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Abstract 

Acute Myeloid Leukaemia (AML) is a heterogenous disease of haematopoietic stem and 

progenitor cells (HSCs/HSPCs). The pathogenesis of AML involves cytogenetic abnormalities, genetic 

mutations and epigenetic anomalies. Whilst it is widely accepted that the cellular biology, gene 

expression and epigenetic landscape of normal HSCs changes with age, little is known about the 

interplay between the age at which the cell becomes leukaemic and the resultant leukaemia. Despite 

its rarity, childhood AML is a leading cause of childhood cancer mortality. Treatment is in general 

extrapolated from adult AML on the assumption that adult and paediatric AML are similar biological 

entities. However, distinct biological processes and epigenetic modifications in paediatric and adult 

AML may mean that response to novel therapies may be different in children compared to adults with 

AML. A better understanding of the key pathways involved in transformation and how these differ 

between childhood and adult AML is an important step in identifying effective treatment. This review 

aims to highlight both the commonalities and differences between paediatric and adult AML disease 

biology with respect to age.  
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Acute myeloid leukaemia (AML) is a heterogeneous disorder characterised by an uncontrolled 

proliferation and differentiation block in immature hematopoietic stem and progenitor cells (HSPC) 

resulting in an accumulation of immature blasts. AML is rare in children occurring at an incidence of 

8/million/yr in children 1-18 years of age. In adults the incidence rate of AML further increases, 

reaching 20/million/yr in persons between the ages 18-60 years and 170/million/yr in persons over the 

age of 60. Considering this age-related profile, it is reasonable to assume AML would develop at the 

lowest incidence in infants. However, infants have the highest incidence of AML within the paediatric 

population occurring at a rate of 15/million/yr in infants under the age of 1[1]. Distinct genetic 

abnormalities occur in infants, and together with the higher incidence rate, strongly suggest that infant 

AML is a separate biological entity. Age remains an independent predictor of outcome with superior 

survival associated with younger age[2, 3]. Overall survival (OS) is lower with increasing age; persons 

between 0-18 years of age have an OS of 70-75% versus 45-50% for persons between the ages of 

18-60 years[4-8]. Increased OS in children is associated with a lower relapse rate (RR) reflecting a 

more chemo-responsive disease and less co-morbidity thus better tolerance of treatment. Age is one 

of a number of important independent prognostic factors; others include presenting white cell count, 

cytogenetic/molecular abnormalities, antecedent myelodysplasia and early response to treatment. 

The appropriateness of the current practice of extrapolating treatments across the age spectrum is 

dependent on the assumption that the same aetiology underlies AML in the young and old. However, 

differences in disease characteristics between paediatric and adult AML have been reported[3, 9], 

and which will be considered in this review. A better understanding of age-dependent biological 

differences may lead to improvements in treatment for children. The World Health Organisation 

(WHO) classification in 2008 based upon underlying cytogenetic or molecular genetic abnormalities, 

applies to both adult and paediatric AML[10]. The clinical differences between adults and children 

have been recently reviewed[11] and key differences are summarised in Table 1. Incidence and 

prognosis are clearly different, as well as differences in the prevalence of genetic anomalies and 

prognostic implications, which will be discussed further. While one might expect that paediatric and 

adult AML are completely different diseases, in fact there is a spectrum of similarities and differences 

between the two, and a better understanding of these will help guide management in both childhood 

and adult disease.  
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Age and genetic abnormalities in AML 

It is clear that the genetic profile of childhood and adult AML is vastly different (Table 1). 

Childhood AML is characterised by cytogenetic abnormalities while adult AML is characterised by 

cytogenetically normal (CN) disease with a high proportion of molecular defects. The prognostic 

importance of cytogenetic abnormalities is well-established in the patient risk stratification of good, 

intermediate and poor risk groups. The cytogenetic abnormalities of the core binding factor (CBF) 

leukaemias, t(8;21)(RUNX1/RUNX1T1) and inv(16)(CBFB/MYH11), and t(15;17)(PML/RARA) 

classifying acute promyelocytic leukaemia (APML; FAB classification M3), have similar morphology, 

gene expression and response to treatment in paediatric and adult AML and carry the same 

favourable prognosis in children as in adults[2, 12]. Good risk is more prevalent in paediatric 

compared to adult AML. Within paediatric AML, good risk disease is more common in children 

between 1 to 10 years of age compared to adolescents, which contributes to the superior outcome 

observed in paediatric AML. Currently there is a gap in our knowledge whether other genetic 

anomalies occurring in an adult, such as monosomy 7 which confers poor risk, have the same poor 

prognostic implications in a child. Stem cell transplantation (SCT) in 1st complete remission (CR) is 

recommended in adults with standard or high risk disease as it may result in superior disease free 

survival (DFS) and OS[13]. Poor risk cytogenetics in adults include monosomy 5 or 7, 5q 

abnormalities as well as inv(3), t(3;3), abn(3q)(EVI1), t(6;9)(DEK/NUP214), t(9;22)(BCR/ABL) and 

complex cytogenetics (defined as >3, 4 or 5 unrelated abnormalities)[2, 14, 15]. While these same 

poor risk cytogenetic abnormalities identify a group of children who have a poorer response than 

those with a normal karyotype, the outcome is not always sufficiently poor in children to justify SCT in 

