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Abstract. This is a brief survey of some recent developments in the study of infinite dimen-
sional Hopf algebras which are either noetherian or have finite Gelfand-Kirillov dimension. A
number of open questions are listed.

1 Introduction

This article is a survey of recent progress in the study of infinite dimensional Hopf algebras
satisfying one or both of two finiteness conditions, namely the finiteness of Gelfand-Kirillov
dimension, or the noetherian condition, that is the ascending chain condition on one-sided ideals.
This paper is in some sense a continuation and an updating of the earlier surveys [5] and [11].
In view of the volume of recent work in this area, we have had to be selective in the topics
discussed. To be specific first about what is not covered: there is nothing on the (important
and active) homological aspects, including the (twisted) Calabi-Yau property and calculation of
(co)homology; we mention only very briefly in §3.2 recent work on the classification of Hopf
algebras of small GK-dimension; and we treat only in passing in Sections 5 and 6 developments
in the important programme [3] to classify certain pointed Hopf algebras. For a still reasonably
current account of the first two omissions, see [11]; work on the third topic above has recently
focussed on the special case of finite dimensional pointed Hopf algebras, and for these, the
excellent survey [2] has recently appeared.

The topics which are addressed here are as follows. The noetherian property is studied in
§2, and Gelfand-Kirillov dimension in §3. Relations of these conditions with each other, and
with finite generation of the algebra, are considered, as well as some discussion on the prime
and primitive spectra of Hopf algebras satisfying finiteness conditions. In the second half of
the paper we specialise to the classes of pointed and connected Hopf algebras. After a brief
review of some necessary terminology in §4, we look briefly at pointed Hopf algebras in §5;
then, in more detail in §6, we consider the class of connected Hopf algebras of finite Gelfand-
Kirillov dimension over an algebraically closed field of characteristic 0. As we explain in §6,
this latter class of algebras can be viewed, ring-theoretically, as generalisations of enveloping
algebras of Lie algebras; geometrically, as deformations of finite dimensional affine space; and,
group-theoretically, as generalised unipotent groups.

A number of open questions are listed throughout the paper. The notation we use is standard
- it and unexplained terminology can be found in [22], for example. Thus, for a Hopf algebra H
defined over the field k, the coproduct will be denoted by ∆, the counit by ε and the antipode by
S. H is cocommutative if τ ◦ ∆ = ∆, where τ denotes the flip, τ(a ⊗ b) = b ⊗ a. We assume
throughout that S is bijective; by a result of Skryabin [27] this is always the case when H is
semiprime noetherian, and - conjecturally - S is bijective for all noetherian Hopf algebras. The
set {g ∈ H : ∆(g) = g ⊗ g} of group-like elements of H is denoted by G(H). For g, h ∈ G(H),
we write Pg,h(H) for the space {x ∈ H : ∆(x) = x⊗g+h⊗x} of (g, h)-skew-primitive elements
of H; then P1,1(H), abbreviated to P (H), is the space of primitive elements of H .

2 Noetherian Hopf algebras

The problem of characterising in any meaningful alternative way the class of all noetherian Hopf
algebras seems well out of reach at the present time. But, for commutative or cocommutative
Hopf algebras, there are the following results.
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Theorem 2.1. (Molnar, [21])) (i) A commutative Hopf algebra is noetherian if and only if it is
an affine k-algebra.

(ii) A cocommutative noetherian Hopf algebra is affine.

We discuss first part (ii). Its converse is false - consider, for example, the group algebra kF
of any free group F of finite rank greater than one. Indeed, the following question remains open:

Question A: For which groups G is the group algebra kG noetherian?

Generalising Hilbert’s Basis Theorem, Philip Hall proved [25, Corollary 10.2.8] that kG is
noetherian when G is polycyclic-by-finite. Conversely, it is easy to see that if kG is noetherian
then G satisfies Max, the ascending chain condition on subgroups. However, we have:

Theorem 2.2. (Ivanov, [14]) There exist groups G satisfying Max with kG not noetherian.

In view of Ivanov’s result, a more tractable approach to Question A might be to ask:

Question B: Is there a field k and group G which is not polycyclic-by-finite, but for which kG
is noetherian?

