutative polynomial algebras”, but not all of them are IHOEs. This is
a straightforward consequence of the description of cocommutative Hopf k-algebras
in the theorem of Cartier-Gabriel-Kostant, [Mon, Theorem 5.6.5]; the following
result follows from it and the discussion in Examples 3.1(ii),(iii),(iv).

Theorem. Let H be a cocommutative Hopf k-algebra.

(i) H is connected if and only if it is isomorphic as a Hopf algebra to the
enveloping algebra U(g) of a Lie k-algebra g.

(ii) Let H be as in (i). Then H has finite GK-dimension if and only if g has
finite dimension, and in this case GKdimH = dim g.

(iii) Let H = U(g) with dim g finite. Then H is an IHOE if and only if the
only nonabelian simple factor occurring in g is sl(2, k).

1.6. Properties of IHOEs. In view of the theorems in (1.5) one expects IHOEs
to share many properties in common with coordinate rings of unipotent groups
and with enveloping algebras of solvable Lie algebras. Indeed this is the case even
for all connected Hopf k-algebras of finite GK-dimension: in the central result of
[Zh1] it was shown that, for such an algebra A, the associated graded algebra grA
with respect to the coradical filtration is a commutative polynomial Hopf algebra
in n := GKdimA variables, and hence in particular grA is the coordinate ring of
a unipotent group of dimension n. Here we build on this result in Theorem 3.2;
selected parts of that result, additional to those already given in Theorem 1.4, are
the following.

Theorem. Let H be an IHOE as in (2).

(i) After a suitable change of variables (with Theorem 1.2(i) still valid), the
Lie algebra P (H) of primitive elements of H is a subspace of

∑n
i=1 kxi.

(ii) H is Auslander-regular and AS-regular of dimension n, and is GK-Cohen-
Macaulay.
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(iii) H has Krull dimension at most n.
(iv) H is skew Calabi-Yau with Nakayama automorphism ν, where, for i =

1, . . . , n,

ν(xi) = xi + ai,

with ai ∈ H(i−1). If xi ∈ P (H) then ai ∈ k.
(v) The antipode S of H either has infinite order, or S2 = Id.

(vi) S4 = τ `χ ◦ τ r−χ, the composition of a left winding automorphism of H with
the right winding automorphism of the inverse character, with the charac-
ter χ in the centre of the character group X(H). In particular, S4 is a
unipotent automorphism of a generating finite dimensional subcoalgebra of
H.

Moreover, in Theorem 5.4, partially generalising a well-known property of en-
veloping algebras in characteristic 0, we show that

Theorem. An IHOE H as in (2) which satisfies a polynomial identity is commu-
tative.

1.7. The maximal classical subgroup of an IHOE. As is well-known, for any
Hopf algebra H the ideal I(H) := 〈[H,H]〉 of H generated by the commutators is
a Hopf ideal. Suppose that H is an affine k-algebra with k algebraically closed of
characteristic 0. Then H/I(H) is the coordinate ring of an algebraic group over k.
It is natural to call this group the maximal classical subgroup of H; of course it is
nothing else but the character group X(H) of all algebra homomorphisms from H
to k. That is,

H/I(H) ∼= O(X(H)).

Suppose now that H is an IHOE with chain (2) (although the following remarks
are valid more generally for any connected Hopf k-algebra of finite GK-dimension
n). Since Hopf algebra factors of connected Hopf algebras are again connected,
by [Mon, Corollary 5.3.5], it follows from Theorem 1.4 that H/I(H) is connected.
Hence, by the first theorem in §1.5, H/I(H) is a polynomial algebra in at most n
variables; equivalently, X(H) is a unipotent group of dimension at most n.

1.8. Generalisation of part of a theorem of Goodearl. To study X(H) when
H is an IHOE, in §4 (most of which is independent of the rest of the paper), we
prove the following result, which generalises a special case of a result of Goodearl
[Go] on the prime spectrum of R[x;σ, δ] when R is commutative. Note that the
result below concerns an arbitrary skew polynomial F -algebra, not necessarily a
Hopf algebra, and the algebraically closed field F may have any characteristic.

Theorem. Let F be algebraically closed and let R be a F -algebra. Let σ and δ
be respectively an F -algebra automorphism and a σ-derivation of R, and set T =
R[x;σ, δ]. Let Ξ(T ) denote the set of ideals M of T with T/M ∼= F , and similarly
for Ξ(R). Write Ψ : Ξ(T ) −→ Ξ(R) : M 7→M ∩R.

(i) Let M ∈ Ξ(T ) and denote Ψ(M) by m. Then (a) δ([R,R]) ⊆ m, and either
(b) m is (σ, δ)-invariant, or (c) m is not σ-invariant.

(ii) Let m ∈ Ξ(R), and suppose that (b) (and hence (a)) hold for m. Then
mT � T and T/mT ∼= F [x], so that

Ψ−1(m) = {〈mT, x− λ〉 : λ ∈ F} ∼= A1
F .



CONNECTED HOPF ALGEBRAS AND ITERATED ORE EXTENSIONS 5

(iii) Let m ∈ Ξ(R), and suppose that (a) and (c) hold for m. Then there exists
a unique M ∈ Ξ(T ) with Ψ(M) = m.

1.9. Applications of Theorem 1.8 to IHOEs. There are several reasons why
X(H) is a worthwhile object of study for an affine Hopf algebra H:

• it is an important invariant of H;
• it yields (via the left and right winding automorphisms) a supply of algebra

automorphisms of H;
• it is a starting point for the representation theory of H;
• the behaviour of X(H) under restriction and induction has structural con-

sequences for H.
In this paper we focus on the last of these points. To explain what we mean by it,

let T = R[x;σ, δ] be a HOE; as in Theorem 1.8, let Ψ be the restriction map, which
we view as a homomorphism of groups from X(T ) to X(R). Let m ∈ imΨ, a closed
subgroup of X(R). Theorem 1.8 tells us that Ψ−1(m) is either a single element of
X(T ) or is a copy of (k,+). If τ is any non-identity winding automorphism of T
then τ permutes the characters of T transitively, with τ(R) = R since R is a Hopf
subalgebra of T , we see that the fibre Ψ−1(m) takes the same form for every m in
imΨ. In the first case we say that the HOE is of variant type, and in the second we
call it invariant type. Note that the extension is of invariant type if and only if R+T
is an ideal of T , where R+ is the augmentation ideal of R. This is all contained in
§4. In §5, we take the first steps in exploring this dichotomy: the following result
summarises parts of Theorems 5.1 and 5.2.

Theorem. Let k be an algebraically closed field of characteristic 0, let R be a Hopf
k-algebra and let T = R[x;σ, δ] be a HOE.

(i) If T is an invariant HOE of R then there is a change of variables from x
to x̃ so that T = R[x̃; ∂], where ∂ is a derivation of R.

(ii) If R is an affine commutative domain and T is a variant HOE, then there
is a change of variables from x to x̃ such that x̃ is skew primitive and
T = R[x̃;σ].

1.10. Notation. Throughout, F is an arbitrary field, and k is an algebraically
closed field of characteristic 0. Given a Hopf algebra H, whether over F or over k,
we shall use the standard symbols ∆, S, ε for the coproduct, antipode and counit of
H, and, for h ∈ H, write ∆(h) = h1⊗h2. We denote the augmentation ideal of H by
H+, and write G(H) for the set of group-like elements of H. The coradical filtration
of H, as defined at [Mon, §5.2], is denoted by {Hn : n ≥ 0}. We shall always assume
that the antipode is bijective, although this is not a significant imposition in the
present paper, since it is known to be always true for semiprime right noetherian
Hopf algebras by [Sk].

2. Hopf Ore extensions

2.1. Definition. Recall that, if R is a F -algebra and σ is a F -algebra automor-
phism of R, then a left σ-derivation δ of R is a F -linear endomorphism of R such
that δ(ab) = δ(a)b + σ(a)δ(b) for all a, b ∈ R. Given these ingredients, the skew
polynomial algebra T = R[x;σ, δ] is the F -algebra generated by R and x, subject
to the relations

(4) xr − σ(r)x = δ(r)
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for all r ∈ R. For basic properties, see for example [BG, I.1.11].

Definition. Let R be a Hopf F -algebra. A Hopf Ore extension (HOE) of R is a
F -algebra T such that

• T is a Hopf F -algebra with Hopf subalgebra R;
• there exist an algebra automorphism σ and a σ-derivation δ of R such that
T = R[x;σ, δ].

• there are a, b ∈ R and v, w ∈ R⊗R such that

(5) ∆(x) = a⊗ x+ x⊗ b+ v(x⊗ x) + w.

We repeat here in a more precise form the question already raised in paragraph
1.3:

Question. Does the third condition in the definition of a HOE follow from the first
two, after changing the variable x?

We show in Lemma 1 of the next subsection that one can get some way towards
a positive answer with a relatively weak additional hypothesis on R, namely that
R⊗R is a domain; and in Proposition 2.8 we shall completely answer the question
when R is a connected k-algebra. But otherwise, the question is open.