1st CR[16]. In particular, complex cytogenetics confers very poor risk in adults[2, 17], however it is 

associated with inferior outcome only in some paediatric groups; in the absence of other poor risk 

features, AML in children with complex cytogenetics does not necessarily warrant SCT in 1st CR[12, 

18]. This discrepancy in clinical outcome with age in genetically matched patients may be due to 

better tolerance of intensive chemotherapy at younger age, or due to different biological 

consequences resulting from the same genetic aberrations in paediatric and adult patients. Further 

molecular and cellular studies comparing genetically matched AML samples from children and adults 

needs to be undertaken in order to elucidate this point. It is important to consider genetic 

abnormalities that are more prevalent in childhood AML. 11q23 chromosome abnormalities of the 
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mixed lineage leukaemia (MLL) gene occur at a higher incidence in children compared to adults (38% 

versus 2% respectively) with the highest incidence in infants (77%). In contrast to adults in whom 

11q23 abnormalities confer poor risk (excluding t(9,11) which denotes intermediate risk), only certain 

MLL translocations confer poor risk in children (table 1), while t(1,11) may confer good risk[19]. Poor 

risk genetic aberrations that occur almost exclusively in a paediatric population include the cryptic 

translocation t(5;11)(NUP98/NSD1)[20] as well as the novel inv(16)(CBFA2T3/GLIS2)[21] seen in 

non-Down Syndrome(DS)-acute megakaryoblastic leukaemia (AMKL; FAB classification M7), and 

t(7;12)(MNX1/ETV6)[22]. Both inv(16)(CBFA2T3/GLIS2 and t(7;12)(MNX1/ETV6) occur almost 

exclusively in infants. 

The intermediate risk group across the age spectrum consists of patients with CN disease 

and cytogenetic aberrations not classed as good or poor. CN disease accounts for 50% of adult 

disease[2] but only 25% of childhood AML[12, 18]. In adults, molecular abnormalities further risk-

stratify the heterogenous CN group[14, 15]. CN prognostic implications are similar in adult and 

paediatric AMLs suggesting similar downstream pathways from these molecular abnormalities. 

However, they are present at a far less frequency in paediatric AML. For example, internal tandem 

duplicates of the FMS-like tyrosine kinase 3 (FLT3ITD) are present in 10% of children but at a much 

higher frequency of 20-40% in adults with CN AML and both are associated with increased RR[23-

25]. Mutations of nucleophosmin (NPM1) do not occur in infants, but occur in 5-10% of children and 

much higher incidence of 35% of adults and confer good risk in the absence of a FLT3ITD 

mutation[25-28]. Biallelic mutations of the CCAAT enhancer-binding protein alpha (CEBPA) occur in 

5% of childhood AML and 10% of adult AML and confer good risk in CN patients with improved RR, 

again in patients without a FLT3ITD mutation[29-31]. Mutations in the epigenetic modifiers DNMT3A 

(DNA methyl transferase 3A) and TET2 (ten-eleven-translocation methylcytosine dioxygenase 2) 

confer poor risk in adult AML but are rarely found in paediatric AML[32-35]. Recent studies have 

identified these two mutations in particular to be early events in adult AML, resulting in the production 

of a preleukaemic clone that predates clinical AML and evades therapy. The very low incidence of 

these mutations in childhood AML strongly suggests that the pathogenic process of AML development 

and cause of relapse is very different in childhood. Collectively, the stark differences between the 

genetic abnormalities occurring in childhood and adult AML (some occurring exclusively in children) 

suggest a different biological mechanism contributes to the pathogenesis of AML arising at different 
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ages. More insight into such age-specific biological mechanisms is warranted which would have clear 

and significant impact on precision driven therapies in the young and old.  

 

Infant AML 

Children less than 1 year of age presenting with AML form a distinct clinical and biological group.  

They fall into either myeloid leukaemia of Down Syndrome (ML-DS) or non DS-AML.  In both ML-DS 

and non-DS AML there is evidence of a founding somatic mutation acquired in utero giving rise to a 

pre-leukaemic clone[36-39]. 5-10% of newborns with DS (trisomy 21) develop transient abnormal 

myelopoiesis (TAM) in the first 3 months of life[40], presenting as increased leucocytes, 

thrombocytopenia, circulating blasts and occasionally end organ failure due to accumulation of 

blasts[41]. This disorder is characterised by mutations in the GATA1 gene, which results in a 

truncated form of the protein[42]. This somatic mutation is acquired in utero, as evidenced by 

presence of GATA1 mutations in 4% of newborn blood spots from 585 DS newborns[38] and 

development of TAM/ML-DS with GATA1 mutation prenatally resulting in hydrops fetalis[39]. A high 

percentage of TAMs regress spontaneously without treatment. However, 19% of these patients will 

develop ML-DS of AMKL subtype in the subsequent 2-4 years[43-45]. There is a GATA1 mutation in 

all cases of ML-DS and interestingly, paired samples from patients with TAM who later developed ML-

DS contained the same GATA1 mutation[46]. Thus, GATA1 mutations arising in utero results in a pre-

leukaemic clone that can progress to ML-DS associated with further genetic insults. This strongly 

suggests that this pre-leukaemic clone is a distinct fetal entity, as ML-DS arising after 4 years of age 

is rare, and that in the absence of progression to AML this fetal derived pre-leukaemic clone naturally 

regressed after time. An important unanswered question is whether such a disease specific clone 

does not exist or occur in adults because of the age of the cell in which the mutations occurred, or 

because of inherent biological mechanisms in adult cells that prevents the survival of cells with such 

mutations though to adulthood. 