In characteristic 0 the cocommutative Hopf algebras are built from group algerbas and from
enveloping algebras of Lie algebras, by famous results of Cartier, Gabriel and Kostant [22, Corol-
lary 5.6.4(3) and Theorem 5.6.5]. But the story regarding noetherianity is also unclear for en-
veloping algebras. Thus, by the proof of the Poincaré-Birkhoff-Witt theorem, U(g) is noetherian
when the Lie algebra g is finite dimensional over k. But the converse remains open, and it was
only in 2013 that the following highly non-trivial result was proved:

Theorem 2.3. (Sierra, Walton, [26]) Let g be the Witt Lie algebra over a field k of characteristic
0,

g =
⊕
n∈Z

ken, [ei, ej ] = (j − i)ei+j .

Then the enveloping algebra U(g) is not noetherian.

Emboldened by this result we might guess, as conjecture by Sierra and Walton [26, Conjec-
ture 0.1], that the Lie companion to Question B has a negative answer:

Question C: Is there an infinite dimensional Lie algebra g for which U(g) is noetherian?

Let’s briefly consider part (i) of Theorem 2.1. It’s possible, so far as we are aware, that one
direction is valid in complete generality:

Question D (Wu, Zhang, [33]): Is every noetherian Hopf k-algebra an affine k-algebra?

Question D appears to be open even for Hopf algebras which are close to being commutative,
that is, for one implication of the following, part of which was asked already in [5].

Question E: If a Hopf algebra satisfies a polynomial identity, is it noetherian if and only if it as
affine?

2.1 Artinian Hopf algebras

Here, the situation is clear, thanks to a lovely result which vastly generalises a 1963 theorem for
group algebras due to I.G. Connell [25, Theorem 10.1.1].

Theorem 2.4. (Liu,Zhang, [17]) A Hopf algebra is Artinian if and only if it is finite dimensional.

3 Finite Gelfand-Kirillov dimension

3.1

Let A = k〈V 〉 be a k-algebra generated by the k-subspace V , with 1 ∈ V . Recall the definition
of the Gelfand-Kirillov dimension of A,

GKdimA = lim
log(dimk(V n))

log(n)

= inf{ρ ∈ R : dimk(V
n) ≤ nρ ∀n >> 0}.
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The standard reference is [15]. Examples of Borho, Kraft and Warfield [15, Theorem 2.9],
together with the Bergman Gap Theorem [15, Theorem 2.5] show that GKdimA can take any
value from the set

{0, 1} ∪ [2,∞].

Nevertheless, the GK-dimension of every known Hopf algebra is either infinity or a non-negative
integer. This, together with Theorems 3.1 and 6.2, has led to the following natural question.

Question F(Zhuang, [34]): If H is a Hopf algebra is GKdimH in Z≥0 ∪ {∞}?

The task of classifying (in any meaningful sense) all Hopf algebras of finite GK-dimension is
clearly hopeless. But important subclasses can certainly be dealt with. Let us temporarily assume
in the rest of this paragraph that k has characteristic 0 and is algebraically closed (although the
second hypothesis is mainly a matter of convenience). If H is any affine commutative Hopf k-
algebra thenH is the coordinate ringO(G) of an affine algebraic groupG over k, and conversely;
this is a well-known equivalence of categories, see for example [32]. Then GKdimH = dimG <
∞ [15].

For affine cocommutative Hopf algebrasH the road is rougher, but we can call on the Cartier-
Gabriel-Kostant theorem [22, Theorem 5.6.4, 5.6.5, remark on p.76], which presents H as a
smash product

H ∼= U(P (H)) ? kG(H) (3.1)

of the enveloping algebra of the Lie algebra P (H) of primitive elements of H by the group
algebra of its group-like elements G(H). From this and work of Zhuang we can deduce:

Theorem 3.1. Let H be an affine cocommutative Hopf algebra over the algebraically closed
field k of characteristic 0. Then H has finite GK-dimension if and only if dimk(P (H)) <∞ and
G(H) is finitely generated, with a nilpotent subgroup of finite index. In this case GKdimH =
dimkP (H) + growthG(H) ∈ Z≥0.

Proof. SupposeH is affine cocommutative with GKdimH <∞. Then the subalgebras U(P (H))
and kG(H) of H occurring in (3.1) also have finite GK-dimension, so the stated conclusions on
P (H) and G(H) follow respectively from [15, Lemma 6.5 and Proposition 6.6] and from Gro-
mov’s theorem [15, Theorem 11.1]. The converse follows from a special case of a theorem of
Zhuang [34, Theorem 5.4]; see Theorem 6.2 below.