2.2. Comultiplication in HOEs. Our initial target in §2 is Theorem 2.4, where
we determine constraints on the possible HOEs which can be formed with coefficient
ring a given Hopf F -algebra R. Such a result has previously been obtained by
Panov [Pa], under the additional hypothesis that the variable x of the extension
is skew primitive. Typically, this hypothesis is not valid: consider for example the
coordinate algebra H = O(G) of the Heisenberg group G of dimension 3. View G
as the set of upper triangular 3× 3 matrices with 1s on the main diagonal, so H is
generated by the coordinate functions y, z and x for entries (1, 2), (2, 3) and (1, 3)
respectively. Then H = k[x, y, z] = k[y, z][x], a HOE with coefficient Hopf algebra
R = k[y, z], but x is not skew primitive:

∆(x) = x⊗ 1 + 1⊗ x+ y ⊗ z.

Indeed the space of primitive elements of H is spanned by y and z, so no alternative
choice of third variable renders H as a HOE of R with skew primitive generator.

Lemma 1. Let T = R[x;σ, δ] be a Hopf F -algebra with R a Hopf subalgebra.
Suppose that R⊗R is a domain. Then ∆(x) = s(1⊗ x) + t(x⊗ 1) + v(x⊗ x) +w,
where s, t, v and w ∈ R⊗R.

Proof. Since T is a free left R-module on basis {xi : i ≥ 0}, we can write

(6) ∆(x) =
∑
i,j≥0

wijx
i ⊗ xj

where each wij ∈ R ⊗ R. Fix j0 to be the maximal integer such that wij0 6= 0 for
some i and let i0 be the maximal integer such that wi0j0 6= 0. Define deg r = 0 for
all r ∈ R and deg x = 1. Then we can extend this to define the lexicographic order,
which we shall call degree, for the elements of T ⊗ T and T ⊗ T ⊗ T .

Applying ∆⊗ 1 to (6) we get

(7) (∆⊗ 1)∆(x) =
∑
i,j

(∆⊗ 1)(wij)((∆x)i ⊗ xj)
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with maximal degree component γxi
2
0 ⊗ xj0i0 ⊗ xj0 where

γ = (∆⊗ 1)(wi0j0)(wi0j0(σi0 ⊗ σj0)(wi0j0) · · · (σi0 ⊗ σj0)i0−1(wi0j0)⊗ 1).

Since R⊗R is a domain, γ 6= 0.
Similarly,

(1⊗∆)∆(x) =
∑
i,j

(1⊗∆)(wij)(x
i ⊗ (∆x)j)(8)

=
∑
i,j

(1⊗∆)(wij)(x
i ⊗ (

∑
s,t

wstx
s ⊗ xt)j)

with maximal degree component νxi0 ⊗ xi0j0 ⊗ xj20 where

ν = (1⊗∆)(wi0j0)(1⊗ wi0j0(σi0 ⊗ σj0)(wi0j0) · · · (σi0 ⊗ σj0)j0−1(wi0j0)).

Since R⊗R is a domain, ν 6= 0.
Since (7) equals (8) by coassociativity, we must have j0 = 0 or 1. By symmetry,

the maximal value of i such that wij 6= 0 for some j is i = 0 or i = 1. Hence there
exists s, t, v, and w ∈ R⊗R such that

(9) ∆(x) = s(1⊗ x) + t(x⊗ 1) + v(x⊗ x) + w.

�

We repeat here for emphasis that, as a special case of the question in subsection
2.1, we can ask: In the above lemma, can the conclusion (9) be replaced by (5)? In
partially answering this question over the next three pages we will continue to use
the notation of Definition 2.1.

Lemma 2. Let T = R[x;σ, δ] be a HOE.

(i) a, b ∈ G(R) provided that v = 0 or w = 0.
(ii) v ∈ F.
(iii) If v = 0 then

(10) a⊗ w + (Id⊗∆)(w) = w ⊗ b+ (∆⊗ Id)(w).

Proof. (i) Applying ∆⊗ 1 and 1⊗∆, respectively, to (5), we have

(∆⊗ 1)∆(x)(11)

= ∆a⊗ x+ (a⊗ x+ x⊗ b+ v(x⊗ x) + w)⊗ b
+ ((∆⊗ 1)v)((a⊗ x+ x⊗ b+ v(x⊗ x) + w)⊗ x) + (∆⊗ 1)w,

and

(1⊗∆)∆x(12)

= a⊗ (a⊗ x+ x⊗ b+ v(x⊗ x) + w) + x⊗∆b

+ ((1⊗∆)v)(x⊗ (a⊗ x+ x⊗ b+ v(x⊗ x) + w)) + (1⊗∆)w

Equating coefficients in R⊗R⊗R of 1⊗ 1⊗ x in (11) and (12) yields

(13) ∆(a)⊗ 1 + ((∆⊗ 1)v)(w ⊗ 1) = a⊗ a⊗ 1.

Consider coefficients of x⊗ 1⊗ 1 in (11) and 12 to get

(14) 1⊗ b⊗ b = 1⊗∆b+ ((1⊗∆)v)(1⊗ w).

Suppose that

(15) w = 0 or v = 0.
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Then (13) and (14) at once yield (i).
(ii) Case 1: w 6= 0. Compare the right-most tensorands in (13) to get v = v1⊗1.

A similar comparison of the left-most tensorands in (14) yields v = 1⊗v2. It follows
that v ∈ F.

Case 2: w = 0. Comparing the coefficients of 1⊗ x⊗ x in (11) and (12) shows
that

(16) ((∆⊗ Id)(v))(a⊗ 1⊗ 1) = a⊗ v.
Write v =

∑
ci⊗di with {di} linearly independent. Then (16) shows that, for each

i,

∆(ci)(a⊗ 1) = (1⊗ ci)(a⊗ 1).

From (i), given that w = 0 we know that a ∈ G(R), so we deduce from the above
equation that ∆(ci) = 1⊗ ci for all i. Applying 1⊗ ε to ∆ci we see that ci ∈ k for
all i, so that v = 1⊗ d for some d ∈ R. Now consider the coefficient of x⊗ x⊗ 1 in
(11) and (12): we find that

v ⊗ b = ((Id⊗∆)(v))(1⊗ 1⊗ b).
However, this implies that

∆(d) = d⊗ 1,

and applying ε⊗ Id gives d ∈ k as well. Therefore v ∈ F in Case 2 also.
Finally, (iii) follows by comparing the coefficients of 1⊗1⊗1 in (11) and (12). �

2.3. The antipode.

Lemma. Let T = R[x;σ, δ] be a Hopf F -algebra with R a Hopf subalgebra. Suppose
that ∆(x) has the form (5), writing w =

∑
w1 ⊗ w2. Then we have the following.

(i) Suppose that R is a domain. Then S(x) = αx+ β for β ∈ R and α ∈ R×.

For the remainder of the lemma, assume that S has the form obtained in (i).

(ii) v = 0.
(iii) a, b ∈ G(R).
(iv) α = −a−1σ(b−1).
(v) β = a−1(ε(x)− δ(b−1)−

∑
w1S(w2)).

Proof. (i) Since S is an anti-automorphism of T it is easily checked that, for all
r ∈ R,

S(x)r − Sσ−1S−1(r)S(x) = −Sδσ−1S−1(r).

Thus T is an Ore extension of R with indeterminate S(x),

T = R[S(x);Sσ−1S−1,−Sδσ−1S−1].

Since R is a domain, (i) follows by considering the expression for x as a polynomial
in S(x) with coefficients from R.

(ii) By the defining property of the antipode, and using Lemma 2(ii) of §2.2 at
the third equality,

ε(x) =µ(1⊗ S)∆(x)(17)

=µ(1⊗ S)(a⊗ x+ x⊗ b+ v(x⊗ x) + w)

=µ(a⊗ αx+ a⊗ β + x⊗ Sb+ v(x⊗ αx+ x⊗ β) +
∑

w1 ⊗ Sw2)

= aαx+ vxβ + xSb+ vxαx+ aβ +
∑

w1Sw2.
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The only term of degree 2 in x on the right-hand side of (17) is

vσ(α)x2.

This must therefore be zero. By (i), σ(α) is a unit of R, so (ii) follows.
(iii) is immediate from (ii) and Lemma 2(i) of §2.2.
(iv),(v) Given (ii), (17) simplifies to

ε(x) = aαx+ xSb+ aβ +
∑

w1Sw2

= (aα+ σ(b−1))x+ δ(b−1) + aβ +
∑

w1Sw2.

Using (iii) and equating the coefficient of x and the constant term, (iv) and (v)
follow. �

2.4. Panov’s theorem generalised. The polynomial variable of a skew poly-
nomial extension is far from uniquely determined: for if T = R[x;σ, δ] is a skew
polynomial algebra and λ ∈ F , then δλ := δ + λ(Id− σ) is another σ-derivation of
R, as is easily checked, and

T = R[x+ λ;σ, δλ].