In particular we note that - in both the commutative and the cocomutative cases - noetherianity
of H is a consequence of finite GK dimension. (Noetherianity for cocommutative H follows
from Theorem 3.1 and standard noncommutative variants of the Hilbert Basis Theorem.) This
suggests:

Question G: Is every affine Hopf k-algebra of finite GK-dimension noetherian?

The converse of Question G is easily seen to be false: take H to be the group algebra of any
polycylic group which is not nilpotent-by-finite. Then H is noetherian, but GKdimH is infinite
by [15, Theorem 11.1]. Since every affine PI-algebra has finite GK-dimension by a theorem of
Berele [15, Corollary 10.7], a positive answer to Question G would confirm one implication in
Question E.

3.2

When k is algebraically closed of characteristic 0, considerable progress has been made towards
classifying all prime (say) Hopf algebras of “small" GK-dimension. Here, “small" means “at
most 2", and one imposes the prime hypothesis (or even the stronger requirement that the algebra
is a domain) in order to avoid the requirement to classify all finite dimensional Hopf k-algebras
as a subsidiary task within the classification programme. We don’t have space to review this
work - see [9], [12], [30] for details of the current state of play.

3.3

The investigation of the structure and representation theory of the full class of noetherian Hopf
algebras of finite GK-dimension is in its infancy. Of course, some very important subclasses have
been intensively studied over the past 60 years - enveloping algebras of finite dimensional Lie
algebras, group algebras of finitely generated nilpotent groups, quantised enveloping algebras
and quantised function algebras; but little is known in general.
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All the known examples have good homological properties, but in the absence of significant
progress in this direction (known to us at the time of writing) since the summary in [8, §6], we
won’t discuss that further here.

Regarding representation theory, following the philosophy proposed by Dixmier for envelop-
ing algebras in the 1960s, one should start by trying to understand the primitive and prime spec-
tra. The first significant step in this direction has recently been taken by Bell and Leung, incor-
porating earlier work on enveloping algebras and group algebras [10], [20], [35].

Theorem 3.2. (Bell, Leung, [6]) Let H be an affine cocommutative Hopf algebra of finite GK-
dimension over the algebraically closed field k of characteristic 0. Let P be a prime ideal of H .
Then P is primitive if and only if P is rational if and only if P is locally closed in Spec(H).

A similar conclusion had earlier been obtained for quantised coordinate rings, [13]. Here, to
say that P is rational means that the centre of the artinian quotient ring of H/P is just k; and P
is locally closed if

P ( H ∩
⋂
{Q : Q ∈ Spec(H), P ( Q}.

When the three subclasses of prime ideals of an algebra R coincide as in the theorem, so that
primitivity is characterised for the ideals of R by both an intrinsic algebraic property and by a
topological property, we say thatR satisfies the Dixmier-Moeglin equivalence. Note that Bell and
Leung included the hypothesis “H is noetherian" in [6], but in fact this is a consequence of the
other hypotheses, by Theorem 3.1 and the remark following its proof. On the other hand, if the
hypotheses of Theorem 3.2 are weakened by changing “of finite GK-dimension" to “noetherian",
then the statement is false - it fails for group algebras [18].This is perhaps further evidence in
support of the suggestion implicit in Question G: namely, that for Hopf algebras in charactersitic
0, finiteness of GK-dimension may be a stronger and perhaps more useful working hypothesis
than noetherianity.

Bell and Leung conjecture in [6] that Theorem 3.2 remains true with the word “cocommuta-
tive" deleted (but now of course adding “noetherian", since Theorem 3.1 no longer applies. As
the natural first step in this direction, we propose the following perhaps quite easy question. (For
the definition of “pointed", see subsection 4.2.)

Question H: Does the Dixmier-Moeglin equivalence hold for pointed affine noetherian Hopf
algebras of finite GK-dimension over an algebraically closed characteristic 0 base field?

4 The coradical filtration; pointed and connected Hopf algebras

We recall some standard concepts and notation; details can be found in [22, Chapter 5].

4.1

The coradical C0 of a coalgebra C is the sum of the simple subcoalgebras of C. The coradical
is the first term of the coradical filtration, defined inductively for i ≥ 0 by

Ci+1 = {c ∈ C : ∆(c) ∈ Ci ⊗ C + C ⊗ C0}.