Whenever convenient, therefore, we may assume without loss of generality when
studying a HOE T = R[x;σ, δ] that

x ∈ T+

Moreover, given a unit of R, say for example b−1, replacing x by b−1x, and writing
ad(b−1) to denote conjugation by b−1, one easily checks that

T = R[b−1x; ad(b−1)σ, b−1δ].

In practice, b will be a group-like element of a Hopf algebra when we apply this
below, so this usage of the notation ad coincides with the standard Hopf notation
ad`, [Mon, page 33].

Theorem. (i) Let R be a Hopf F -algebra and let T = R[x;σ, δ] be a HOE of
R. Suppose that

(H) S(x) = αx+ β for α, β ∈ R with α ∈ R×.

Write w =
∑
w1⊗w2 ∈ R⊗R, with {w1} and {w2} chosen to be F -linearly

independent subsets of R. Then the following hold.
(a) a, b ∈ G(R) and v = 0.
(b) After a change of the variable x and corresponding adjustments to σ,

δ and w,

(18) ε(x) = 0

and

(19) ∆(x) = a⊗ x+ x⊗ 1 + w.

For the remainder of (i), we assume that (18) and (19) hold.
(c) S(x) = −a−1(x+

∑
w1S(w2)).
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(d) There is a character χ : R→ F such that

(20) σ(r) = χ(r1)r2 = ar1a
−1χ(r2) = ad(a) ◦ τ rχ(r),

for all r ∈ R. That is, σ is a left winding automorphism τ `χ, and
is the composition of the corresponding right winding automorphism
with conjugation by a.

(e) The σ-derivation δ satisfies the relation

(21) ∆δ(r)− δ(r1)⊗ r2 − ar1 ⊗ δ(r2) = w∆(r)−∆σ(r)w.

(f) The element w is in R+ ⊗R+, and satisfies the identities

(22) S(w1)w2 = a−1w1S(w2),

and

(23) w ⊗ 1 + (∆⊗ Id)(w) = a⊗ w + (Id⊗∆)(w).

(ii) Let R be a Hopf F -algebra. Suppose given a ∈ G(R), w ∈ R ⊗ R, a F -
algebra automorphism σ of R and a σ-derivation δ of R such that this
data satisfies (d), (e) and (f) of (i). Then the skew polynomial algebra T =
R[x;σ, δ] admits a structure of Hopf algebra with R as a Hopf subalgebra,
and with x satisfying (H), (a), (b) and (c) of (i). As a consequence, T is
a HOE of R.

Proof. (i)(a) Lemma 2.3 (ii) and (iii).
(b) This follows from the discussion before the theorem.
(c) Given (b), this is Lemma 2.3(iv) and (v).
(d), (e) The proofs of these are very similar to the corresponding parts of [Pa,

Theorem 1.3]. In brief, to obtain the first equality in (d), one first writes down
the conditions on ∆ which ensure that the defining relations (4) for T are satisfied.
Thus, define

χ : R −→ R : r 7→ σ(r1)S(r2).

Calculation using (4) confirms that, for r ∈ R, ∆◦χ(r) = χ(r)⊗1, whence χ(r) ∈ k.
Then one checks that χ is a character of F , and that σ = τ `χ as in (d).

Now let r ∈ R and apply ∆ to the equation xr = σ(r)x + δ(r). Comparing the
coefficients of x⊗ 1, of 1⊗ x, and of 1⊗ 1 yields the rest of (d) and (e).

(f) (23) is Lemma 2(ii). From the identities (Id⊗ ε)◦∆(x) = x = (ε⊗ Id)◦∆(x)
and the linear independence of {w1} and {w2} we deduce that the wi are in the
augmentation ideal of R. Finally, (22) follows from the identity µ◦(S⊗Id)◦∆(x) =
ε(x), together with (18) and (19).

(ii) We leave to the reader the task of checking that, given the stated conditions,
∆ : R −→ R ⊗ R can be extended to an algebra homomorphism from T to T ⊗ T
by defining ∆(x) as in (19). The antipode is defined as in (c), and the counit
ε is extended to T by setting ε(x) = 0. It is a routine but quite long series of
calculations, similar to, but more involved than, those in the proof of [Pa, Theorem
1.3], to show that these extensions can be achieved and that the Hopf axioms are
all satisfied. To show that ε is an algebra homomorphism one needs to confirm that
ε respects the relation xr − σ(r)x = δ(r) for all r ∈ R; in other words, one must
show that, for all r ∈ R, εδ(r) = 0. This is done by applying µ ◦ (Id ⊗ ε) to (21).
This gives, for each r ∈ R,

0 = (w1ε(w2))r − σ(r)(w1ε(w2)) + ar1εδ(r2).
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Since w ∈ R+ ⊗R+ by (i)(f), it follows that

r1εδ(r2) = 0.

Now apply ε to both sides and use the fact that εδ is a linear map. �

2.5. The coradical of a HOE.

Proposition. Let R be a Hopf F -algebra and let T = R[x;σ, δ] be a HOE of R.
Assume v = 0 and write w =

∑
w1 ⊗ w2 ∈ R ⊗ R, with {w1} and {w2} chosen to

be F -linearly independent subsets of R. Then R0 = T0; that is, the coradical of T
is the coradical of R.

Proof. Since R is a subcoalgebra of T , we have R0 ⊂ T0. Let FnT be the F -
subspace of T spanned by elements of degree ≤ n in x. Obviously {FnT}n≥0 is an
exhaustive filtration on T and F0T = R. Since ∆(x) has the form (5) with v = 0,
it is easy to check {FnT}n≥0 is a coalgebra filtration on T in the sense that

∆(FnT ) ⊆
n∑
i=0

FiT ⊗ Fn−iT.

By [Mon, 5.3.4 Lemma], T0 ⊆ F0T = R. Hence T0 = R0 by [Mon, Lemma 5.2.12].
�

2.6. The Gelfand-Kirillov dimension of a HOE.

Theorem. Let R be a Hopf F -algebra and let T = R[x;σ, δ] be a HOE of R
for which hypothesis (H) of Theorem 2.4 holds. Suppose also that R is a finitely
generated F -algebra. Then

GKdimT = GKdimR+ 1.

Proof. Note first that, since σ is a winding automorphism ofR by Theorem 2.4(i)(d),
it is locally finite dimensional, in the sense that every finite dimensional subspace
of R is contained in a finite dimensional σ-stable subspace. This is because each
finite subset of R is contained in a finite dimensional subcoalgebra C of R by [Mon,
Theorem 5.1.1], and σ(C) ⊆ C from the definition of a winding automorphism.
The result now follows from [HK, Lemma 2.2]. �

2.7. HOEs with R a domain. If R is any Hopf F -algebra, note that Theorem
2.4(ii) holds for R. Whether the converse is true in this generality is not known,
but we have the following result, which is an immediate corollary of the previous
results of this section, in view of Lemma 2.3.

Corollary. Let R be a Hopf F -algebra and a domain, and let T = R[x;σ, δ] be a
HOE of R. Then the conclusions of Theorem 2.4(i), Proposition 2.5, and, if R is
affine, Theorem 2.6, are valid for T .

It is natural to ask:

Question. Are the results of the above corollary valid without the hypothesis that
R is a domain? Equivalently, is the domain hypothesis needed for Lemma 2.3(i)?

While we don’t know the answer to the above question, we can at least deal with
the case of particular interest to us in the present paper, namely the case where R
is connected of finite GK-dimension, as we explain in the next subsection. In view
of Lemma 1 of subsection 2.2, there is a related question:
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Question. If a Hopf F -algebra R is a domain, is R⊗R also a domain?

While we again don’t know the answer to this, we can at least note that if the
answer is positive then this will require the Hopf hypothesis. For in [RS] Rowen
and Saltman exhibit division k-algebras E and F , finite dimensional over their
centres, each centre containing the algebraically closed field k of characteristic 0,
with E ⊗k F not a domain; and by a famous result of Cohn [Co, Corollary 6.1], E
and F can be embedded in a common division ring D with k ⊆ Z(D).

2.8. HOEs of connected Hopf algebras of finite GK-dimension. If R is a
connected Hopf k-algebra, then so is R⊗R: for, if {Ri} is the coradical filtration of
R, then it is clear from the definition, [Mon, Theorem 5.2.2], that An :=

∑n
i=0Ri⊗

Rn−i is a coalgebra filtration of R ⊗ R, and hence by [Mon, Lemma 5.3.4] the
coradical of R ⊗ R is contained in A0 = k. Hence R ⊗ R is a domain by [Zh1,
Theorem 6.6]. Similarly, R⊗R⊗R is a connected Hopf algebra domain.

Proposition. Let k be algebraically closed of characteristic 0. Let R be a connected
Hopf k-algebra and let T = R[x;σ, δ] be a Hopf algebra containing R as a Hopf
subalgebra. Then

∆(x) = 1⊗ x+ x⊗ 1 + w

for some w ∈ R⊗R. As a consequence, T is a HOE of R and is a connected Hopf
algebra.

Proof. Since R is connected, so is R⊗R. By [Zh1, Theorem 6.6], R⊗R is a domain,
and by Lemma 2.2.1,

∆(x) = s(1⊗ x) + t(x⊗ 1) + v(x⊗ x) + w

where s, t, v, w ∈ R⊗R. Then

(∆⊗ 1)∆(x) = (∆⊗ 1)(s)(1⊗ 1⊗ x)

+ (∆⊗ 1)(t){(s(1⊗ x) + t(x⊗ 1) + v(x⊗ x) + w)⊗ 1}
+ (∆⊗ 1)(v){(s(1⊗ x) + t(x⊗ 1) + v(x⊗ x) + w)⊗ x}+ (∆⊗ 1)(w),

while

(1⊗∆)∆(x) = (1⊗∆)(s)(1⊗ (s(1⊗ x) + t(x⊗ 1) + v(x⊗ x) + w))

+ (1⊗∆)(t)(x⊗ 1⊗ 1)

+ (1⊗∆)(v){x⊗ (s(1⊗ x) + t(x⊗ 1) + v(x⊗ x) + w)}+ (1⊗∆)(w).

Comparing the coefficients of the term x⊗ x⊗ x in the coassociative equation,

(∆⊗ 1)∆(x) = (1⊗∆)∆(x)

we obtain

(24) (∆⊗ 1)(v)(v ⊗ 1) = (1⊗∆)(v)(1⊗ v).
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Similarly, by comparing the coefficients in the other terms (such as 1⊗1⊗1, x⊗1⊗1,
etc) in the above coassociative law for x, we have a list of equations

(∆⊗ 1)(t)(w ⊗ 1) + (∆⊗ 1)(w) = (1⊗∆)(s)(1⊗ w) + (1⊗∆)(w),(25)

(∆⊗ 1)(t)(t⊗ 1) = (1⊗∆)(t) + (1⊗∆)(v)(1⊗ w),(26)

(∆⊗ 1)(t)(s⊗ 1) = (1⊗∆)(s)(1⊗ t),(27)

(∆⊗ 1)(s) + (∆⊗ 1)(v)(w ⊗ 1) = (1⊗∆)(s)(1⊗ s),(28)

(∆⊗ 1)(t)(v ⊗ 1) = (1⊗∆)(v)(1⊗ t),(29)

(∆⊗ 1)(v)(t⊗ 1) = (1⊗∆)(v)(1⊗ s),(30)

(∆⊗ 1)(v)(s⊗ 1) = (1⊗∆)(s)(1⊗ v).(31)

We claim that the equation (24) implies that v is c1 ⊗ 1 for some scalar c ∈ k.
Let Rn be the nth term in the coradical filtration on R. We define an N3-filtration
on R⊗R⊗R by

Fl,m,n = Rl ⊗Rm ⊗Rn
for all l,m, n ∈ N. Note that N3 is an ordered semigroup with an total ordering
defined as follows:

(l1,m1, n1) < (l2,m2, n2) if and only if either l1 +m1 +n1 < l2 +m2 +n2,
or l1 +m1 +n1 = l2 +m2 +n2 and l1 < l2, or l1 +m1 +n1 = l2 +m2 +n2
and l1 = l2 and m1 < m2.

Define F≤(l,m,n) =
∑

(l′,m′,n′)≤(l,m,n) Fl′,m′,n′ . Then {F≤(l,m,n) | (l,m, n) ∈ N3} is

a filtration such that the associated graded ring is (grR)⊗ (grR)⊗ (grR), which is
a domain by [Zh2, Remark 3.7, Proposition 6.5 and Theorem 6.10]. Similarly, we
can define a filtration on R ⊗ R. Using these filtrations, the degree of elements in
R⊗d, for d = 1, 2, 3, is well-defined. If f ∈ R has degree a, then deg ∆(f) = (a, 0),
by [Mon, Theorem 5.2.2(2)] and the counit axiom. Similarly, if deg f = (a, b) for
some f ∈ R⊗R, then deg(∆⊗ 1)(f) = (a, 0, b). Let deg v = (m,n), and apply deg
to the equation (24). Using the fact that (grR) ⊗ (grR) ⊗ (grR) is a domain, we
obtain

(m, 0, n) + (m,n, 0) = (m,n, 0) + (0,m, n)

which implies that m = 0. So, since R0 = k, v = 1 ⊗ f for some f ∈ R. By
symmetry, v = g ⊗ 1 for some g ∈ R. Hence v = c1⊗ 1 for some c ∈ k as desired.

Suppose that v 6= 0; that is, that c ∈ k \ {0}. Then (31) is equivalent to
s ⊗ 1 = (1 ⊗∆)(s), which implies that s = a ⊗ 1 for some a ∈ R. Similarly, (29)
implies that t = 1 ⊗ b for some b ∈ R. Therefore (5) holds and T is a HOE of R.
Since R is a domain, by Lemma 2.3 and Theorem 2.4(i), v = 0, a contradiction.
Therefore v = 0.

With v = 0, (26) becomes

(∆⊗ 1)(t)(t⊗ 1) = (1⊗∆)(t).

Let deg t = (m,n). Considering degrees in the above equation, we have

(m, 0, n) + (m,n, 0) = (m,n, 0)

which implies that m = n = 0. So t = d1⊗ 1 for some d = d2 ∈ k. Since d 6= 0 by
the counit axiom, d = 1 and t = 1⊗ 1. By symmetry, s = 1⊗ 1. The result follows.

By Proposition 2.5, T0 = R0 = k, so T is connected. �

The following corollary is immediate.
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Corollary. Let k be algebraically closed of characteristic 0, and R a connected
Hopf k-algebra and let T = R[x;σ, δ] be a Hopf algebra containing R as a Hopf
subalgebra. Then the conclusions of Theorem 2.4(i), Proposition 2.5 and Theorem
2.6, are valid for T .

3. Iterated Hopf Ore extensions

3.1. Definition and first examples. By Proposition 2.8, (5) is automatic for
T := R[x;σ, δ] when R is connected, and in this case T is connected. So we can
make the following definition without mentioning requirement (5).

Definition. An iterated Hopf Ore extension of k (IHOE) is a Hopf k-algebra

(32) H = k[X1][X2;σ2, δ2] . . . [Xn;σn, δn],

where

• H is a Hopf k-algebra;
• H(i) := k〈X1, . . . , Xi〉 is a Hopf subalgebra of H for i = 1, . . . , n;
• σi is an algebra automorphism of H(i−1), and δi is a σi-derivation of H(i−1),

for i = 2, . . . , n.

Examples. (i) Let O(G) be the coordinate ring of the k-affine algebraic group
G. Recall that G is unipotent if, for all g ∈ G, g− 1 acts nilpotently on all
finite dimensional (rational) representations. The following are equivalent.
(a) O(G) is an IHOE;
(b) O(G) is a polynomial k-algebra;
(c) O(G) is a connected Hopf algebra;
(d) G is unipotent.

In this case n = dimG.
Here, (a)⇒ (b) is clear,and (b)⇒ (d) is a theorem of Lazard, [Laz], see

also [KP]. (d)⇒ (a) follows since a unipotent group in characteristic 0 is a
subgroup of the group of strictly upper triangular n×n matrices, for some
n, [Hu, Corollary 17.5], and so has a finite normal (even central) series with
successive factors isomorphic to (k,+). That these equivalent conditions
imply (c) is a well-known fact in the theory of algebraic groups, namely,
that the trivial module is the only simple rational G-module when G is
unipotent. But it is in any case a consequence of Proposition 2.5. Finally,
if (c) holds, then by duality the trivial module is the unique rational simple
G-representation, from which it follows from the definition of a unipotent
group that G is unipotent.

(ii) The enveloping algebra U(g) of the finite dimensional solvable Lie algebra
g is an IHOE, with n = dimk(g) and σi = id for all i. This follows from
the fact that g has a chain of ideals gi, 0 ≤ i ≤ n,, with gi ⊂ gi+1 and
dimk(gi) = i, for all i, [Di, 1.3.14].

(iii) Let g = sl(2, k) = ke ⊕ kh ⊕ kf , with the standard relations. Then H :=
U(g) is an IHOE,

H = k[h][e;σ2][f ;σ3, δ3],

with σ2(h) = h − 2, σ3(e) = e and σ3(h) = h + 2, and δ3 mapping h to 0
and e to −h.
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(iv) If g is a semisimple Lie k-algebra with a simple factor not isomorphic
to sl(2, k), then U(g) is not an IHOE. To see this, note that the Hopf
subalgebras of U(g) are the enveloping algebras of the Lie subalgebras of
g, and there are insufficient of these to form a full flag in g.