This is an ascending chain and exhaustive filtration of C: Ci ⊆ Ci+1 and
⋃
i Ci = C. Moreover

it is a coalgebra filtration, meaning that for all i ≥ 0,

∆(Ci) ⊆
∑

0≤j≤i

Cj ⊗ Ci−j .

4.2

Clearly, the span kG(C) of the group-like elements is contained in C0. We say that C is pointed
if kG(C) = C0, equivalently if every simple subcoalgebra of C is one-dimensional; and C is
connected if C0 = k, equivalently if C is pointed with G(C) = {1}.

4.3

Suppose now that H is a Hopf algebra. In general, the coradical filtration {Hn} of H is not
an algebra filtration, but {Hn} is an algebra filtration when H0 is a Hopf subalgebra of H . In
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particular, this is the case when H is pointed. When {Hn} is an algebra filtration we can form
the associated graded algebra of H with respect to its coradical filtration,

grH :=
⊕
i≥0

Hi/Hi−1 =
⊕
i≥0

H(i); H−1 = {0}.

There is in this case an obvious induced Hopf algebra structure on grH . Indeed, grH is a
coradically graded Hopf algebra, meaning that, for all n ≥ 0

(grH)n =
n⊕
i=0

H(i).

In particular, grH is pointed [resp. connected] if H is pointed [resp. connected]. Moreover,
grH is a graded coalgebra, meaning that

∆(H(n)) ⊆
∑

0≤i≤n

H(i)⊗H(n− i)

for all n ≥ 0.

5 Pointed Hopf algebras of finite GK-dimension

5.1

Suppose thatH is a pointed Hopf algebra. By [3] the associated graded algebra grH with respect
to the coradical filtration ofH exists, and is a graded Hopf algebra. There is an obvious surjective
Hopf algebra morphism

π : grH → H(0) = kG(H).

Setting R to be the algebra of coinvariants

R := {h ∈ H : (id⊗π) ◦ ∆(h) = h⊗ 1},

one finds that grH decomposes as a smash product or bosonisation,

grH = R#kG(H). (5.1)

Here, R is not in general a Hopf subalgebra; but it is a braided Hopf algebra in the category of
Yetter-Drinfeld modules over kG(H); see, for example, [3]. Moreover, R inherits the grading
from grH , with R(0) = k and

(grH)1 = (R(0)⊕R(1))G(H).

Around the end of the last century, Andruskiewitsch and Schneider began a programme to
study pointed Hopf algebras by means of the above machinery. They focused on the case where
the subalgebra R in (5.1) is generated in degree 1 - that is,

R = k〈R(1)〉; (5.2)

when this happens R is called a Nichols algebra. They conjectured that this is always the case
when H is finite dimensional and k is algebraically closed of characteristic 0 [4]. A review of
progress on this project up to March 2014, with many references, can be found in [2].

For a pointed Hopf algebraH , the decomposition (5.1) affords a window on the GK-dimension
of H:

Theorem 5.1. (Zhuang, [34, Corollary 3.6, Proposition 3.8 and Theorem 5.4]) Let H be a
pointed Hopf algebra.

(i) GKdimH = sup{GKdimA : A affine Hopf subalgebra of H}; moreover, G(H) is finitely
generated if H is affine.

(ii) Retain the notation of subsection 5.1, (though without assuming (5.2)). Suppose that
dimk R(1) <∞ and that grH is affine. Then

GKdimR+ GKdim kG(H) = GKdim grH = GKdimH.
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In the light of the theorem and bearing in mind Question F, it’s natural to ask:

Question I: With the above notation, is GKdimR ∈ Z ∪ {∞}?

The proof of Theorem 5.1 is surprisingly delicate, with (i) and the second inequality in (ii)
using Takeuchi’s construction [29] of free Hopf algebras. It follows easily from [22, Theorem
5.4.1 (1)] that dimk R(1) < ∞ if and only if the space P ′G(H) of non-trivial skew-primitive
elements of H is finite dimensional . Both this hypothesis and the requirement that grH is affine
appear rather inconvenient, but unfortunately it is not enough to simply assume that H is affine,
as Zhuang notes in [34, Example 5.7]:

Example 5.2. Let k be the field of p elements and take H = k[x], with x primitive. Then

grH ∼= k[x1, x2, . . .]/〈xp1 , x
p
2 , . . .〉,

so

0 = GKdim grH < GKdimH = 1.