3.2. First properties of IHOEs. Clearly, all the results of §2 can be applied to
IHOEs, passing inductively up the chain (32). Note that the issue of §2.7, whether
R⊗R is a domain, is easily resolved for an IHOE R, since R⊗R is again an IHOE.
Let us write P (H) to denote the space of primitive elements of the Hopf algebra
H. Definitions and background for the terminology introduced in (v) and (vii) of
the following result can be found in many places, see for example [BZ].

Theorem. Let H be an IHOE with defining chain (32).

(i) H is a connected Hopf algebra with, for each i = 1, . . . , n,

(33) ∆(xi) = xi ⊗ 1 + 1⊗ xi + wi−1,

where wi−1 ∈ H(i−1) ⊗H(i−1), for i = 1, . . . , n, with w0 = w1 = 0. After
changes of the defining variables {xi} but not of the chain (32), the data
{xi, σj , δj , wi−1 : 2 ≤ j ≤ n, 1 ≤ i ≤ n} satisfies (appropriate formulations
of) the conditions listed in Theorem 2.4, with a = 1.

(ii) H is a noetherian domain of GK-dimension n.
(iii) After further variable changes (not affecting the validity of (i)), the Lie

algebra P (H) is contained in the space
∑n
i=1 kxi, with equality if and only

if H is isomorphic as a Hopf algebra to the enveloping algebra U(P (H)).
(iv) The associated graded Hopf algebra of H with respect to the coradical fil-

tration is a commutative polynomial algebra in n variables.
(v) H is Auslander-regular and AS-regular of dimension n, and is GK-Cohen-

Macaulay.
(vi) H has Krull dimension at most n.
(vii) H is skew Calabi-Yau with Nakayama automorphism ν, where, for i =

1, . . . , n,

ν(xi) = xi + ai,

with ai ∈ H(i−1). If xi ∈ P (H) then ai ∈ k.
(viii) The antipode S of H either has infinite order, or S2 = Id.
(ix) S4 = τ `χ ◦ τ r−χ, the composition of a left winding automorphism of H with

the right winding automorphism of the inverse character. The character
χ belongs to the centre of the character group X(H). In particular, S4 is
a unipotent automorphism of a generating finite dimensional subcoalgebra
of H.

Proof. (i) This follows by induction on n, using Proposition 2.8 to handle the
induction step.

(ii) That H is a noetherian domain is immediate from basic properties of Ore
extensions, [MR, Theorem 1.2.9]. In view of (i), Theorem 2.6 applies at every step
of the defining chain (32) for H, and shows that GKdimH = n.

(iii) We argue by induction on the GK-dimension n of H, the case n = 0 being
trivial. Suppose that n ≥ 1, so that

H = T [x;σ, δ],
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where T is an IHOE of GK-dimension n− 1 that is constructed using the variables
x1, . . . , xn−1, with

T1 = H1 ∩ T ⊆
n−1∑
i=1

kxi.

If H1 ⊆ T then there is nothing to prove. So, suppose that H1 is not contained in
T and choose w ∈

∑m
i=0 tix

i ∈ H1 \ T , with m := degw minimal. Let tm ∈ T`, and
suppose that ` ≥ 1. By [Mon, Lemma 5.3.2],

∆(tm) = tm ⊗ 1 + 1⊗ tm + γ,

for an element γ ∈ T`−1 ⊗ T`−1.
Now, by (33), for some η ∈ T ⊗ T ,

∆(w) =

m∑
i=0

∆(ti)∆(x)i

=

m∑
i=0

∆(ti)(x⊗ 1 + 1⊗ x+ η)i

= (tm ⊗ 1 + 1⊗ tm + γ)(x⊗ 1 + 1⊗ x+ η)m + β

= tmx
m ⊗ 1 + 1⊗ tmxm + xm ⊗ tm + tm ⊗ xm + µ,

where β, µ ∈ H⊗H do not involve any right or left tensorands of degree in x greater
than or equal to m.

But w ∈ P (H), so

(34) ∆(w) = tmx
m ⊗ 1 + 1⊗ tmxm +

m−1∑
i=0

tix
i ⊗ 1 +

m−1∑
i=0

1⊗ tixi.

The two expressions for ∆(w) cannot be reconciled, so we conclude that tm ∈ k.
Therefore, without loss of generality, tm = 1. Suppose now that m > 1. Then

∆(w) = ∆(x)m +

m−1∑
i=0

∆(ti)∆(x)i

= xm ⊗ 1 + 1⊗ xm +mxm−1 ⊗ x+ ζ,

where ζ ∈ H ⊗H involves no terms in xm−1 ⊗ x. Comparing this with (34) we are
forced to conclude that m = 1. That is,

w = x+ t,

for some element t of T .
As is well-known, we can now change the nth variable in the IHOE H from x to

w, replacing δ by δ̂ := δ + [tσ,−], where [tσ, r] := tr − σ(r)t for r ∈ R. Then δ̂ is

a σ-derivation of T and H = T [w;σ, δ̂], so that the induction step is proved. This
proves the first claim in (iii).

To prove the second statement in (iii), suppose first that all the xi are primitive,
then H, being generated by these elements, is cocommutative. The only units of
an iterated skew polynomial algebra being scalars, G(H) = {1}. Since we are
in characteristic 0, a special case of the Cartier-Gabriel-Kostant theorem, [Mon,
Theorem 5.6.5], ensures that H is the enveloping algebra of the Lie algebra P (H) =∑
i = 1nkxi. Conversely, suppose that H is an IHOE which is isomorphic as Hopf

algebra to the enveloping algebra of the Lie algebra g. We claim that H can be
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realised as an IHOE with a basis of g as the set of skew polynomial generators of H.
Argue by induction on n := GKdimH = dimkg, the second equality holding by [KL,
Example 6.9]. By hypothesis, H = T [x;σ, δ] for an IHOE T , with GKdimT = n−1,
by Corollary (2.8). Since Hopf subalgebras of enveloping algebras are enveloping
algebras (by, for example, [Mon, Theorem 5.6.5] again), T ∼= U(h) for an n − 1-
dimensional Lie subalgebra of g. By induction, T can be realised as an IHOE with
a basis of h as skew polynomial generating set. By [Mon, Proposition 5.5.3(2)],

P (T ) = h ( g = P (H).

The argument from the first part of the proof of (iii) can now be used to show that

there exists t ∈ T with x− t ∈ P (H); and as before, H = T [x− t;σ, δ̂], as required.
(iv) Immediate from (i),(ii) and [Zh1, Theorem 6.9].
(v),(vi) This all follows by standard techniques from (iv) - see [Zh1, Corollary

6.10].
(vii) By [BZ, Proposition 4.5] and (v), H is skew Calabi-Yau with Nakayama

automorphism ν = S2τ , where τ is a certain left winding automorphism of H. For
i = 1, . . . , n, that τ(xi) and S2(xi) have the form ascribed to ν in (vii) follows from
(33) and from Theorem 2.4(i)(c) respectively. Since H(i−1) is a Hopf subalgebra of
H, the composition of these maps also has the desired form. The second claim is
clear from the formulae for S2 and τ when wi−1 = 0.

(viii) Suppose that |S| < ∞. We show that S2 = Id, arguing by induction on
n = GKdimH. The case n = 0 being trivial, we have H = R[x;σ, δ], where R is
an IHOE of GK-dimension n − 1, whose antipode S|R has finite order, and hence

satisfies S2
|R = Id by the induction hypothesis. By Theorem 2.4(i)(c), there exists

r ∈ R such that S(x) = −x+ r. Setting a := S(r)− r ∈ R, we find

(35) S2(x) = x+ a.

Continuing, we easily calculate that, for every m ≥ 1,

(36) S2m(x) = x+ma.

But S is supposed to have finite order, and k has characteristic 0, so (36) is only
possible if a = 0. By (35)

S2(x) = x,

and the induction is proved.
(ix) Given the AS-regularity of H from (v), the first claim follows from [BZ,

Corollary 4.6], in view of the fact that H has no non-trivial inner automorphisms,
by (ii). (The character χ is given by the right action of H on the left homological
integral ExtnH(k,H).) Let I(H) = 〈[H,H]〉. As discussed in detail in §4.1 below,
the maximal commutative factor H/I(H) of H is a Hopf algebra. Since H/I(H)
is affine and commutative, it is the coordinate ring of an affine algebraic k-group
X(H), the character group of H. Since I(H) is a Hopf ideal of H it is fixed by
S4, and S4 then induces on H/I(H) the fourth power of the antipode of H/I(H).
But the square of the antipode of a commutative Hopf algebra is the identity,
[Mon, Corollary 1.5.12], S4 induces the identity on H/I(H). The centrality of χ is
immediate.

Being a factor of the connected algebra H, H/I(H) is itself connected by [Mon,
Corollary 5.3.5]. Thus, by Examples 3.1(i), X(H) is unipotent. Let V be a finite
dimensional generating coalgebra of H. Since the maps τ ` and τ r from X(H) to
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GL(V ) yield commuting rational actions of X(H) on V , 〈τ `(X(H)), τ r(X(H))〉 is
a unipotent subgroup of GL(V ), as claimed. �

Remarks. (i) Both alternatives in (viii) can occur: see 3.4(iii) for an example
with |S| =∞.

(ii) From the second part of (ix) of the theorem and the fact that unipotent
groups in characteristic 0 are torsion free (Examples 3.1(i)), we can directly
deduce a weaker version of (viii): S4 is either the identity or has infinite
order.

(iii) The inequality in (vi) can be strict: the Krull dimension of U(sl(2, k) is 2,
by [Le].

(iv) Further information about the character group U appearing in (ix) is ob-
tained in §4.

3.3. IHOEs of small dimension. If H is a connected Hopf k-algebra of finite
GK-dimension, then

(37) min{2,GKdimH} ≤ dimkP (H) ≤ GKdimH,

by [Zh2, Lemma 5.11]. Moreover, if K is a proper Hopf subalgebra of H then
GKdimK < GKdimH, by [Zh1, Lemma 7.2]. Parts (i), (ii) and (iii) of the following
theorem follow easily from these facts. The connected Hopf k-algebras of GK-
dimension 3 [resp. 4] have been classified by Zhuang [Zh1] [resp. by Wang, Zhang
and Zhuang [WZZ]]. In view of Theorem 3.2(i)(ii), these classifications yield all
IHOEs of dimension at most four.

We summarise the picture in the following theorem, summarising results from
[Zh1] and [WZZ]. The terminology and notation appearing in (iv) is explained in
§3.4, after the theorem. For the definitions of the terms used in (v)(b) and (v)(c),
see [WZZ].

Theorem. Let H be an IHOE.

(i) If dimkH is finite, then H = k.
(ii) If GKdimH = 1 then H = k[x].
(iii) If GKdimH = 2 then H is the enveloping algebra of one of the two Lie

algebras of dimension 2.
(iv) Suppose that GKdimH = 3. Then H is isomorphic as a Hopf algebra to

one (and only one) of the following:
(a) the enveloping algebra of a three-dimensional Lie algebra;
(b) the algebras A(0, 0, 0), A(0, 0, 1), A(1, 1, 1), A(1, λ, 0), λ ∈ k;
(c) the algebras B(λ), λ ∈ k.

(v) Suppose that GKdimH = 4. Then H is isomorphic as a Hopf algebra to
one (and only one) of the following:
(a) the enveloping algebra of a four-dimensional Lie algebra;
(b) the enveloping algebra U(g) of an anti-commutative coassociative Lie

algebra g of dimension 4;
(c) a primitively-thin Hopf algebra of GK-dimension 4.

In particular, every connected Hopf k-algebra of GK-dimension at most 4 is an
IHOE.

3.4. Definitions and remarks for Theorem 3.3. (i) To explain (iv) we need
to explain, following [Zh1, § 7], but adapting the presentations of [WZZ, Lemma
3.2] the families of algebras A(λ1, λ2, α) and B(λ).
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Let A be the factor of the free algebra k〈X,Y, Z〉 by the ideal generated by

[X,Y ]

[Z,X]− λ1X + αY,

[Z, Y ]− λ2Y,

where α = 0 if λ1 6= λ2, and α = 0 or 1 if λ1 = λ2. Abusing notation by writing
X,Y, Z for the images of the corresponding elements in A, A becomes a Hopf algebra
with augmentation ideal 〈X,Y, Z〉, with X and Y primitive, with

∆(Z) = Z ⊗ 1 + 1⊗ Z +X ⊗ Y − Y ⊗X

and with

S(X) = −X, S(Y ) = −Y, S(Z) = −Z.

Let B be the factor of k〈X,Y, Z〉 by the ideal generated by

[X,Y ]− Y,

[Z,X] + Z − λY,

[Z, Y ],

where λ ∈ k. Then B has a Hopf algebra structure with the same coproduct for
kX + kY + kZ as for A. Thus, by Theorem 2.4(i)(c), the only possible values for
the antipode are S(X) = −X, S(Y ) = −Y and S(Z) = −Z + Y .

(ii) Zhuang shows in the proof of [Zh1, Prop.7.1] that A(λ1, λ2, α) and B(λ) are
IHOEs, with the following structures.

For A, there is the chain of Hopf subalgebras

(38) A0 = k ⊆ A1 = k[Y ] ⊆ A2 = k[Y,X] ⊆ A2[Z; δ] = A,

where δ is the obvious (given the relations) derivation of A2.
Similarly, for B we can take the chain of Hopf subalgebras

(39) B0 = k ⊆ B1 = k[Y ] ⊆ B2 = k〈Y,X〉 ⊆ B2[Z;σ, δ] = B,

where B2 is the enveloping algebra of the 2-dimensional non-abelian Lie algebra,
and σ and δ are clear from the relations.

(iii) Note that the antipode of B(λ) has infinite order, with S2m(Z) = Z+(2m)Y
for allm ≥ 1. This is in contrast to the properties of commutative or cocommutative
Hopf algebras, for which S2 = id. Thus both alternatives listed in Theorem 3.2(viii)
actually occur.

(iv) By [Zh1, Theorem 7.6], the algebras in (iv) above are precisely the connected
Hopf k-algebras of GK-dimension 3. That they are all IHOEs follows from (38),
(39) and the discussion in §3.1, Examples (ii) and (iii).

(v) One easily checks by a routine examination of the presentations in [WZZ]
that every connected Hopf k-algebra of GK-dimension 4 is an IHOE.



20 K.A. BROWN, S. O’HAGAN, J.J. ZHANG AND G. ZHUANG

4. The maximal classical subgroup of a Hopf Ore extension

4.1. Maximal classical subgroups. If T is a k-algebra, we call an algebra ho-
momorphism χ : T −→ k a character of T , and its kernel Kerχ a character ideal.
Set Ξ(T ) to denote the set of character ideals of T . Note that if T is affine and k is
algebraically closed then Ξ(T ) has a natural structure as an algebraic set. We write
〈[T, T ]〉 to denote the ideal of T generated by the commutators {ab− ba : a, b ∈ T},
and

I(T ) := ∩{M : M ∈ Ξ(T )},
so that 〈[T, T ]〉 ⊆ I(T ).

It is well known and easy to prove that, when H is a Hopf k-algebra, 〈[H,H]〉 and
I(H) are Hopf ideals of H. For us, k is algebraically closed of characteristic 0; let’s
assume also that H is affine. Then the nullstellensatz ensures that I(H)/〈[H,H]〉
is a nilpotent ideal of the commutative affine k-algebra H := H/〈[H,H]〉. But, in
characteristic 0, such Hopf algebras are semiprime by [Wa], so 〈[H,H]〉 = I(H).
Thus H ∼= O(G) for some affine algebraic group G over k. For obvious reasons we
call G the maximal classical subgroup of H.

The above discussion all applies if H is assumed to be noetherian rather than
affine, since Molnar’s theorem [Mo] ensures that commutative noetherian Hopf
algebras are affine.

4.2. Goodearl’s theorem generalised for characters. In this subsection we
consider general Ore extensions, rather than Hopf algebras. In the main result
(Theorem 3.1) of [Go], Goodearl describes the prime ideals of an Ore extension
T = R[x;σ, δ], where R is a commutative noetherian ring. To analyse the classical
subgroups of an HOE we generalise the special case of Goodearl’s theorem applying
to character ideals, to the case where R is a not necessarily commutative F -algebra.

Theorem. Let F be algebraically closed and let R be a F -algebra. Let σ and δ
be respectively an F -algebra automorphism and a σ-derivation of R, and set T =
R[x;σ, δ]. Write Ψ : Ξ(T ) −→ Ξ(R) : M 7→M ∩R.

(i) Let M ∈ Ξ(T ) and denote Ψ(M) by m. Then (a) δ([R,R]) ⊆ m, and either
(b) m is (σ, δ)-invariant, or (c) m is not σ-invariant.

(ii) Let m ∈ Ξ(R), and suppose that (b) (and hence (a)) hold for m. Then
mT � T and T/mT ∼= k[x], so that

Ψ−1(m) = {〈mT, x− λ〉 : λ ∈ k} ∼= A1
k.

(iii) Let m ∈ Ξ(R), and suppose that (a) and (c) hold for m. Then there exists
a unique M ∈ Ξ(T ) with Ψ(M) = m.

In the next few pages, we will refer to the conditions (a), (b) and (c) in Theorem
4.2(i). So we list these conditions here explicitly

(4.2(ia)) δ([R,R]) ⊆ m,
(4.2(ib)) m is (σ, δ)-invariant,
(4.2(ic)) m is not σ-invariant.