Nevertheless there is some evidence that these pathologies disappear in characteristic 0:

Question J:(Wang, Zhang, Zhuang, [31]) Let H be a pointed Hopf k-algebra. If k has charac-
teristic 0 and H is affine of finite GK-dimension, is dimk R(1) <∞ and grH affine?

6 Connected Hopf Algebras of finite Gelfand-Kirillov dimension

In this section we specialise the discussion from §5 to the case where the Hopf algebra H is
connected, so H0 = k and G(H) = 1. We assume throughout this section that k is algebraically
closed of characteristic 0.

6.1

Suppose that k and H are as above, and H is in addition cocommutative. Then from the isomor-
phism (3.1) in subsection 3.1 we see that

H is the enveloping algebra U(P (H) of its Lie algebra P (H) of primitive elements.

And, conversely, every enveloping algebra is connected. One easily shows from the PBW
theorem (or deduces as a special case of Theorem 6.1 below) that

GKdimH <∞ ⇐⇒ dimk(P (H)) <∞,

and in this case these two integers are equal.

6.2

Now suppose instead that k and H are as above, with H affine and commutative. Then H is the
algebra of polynomial functions O(G) of some affine algebraic group G, as noted in subsection
3.1. Then we have:

Theorem 6.1. Let k be an algebraically closed field of characteristic 0, and let H be an affine
commutative Hopf k-algebra. Then GKdimH <∞, and the following are equivalent.

(i) H is connected, with GKdimH = n.
(ii) H = k[x1, . . . , xn], a polynomial k-algebra in n indeterminates.
(iii) H = O(G) , for a unipotent algebraic group G, with dimG = n.

To say that G is unipotent is equivalent to requiring it to be a closed subgroup of the group of
strictly upper triangular m×m matrices over k, for some m. The only deep part of the theorem
is the implication (ii) =⇒ (iii), which is a 1955 theorem of Lazard [16].
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6.3

The previous two paragraphs show that connected cocommutative and the connected commuta-
tive Hopf k-algebras H of finite GK-dimension share a striking common feature - in both cases
H has an associated graded algebra (with respect to its coradical filtration) which is a com-
mutative polynomial algebra in GKdimH variables, furnished with a structure of a coradically
graded Hopf algebra. Thus, when H is connected cocommutative, it is essentially the Poincaré-
Birkhoff-Witt theorem which tells us that grH is the symmetric algebra S(P (H)) of P (H); its
Hopf structure, as in 4.3, means that grH = S(P (H)) is the algebra of polynomial functions
of the abelian group (k,+)⊕ dimk(P (H)). These classical results are simultaneously generalised in
the following beautiful result:

Theorem 6.2. (Zhuang, [34, Theorem 6.10]) Let H be a connected Hopf k-algebra, with k
algebraically closed of characteristic 0. Then the following are equivalent.

(i) GKdimH <∞;
(ii) GKdim grH <∞;
(iii) grH is affine;
(iv) grH ∼= k[x1, . . . , xn], a polynomial algebra in n indeterminates.

When these conditions hold, GKdimH = GKdim grH = n.

The first key point in the proof is that

H a connected Hopf algebra =⇒ grH is commutative. (6.1)

This is in fact valid over any field, and goes back to Sweedler [28, Theorem 11.2.5 a]. It has
been reproved several times since; Zhuang uses a lemma of Andruscieuwitsch and Schneider
[4, Lemma 5.5], to deduce that the graded dual of grH , that is

⊕
n≥0(gr(H)(n))∗, is generated

in degree 1 and is therefore cocommutative. Hence, grH is commutative. Yet another proof,
attributed to Foissy, can be found in [1, Proposition 1.6].

To prove (ii) =⇒ (iii), Zhuang shows that a connected coradically graded Hopf algebra in
characteristic 0 must be affine if its GK dimension is finite, [34, Lemma 6.8, 6.9] - this is the dual
version of the fact that unipotent groups in characteristic 0 are built from copies of the additive
group (k,+) of k. Notice that (ii) =⇒ (iii) is false in positive characteristic, by Example 5.2.