4.3. Proof of Theorem 4.2: initial steps. Throughout the proof F,R, x, σ, δ
and T will be as in Theorem 4.2. We begin by observing that if A is an ideal of
T and a := A ∩ R, then δ(a ∩ σ−1(a)) ⊆ a. This follows by applying the relation
(4) with r ∈ a ∩ σ−1(a). In the following result we address the converse to this
statement, for character ideals. In essence we construct a sort of Verma module
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for T by induction from a 1-dimensional R-module, and show that under suitable
hypotheses this module has a 1-dimensional factor.

Proposition. Let m be an ideal of R with R/m ∼= F. Suppose that

(40) σ(m) 6= m,

and that

(41) δ(m ∩ σ−1(m)) ⊆ m.

Then there is a unique ideal M of T such that M ∩R = m. Moreover, T/M ∼= k.

Proof. Assume that m satisfies the stated hypotheses.
Step 1: There exists an element r ∈ m such that σ(r) ≡ 1(modm); moreover, r

is uniquely determined and non-zero, modulo m ∩ σ−1(m).
For, thanks to (40) there are elements a, r ∈ m such that 1 = a + σ(r), and

clearly r /∈ σ−1(m). Since m/m ∩ σ−1(m) ∼= k, r is uniquely determined modulo
m ∩ σ−1(m).

Step 2: Let r be as in Step 1, and define λ := δ(r)modm. Suppose M is an ideal
of T with M ∩R = m. Then x+ λ ∈M.

We have

(42) M 3 xr = σ(r)x+ δ(r).

There are elements t, s ∈ m such that σ(r) = 1 + t and δ(r) = λ+ s. Substituting
in (42) gives

x+ tx+ λ+ s ∈M,

so that x+ λ ∈M and Step 2 is proved.
Step 3: Define I to be the right F [x]−submodule of T ,

I = (x+ λ)k[x] + mT.

Then I is an ideal of T , with T/I ∼= k and I ∩R = m.
Since it is clear that T/I ∼= k as vector spaces and that m ⊆ I, we only need to

prove that I is an ideal. Also, if I is a left ideal of T , then IT = I(k + I) ⊆ I, so
that I is an ideal. To prove that I is a left ideal, it’s sufficient to show that mI ⊆ I
and that xI ⊆ I, since T is generated by x and m. The first of these claims is clear,
since mT ⊆ I. For the second claim, since T = mk[x] + k[x], it’s enough to prove
that

(43) xmk[x] ⊆ I.
Thus, let w ∈ m and f ∈ k[x], and consider xwf. Suppose first that w ∈ m∩σ−1(m).
Then, by (41),

xwf = σ(w)xf + δ(w)f ∈ mT ⊆ I.
On the other hand, m = kr + (m ∩ σ−1(m) by Step 1, so it remains only to show
that

(44) xrf ∈ I.
But

xrf = σ(r)xf + δ(r)f

= (1 + t)xf + (λ+ s)xf

= f(x+ λ) + txf + sf

∈ (x+ λ)k[x] + mT = I.
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�

4.4. Proof of Theorem 4.2: conclusion.

Proof. (i) Let M ∈ Ξ(T ), with Ψ(M) := m. If σ(m) 6= m, then

δ([R,R]) ⊆ δ(m ∩ σ−1(m)) ⊆ m,

by the observation at the start of §4.3. On the other hand, if σ(m) = m then the
same calculation using (4) shows that δ(m) ⊆ m.

Therefore (4.2(ia)) holds in both cases, and either (4.2(ib)) or (4.2(ic)) holds, as
claimed.

(ii) Let m be a (σ, δ)−invariant character ideal of R. So mT is an ideal of T , and

T/mT ∼= k[x].

Therefore (ii) follows.
(iii) Let m ∈ Ξ(R) and suppose that m satisfies (4.2(ia)) and (4.2(ic)). We claim

that (41) holds for m. First, note that if a and b are distinct character ideals of a
F -algebra R, then

(45) a ∩ b = 〈[R,R]〉+ ab = 〈[R,R]〉+ ba.

This follows from the inclusion

a ∩ b = (a ∩ b)R = (a ∩ b)(a + b) ⊆ ab + ba,

so that ab + ba = a ∩ b. Since 〈[R,R]〉 ⊆ a ∩ b, we get ab + ba + 〈[R,R]〉 = a ∩ b,
proving (45).

An easy calculation shows that (4.2(ia)) implies that

(46) δ〈[R,R]〉 ⊆ m.

Finally, by (45) and (46),

δ(m ∩ σ−1(m)) = δ(R[R,R]R+ σ−1(m)m)

⊆ δ(R[R,R]R) + δ(σ−1(m))m + mδ(m)

⊆ m,

proving (41) as claimed.
Thus the hypotheses of Proposition 4.3 are satisfied by m, and hence (iii) is

proved. �

Remarks. (i) Clearly, hypothesis (4.2(ib)) on m ∈ Ξ(R) implies hypothesis
(4.2(ia)) for m; but this is not true for hypothesis (4.2(ic)), and we can
check from Examples 3.1(iii), T = U(sl(2, k)) = R[f ;σ, δ] that (4.2(ia)) is
genuinely needed when R is noncommutative.

(ii) It is natural to ask the following question, perhaps starting with the case
of completely prime ideals:

Question. Does Goodearl’s theorem generalise in full to the setting where
the coefficient algebra R is not commutative?
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4.5. Characters of Hopf Ore extensions. Retain the setting of 4.2, but assume
now in addition that T is a Hopf algebra and R is a right [resp. left] coideal
subalgebra of T . We can use the left [resp. right] winding automorphisms of T ,
[BG, I.9.25], to move between any two character ideals of T whilst preserving the
inclusion R ⊆ T . The following then follows easily from Theorem 4.2, since one
simply has to note that Ξ(T ) is permuted transitively by the left (and by the right)
winding automorphisms of T , these being effectively the regular representations of
the character group. We say that M ∈ Ξ(T ) (with m = Ψ(M)) has invariant type
if (4.2(ib)) holds for m; and that M has variant type if (4.2(ia)) and (4.2(ic)) hold
for m.

Theorem. Let T = R[x;σ, δ] as in Theorem 4.2. Assume that T is a Hopf F -
algebra with R a right or left coideal subalgebra of T . Then either all of Ξ(T ) is of
invariant type, or all of Ξ(T ) is of variant type.

In the first situation of the theorem we say that R ⊆ T is an invariant extension;
and in the second, we call R ⊆ T a variant extension.

Both variant and invariant extensions occur. A convenient example is the en-
veloping algebra of the two-dimensional non-abelian Lie algebra, T = k〈x, y :
[y, x] = x〉. This Hopf algebra can be presented as

T ∼= k[x][y; δ],

where δ is the derivation x ∂
∂x ; and as

T ∼= k[y][x;σ],

where σ is the automorphism σ(y) = y−1. Thus the first presentation is of invariant
type, with

Ξ(T ) = Ψ−1(〈x〉) ≈ Maxspec(k[y]);

and the second is of variant type, with

Ξ(T ) = Ψ−1(Maxspec(k[y]) = {〈y − λ, x〉 : λ ∈ k}.
Of course, when σ = idR then only invariant type is possible, but when σ is non-
trivial then a priori either option can occur.

4.6. The maximal classical subgroup of an IHOE. The coradical of a factor
Hopf algebra of a Hopf k-algebra H is contained in the image of the coradical H0 of
H by [Mon, Corollary 5.3.5]. Suppose that H is an IHOE of GK-dimension n. Then
H is connected by Theorem 3.2(i). So, by the first sentence, every Hopf factor of
H is also connected of finite GK-dimension; in particular this is true of its maximal
classical subgroup H/I(H). Continuing the discussion of § 4.1 for H, recall part of
the content of Examples 3.1(i): the commutative IHOEs over k are precisely the
coordinate algebras of the unipotent algebraic groups over k, and these are precisely
the commutative affine connected Hopf k-algebras. We can therefore conclude that

(47) the maximal classical subgroup U of an IHOE H is unipotent.

Trivially, the dimension of U is at most GKdimH, with equality if and only if
H = O(U). Of course, every unipotent group U occurs as the maximal classical
subgroup of an IHOE, namely of the IHOE O(U), Examples 3.1(i).

Contrary to what one might conjecture, guided for example by the case of en-
veloping algebras,

the maximal classical subgroup of an IHOE is not necessarily normal.
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Recall that, in the context of algebraic groups, the normality of a subgroup N of
the algebraic k-group G is equivalent to the normality of the defining ideal of N
in O(G), [Mon, page 36]; normality of Hopf ideals is defined at [Mon, Definition
3.4.5]. Consider for example the algebras B(λ) of Theorem 3.3(iv)(c): we easily
calculate that

I(B(λ)) = 〈Y,Z〉,
and it is routine to check that this ideal is not normal.

5. Algebra structure of HOEs - first steps

5.1. Invariant HOEs. Recall the definitions of invariant and variant HOEs in
§4.5.

Theorem. Let R be a Hopf k-algebra and let T = R[x;σ, δ] be an invariant HOE.
Then R is a normal Hopf subalgebra of T and there is a change of variables so that
T = R[x̃; ∂], where ∂ is a derivation of R.