Given the implication (6.1), the equivalence of (ii) and (iv) stems from the fact that, in
characteristic 0, grH is the coordinate ring of an algebraic group, and so is smooth, (see for
example [32]). Therefore, grH , being a commutative connected graded algebra of finite global
dimension n, is a polynomial algebra in n indeterminates [23, III.2.5]. Alternatively, one can
note, from subsection 4.3, that grH is a connected Hopf algebra, since H is, and is affine by
(ii)⇒ (iii). Now appeal to Theorem 6.1.

Finally, the implications (iii) =⇒ (i) =⇒ (ii) are standard results on GK-dimension [15,
Lemma 6.5 and Proposition 6.6].

6.4

From Theorem 6.2 we can deduce by standard methods some important properties of these con-
nected Hopf algebras, properties which we shouldn’t find surprising given the fact that the alge-
bras are deformations of commutative polynomial algebras. Part (i) gives a positive answer to
Question G for these algebras.

Proposition 6.3. (Zhuang)[34, Corollary 6.11]. Let H be a connected Hopf k-algebra with
GKdimH = n <∞, with k algebraically closed of characteristic 0.

(i) H is a noetherian domain of Krull dimension at most n.
(ii) H is AS-regular and Auslander-regular, of global dimension n.
(iii) H is GK-Cohen-Macaulay.

Unexplained terminology used above can be found in many references, for example [8]. The
fact that H is a domain does not need GKdimH < ∞, and is attributed by Zhuang to Lebruyn.
It’s natural to ask whether noetherianity is equivalent to finite GK-dimension for these connected
Hopf algebras:

Question K: Let k be algebraically closed of characteristic 0, and let H be a connected Hopf
k-algebra. If H is noetherian, is GKdimH <∞?

Suppose we could show that, for H as in question K, grH is also noetherian. Then grH is
affine by Molnar’s Theorem, Theorem 2.1(i), and so GKdimH <∞ by Theorem 6.2. But notice
that the seemingly innocent Question K contains as a special case the characteristic 0 case of the
notorious Question C!
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6.5

Following the work of Zhuang outlined above there has been considerable further research on
connected Hopf algebras in characteristic 0. First, all such algebras of GK dimension at most
4 have been classified, in [34] and [31]. Of course, by subsection 6.1, we always have for
each n ≥ 0, the enveloping algebras H = U(g) of the Lie algebras g with dimk(g) = n. For
n = 0, 1, 2, it is not hard to show [34, Proposition 7.5] that this completes the list. However:

Theorem 6.4. (Wang,Zhang,Zhuang, [34], [31]) Let H be a connected Hopf k-algebra, where
k is algebraically closed of characteristic 0.

(i) If GKdimH = 3, then H is either isomorphic as a Hopf algebra to U(g), where g is a Lie
algebra of dimension 3, or H is a member of one of two explicitly defined (infinite) families.

(ii) If GKdimH = 4, then H is either isomorphic as a Hopf algebra to U(g), where g is a
Lie algebra of dimension 4, or H is a member of one of 12 explicitly defined families.

Note that the complex Lie algebras of dimension at most 4 have been classified - see e.g. [24,
p.209, Theorem 1.1]. To give some feel for the algebras of the theorem, here is a sample of one
of the families of GK dimension 3, as in (i).

Example 6.5. Let λ ∈ k, and let B(λ) be the k-algebra generated by x, y and z, subject to the
relations

[x, y] = y, [x, z] = z − λy, [y, z] = 0.

The coalgebra structure on B(λ) is given by letting x and y be primitive, with

∆(z) = z ⊗ 1 + 1⊗ z + x⊗ y − y ⊗ x

and
ε(x) = ε(y) = ε(z) = 0.

The antipode is given by

S(x) = −x, S(y) = −y, S(z) = −z + y.

It’s worth noting that, for all n ≥ 1, Sn(z) = (−1)n(z − ny), so that S has infinite order,
in contrast to the situation for commutative or cocommutative Hopf algebras, which are always
involutary, meaning that S2 = Id, [22, Corollary 1.5.12].

It is clear from the definition above that the algebra B(λ) is isomorphic, as an algebra, to the
enveloping algebra U(gλ) of a Lie algebra gλ. In fact, this is the case for all the Hopf algebras
featuring in Theorem 6.4, as well as all the cocommutative or commutative connected Hopf
algebras of subsections 6.1 and 6.2. This makes the following question a pressing one:

Question L: Over an algebraically closed field k of characteristic 0, is every connected Hopf
algebra of finite GK-dimension isomorphic as an algebra to the enveloping algebra of a finite
dimensional Lie algebra?