Proof. Since the extension R ⊆ T is invariant, R+T is a Hopf ideal of T , with
T/R+T ∼= O((k,+)). Clearly, T is a free right and left R-module. Writing π for
the canonical homomorphism from T to O((k,+)), we can therefore apply [Ta,
Theorem 1], to conclude that

(48) T coπ =coπ T = R.

By [Mon, Proposition 3.4.3], R is a normal Hopf subalgebra of T . Finally, by [GZ,
Theorem 8.3],

(49) T ∼= T coπ[x̃; ∂],

for a k-derivation ∂ of T coπ. Combining (48) and (49) completes the proof. �

Remarks. (i) In the special case where R⊗R is a domain, most of the above
theorem follows very easily from Theorem 2.4, since that result forces σ to
be a left winding automorphism of R, which can’t fix R+ unless σ = id.
It follows that in this case δ = ∂.

(ii) Effectively what [GZ, Theorem 8.3] is proving that the extension R ⊆ T
is cleft, in the language of [Mon, §7.2].

5.2. Variant HOEs over commutative coefficient rings.

Theorem. Let R be an affine commutative Hopf k-algebra, and an integral domain,
so R is the ring of regular functions of the connected algebraic k-group G. Let
T = R[x;σ, δ] be a HOE of variant type.

(i) There is a change of variables such that T = R[x̃;σ].
(ii) The indeterminate x̃ is skew primitive, and σ is a winding automorphism

of R corresponding to a central element of G.
(iii) [Pa] Given a Hopf k-algebra R, and σ, x̃ satisfying the conditions in (ii),

T = R[x̃;σ] is a Hopf algebra with R as a Hopf subalgebra.

Although the theorem requires R to be commutative, we state and prove the
preparatory lemma below under more general hypotheses. Note that the hypothesis
imposed on σ, that it is a winding automorphism of R, always holds if R ⊗ R is a
domain, by Theorem 2.4. Recall the notation concerning characters introduced in
§4.1.
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Lemma. Let R be an affine or noetherian Hopf k-algebra, and let T = R[x;σ, δ]
be a variant HOE of R. Assume that σ is a left winding automorphism of R.

(i) Ξ(T ) ≈ Ξ(R/〈δ([R,R]) + [R,R]〉).
(ii) R+ I(T ) = T.

Proof. (i) Since the HOE is variant, σ(R+) 6= R+. But σ is thus a non-trivial
winding automorphism, so every character of R is moved by it. Hence (i) follows
from Theorems 4.2(i),(iii) and 4.5.

(ii) Note that if R is noetherian then the commutative Hopf algebra R/I(R) is
affine by Molnar’s theorem [Mo]. Hence T/I(T ) is affine under either hypothesis
on R. We show first that

(50) I(T ) +R+T = T+.

The inclusion of the left side in the right is clear. Indeed, by Theorem 4.2, T+

must be the unique character ideal of T containing R+. Now I(T ) + R+T is a
Hopf ideal, since I(T ) and R+ are Hopf ideals of T , respectively of R. Therefore,
T/(I(T ) + R+T ) is a commutative affine Hopf k-algebra with a unique maximal
ideal, namely T+/(I(T ) + R+T ). By the Nullstellensatz, this maximal ideal must
be nilpotent. But, since k has characteristic 0, T/(I(T ) + R+T ) is semiprime by
Cartier’s theorem [Wa, Theorem 11.4], so the reverse inclusion for (50) is proved.

Now, applying winding automorphisms of T to (50), bearing in mind that these
preserve the Hopf subalgebra R of T , we deduce that, for all M ∈ Ξ(T ), setting
m = M ∩R,

(51) M = I(T ) + mT.

Since T/M ∼= k, (51) can be restated as: for every maximal ideal m of R with
I(T ) ∩R ⊆ m,

(52) R+ I(T ) + mT = T.

Set R := R/(I(T ) ∩ R), a commutative affine Hopf algebra, which is therefore
semiprime by a second application of [Wa, Theorem 11.4]. To complete the proof of
(ii) we show first that T := T/I(T ) is locally a finitely generated R-module. Let Y
be an indeterminate. There is an algebra epimorphism ψ from R[Y ] onto T , sending
the coset of r+(I(T )∩R) to r+I(T ) for r ∈ R, and sending Y to the coset of X in
T . The kernel of ψ must be non-zero, since otherwise (i) would be contradicted. Fix∑n
i=0 r̄iY

i ∈ kerψ, with r̄n 6= 0. Since R is semiprime, the Nullstellensatz ensures

that there is a maximal ideal m of R with r̄n /∈ m. We therefore deduce that Tm is
a finitely generated Rm-module, namely

(53) Tm =

n−1∑
i=0

RmX̄
i.

Next, note that the winding automorphisms of T preserve I(T ) ∩ R, hence induce
automorphisms of R which permute transitively the maximal spectrum of that
algebra. Thus, applying these winding automorphisms to (53), we see that (53) is
actually valid for every maximal ideal of R (and in fact, although we shall not need
this, even with the same module generating set {1̄, X̄, . . . , X̄n−1}, because of the
nature of ∆(X) guaranteed by Theorem 2.4(i)(b)).

Suppose now that

(54) I(T ) +R ( T.
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Thus there is a maximal ideal n of R such that (T/(I(T ) + R))n 6= 0. But this
Rn-module is just (T/ψ(R)n, which is finitely generated by (53). As such, it has a
simple factor which is isomorphic to Rn/nRn. However, this forces

R+ I(T ) + nT ( T,

contradicting (52). This completes the proof of (ii). �

5.3. Proof of Theorem 5.2. By Lemma 5.2(ii) there exists d ∈ R such that
x− d ∈ I(T ). Thus, for all r ∈ R,

I(T ) 3 (x− d)r − σ(r)(x− d) = δ(r)− dr + σ(r)d.

But this element also belongs to R, and I(T ) ∩R = 0 by Lemma 5.2(i), so that

δ(r) = dr − σ(r)d;

in other words, δ is an inner σ-derivation of R. Therefore, if we set x̃ := x−d, then
T = R[x̃;σ], by [GW, Exercise 2Y].

(ii) Since R ⊗ R is a domain, Theorem 2.4 applies, so that σ is the winding
automorphism given by a central element of G, and, noting that x̃ ∈ I(T ) ⊆ T+,
∆(x̃) has the form (19), for some group-like element a ∈ R, and w ∈ R⊗R. Write
w as w = w1 ⊗ w2, where the elements {w1} are linearly independent over k.

From its definition, the ideal I(T ) is invariant under all algebra automorphisms
of T , and is generated by x̃. From the form (19) for the coproduct of x̃ it follows
that, for each χ ∈ Ξ(T ) = Ξ(R) = G,

(55) τ rχ(x̃) = x̃+ rχ ∈ I(T ),

where rχ =
∑
w1χ(w2) ∈ R. Since I(T )∩R = 0 we must have rχ = 0 for all χ ∈ G.

However, R is a commutative affine domain by hypothesis, so the nullstellensatz
guarantees that, if w 6= 0, there exists χ ∈ G such that χ(w2) 6= 0 for some term w2

in the expression for w. Then the linear independence of {w1} ensures that rχ 6= 0.
This is a contradiction, so w must be 0; that is, x̃ is skew primitive, as required.

(iii) This is a special case of [Pa, Theorem 1.3].

Remark. Theorem 5.2(i) does not remain true if the commutativity hypothesis on
R is omitted: consider for example T = U(sl(2,C), whose structure as IHOE is
described in Examples 3.1(iii).

5.4. IHOEs satisfying a polynomial identity. Recall that, over a field of char-
acteristic 0, an enveloping algebra of a Lie algebra satisfies a polynomial identity
only if the Lie algebra is commutative, [La], (or see [Pas] for the infinite dimensional
case). Evidence that, at least in characteristic 0, the algebra structure of IHOEs
resembles that of enveloping algebras, is given by the following theorem.

Theorem. If an IHOE H over the field k of characteristic 0 satisfies a polynomial
identity, then H is commutative.

Proof. We induct on n := GKdimH, the result being trivial for n = 0.
Let GKdimH = n, and suppose the result is known for IHOEs of smaller dimen-

sion. This forces H to have the form H = R[x;σ, δ] for a commutative polynomial
Hopf k-algebra R in n−1 variables, the number of variables being given by Theorem
3.2(ii). By [Jo],

(56) PIdegree(H) = PIdegree(R[x;σ]),
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and then it follows from [DS] that σ has finite order. However, σ is a winding
automorphism of R, by Theorem 2.4(i)(d). By §4.6, the character group U of H is
unipotent. In particular, since k has characteristic 0, U is torsion free. Therefore
σ must be the identity map, and we deduce that

(57) PIdegree(R[x;σ]) = 1.

The result follows from (56) and (57). �
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