We can see no evidence in favour of a positive answer, apart from the current absence of a
counterexample.

Clearly, the business of listing the residents of the zoo of connected Hopf k-algebras is a
valuable one, but it is an enterprise doomed to failure if extended beyond small GK-dimension.
It’s quite surprising, in fact, that a complete catalogue has been obtained up to GK-dimension 4.
An approach geared to recognising structural features of large subclasses will likely be needed
to describe the range of algebras occurring in higher dimensions, One such structure is discussed
in the next subsection.

6.6

Dualizing a basic property of an affine unipotent group G in characteristic 0, namely that it has
a finite chain 1 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G of normal subgroups with Gi+1/Gi ∼= (k,+) for
0 ≤ i ≤ n, it is natural to make the

Definition 6.6. An iterated Hopf Ore extension (IHOE) is a Hopf k-algebra H with a chain of
Hopf subalgebras

k = H(0) ⊂ H(1) ⊂ . . . ⊂ H(n) = H (6.2)

with H(i+1) = H(i)[xi+1;σi+1, δi+1] a skew polynomial extension for 0 ≤ i < n.
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Here, σi+1 is an algebra automorphism of H(i) and δ(i+1) is a σi+1-derivation, for all i; see,
for example [19, §1.2].

IHOEs are introduced and studied in [7]. Their relevance to the present discussion of con-
nected Hopf algebras is clear from (i) and (ii) of:

Theorem 6.7. ([7, Theorems 1.3, 1.5]) Let k be a field and H an IHOE with defining series (6.2)
and antipode S.

(i) H is noetherian, of GK dimension n.
(ii) H is connected.
(iii) Either S2 = Id or S has infinite order.
(iv) Explicit conditions can be given on ∆, ε, S, and on the possible choices of {σi, δi : 2 ≤

i ≤ n}.

For details of (iv), see [7]. Note that Example 6.5 shows that both possibilities in (iii) of the
theorem can occur, even for the same algebra endowed with two different coalgebra structures.
Many, but not all, of the known connected Hopf algebras of finite GK-dimension of characteristic
0 are IHOEs. For example, if g is any semisimple finite dimensional complex Lie algebra which
is not a direct sum of copies of sl(2,C), then U(g) is connected of finite GK-dimension, by
subsection 6.1, but is not an IHOE - the point is that g does not have enough Lie subalgebras to
allow the construction of a chain as in (6.2).

There are many open questions concerning IHOEs, for which we suggest the interested reader
consult [7]. Here we ask instead

Question M: Find another general construction of connected Hopf algebras of finite GK-dimension,
different from those of subsections 6.1, 6.2 and 6.6.

6.7

Finally, let us briefly discuss the relation between connected Hopf algebras of §6, and the
Andruskiewitsch-Schneider programme on pointed Hopf algebras which was briefly outlined
in §5. The latter programme begins by considering the associated graded algebra grH of a
pointed Hopf algebra H , exactly as does Theorem 6.2 for connected Hopf algebras. In the (more
general) pointed case we get the isomorphism (5.1), that

grH ∼= R#G(H),

while in the connected caseG(H) = {1} and we thus have grH ∼= R. However, Andruskiewitsch-
Schneider impose the extra hypothesis (5.2) on R, that it is generated in degree 1, in order to
be able to call on the Nichols algebra machinery. If H is connected with grH generated in de-
gree 1, then grH , being generated by primitive elements, is cocommutative; and one finds from
Theorem 6.2 and its proof that H itself is cocommutative, hence an enveloping algebra of a Lie
algebra, as a Hopf algebra. To sum up: the intersection of hypothesis (5.2) with subsections 6.1
to 6.6 consists precisely in the enveloping algebras of finite dimensional Lie algebras, with their
standard cocommutative coproducts.

References
[1] M. Aguiar and F. Sotile, Cocommutative Hopf algebras of permutations and trees, J. Alg Combinatorics

22 (2005), 451-470.

[2] N. Andruskiewitsch, On finite-dimensional Hopf algebras, arXiv:1403.7838v1.

[3] N. Andruskiewitsch and H.J Schneider, Pointed Hopf algebras, New directions in Hopf algebras, 1Ű68,
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