Infants with non-DS AML present with myelomonocytic or monoblastic AML (M4 or M5)[47] 

and tend to have higher white cell counts than older children and often CNS involvement[48]. As well 

as the predominance of MLL rearrangements, rare aberrations almost exclusively seen in this cohort 

include t(7;12)(MNX1/ETV6),[22] t(1;22)(RBM15(OTT)-MKL1(MAL))[49] and 

inv(16)(CBFA2T3/GLIS2)[21], the latter two associated with non-DS AMKL. In contrast, CBF AML and 
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APML are rare in infants[9, 50]. Like GATA1 mutations in ML-DS, MLL rearrangements occur in utero 

evidenced by twin concordance studies[36] and by the detection of MLL rearrangements in patient 

matched leukaemic samples and newborn blood spots [37]. It is strongly suggested that AML 

developed in the early postnatal period is due to the acquisition of a second genetic hit. Thus, infant 

AML most likely results from an initiating leukaemic event in a fetal cell. What has not been 

adequately addressed to date is whether MLL rearrangement present in a fetal cell leading to infant 

AML is the same disease as MLL rearrangement present in a young or older adult cell leading to 

childhood or adult AML.  

 

Preclinical evidence linking ontogeny with disease phenotype 

It is increasingly evident that cell intrinsic factors play an important role in determining 

phenotype following a genetic insult. Studies investigating the leukaemia initiating cell in several AML 

mouse models have shown that the cell type, be it a haematopoietic stem cell (HSC) or committed 

progenitor, has implications on cell transformation and leukaemic phenotype[51, 52]. Therefore, the 

same oncogenic abnormality can result in diverse disease biology. However, limited data is available 

on cell ontogeny and leukaemic transformation.  

MLL rearrangements are associated with both AML and acute lymphoblastic leukaemia (ALL). 

The most common MLL rearrangement in adults and children over the age of 1 year is t(9,11) 

resulting in the fusion gene MLL-AF9 and accounts for 22% of MLL rearrangements in infant AML, 

second only to t(10;11)(MLLT10-AF10)[53, 54]. Investigations into the effect of cell ontogeny on 

immortalisation, lineage commitment and gene expression have shown that following transduction of 

MLL-AF9 in human CD34+ve cord blood (CB) and adult bone marrow (ABM) cells, both populations 

grew in vitro, however ABM gave rise to a myeloid bias. While both MLL-AF9 transduced CB and 

ABM cells were able to reconstitute the BM in a mouse transplantation setting, MLL-AF9 transduced 

ABM cells displayed long term engraftment with a myeloid predominance, without progression to 

leukaemia. In contrast, MLL-AF9 transduced CB cells consistently led to acute leukaemia. In the 

majority of cases acute lymphoblastic leukaemia developed, but one leukaemia shows mixed myeloid 

and lymphoid lineage. Transformed CB cells also retained a gene expression signature similar to 

normal neonatal HSCs[55]. While CB is not an exact surrogate for paediatric BM, this study provides 

and supports the conceptual basis that AML arising in a young and old cell may be very different. 
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Despite the same genetic aberration, age-dependent characteristics of the cell can profoundly 

influence self-renewal, transformation, and gene expression profiles, as evidenced by that study. In 

fact, gene expression differences related to stem cell age are retained in the leukemic cell. The 

implications from this study on therapy have not been further investigated. 

Similar studies addressing cell ontogeny and the resulting leukaemia for the plethora of genetic 

aberrations that occur in AML are limited. The genetic aberration, Pten deletion, is seen in adult AML 

but rarely in paediatric AML. In normal haematopoiesis Pten maintains HSC quiescence by 

suppression of the PI3 kinase pathway, which promotes proliferation and cell cycling. In a murine 

model, deletion of Pten in adult HSCs (8 weeks old) led to activation of the PI3 kinase pathway and 

resulted in HSC proliferation, HSC depletion and resulted in leukaemia of either the myeloid or 

lymphoid lineage. Specifically, Pten deletion in young mice led to either a myeloproliferative disorder 

or T cell-ALL (T-ALL). Significantly however, Pten deletion in fetal and neonatal HSCs (14 days old), 

did not lead to PI3 kinase pathway activation nor result in leukaemia. Thus, tumour suppression 

programs that are critical in adults may be unnecessary in fetal or neonatal HSCs, resulting in 

differences in leukaemic susceptibility in young and old HSCs[56]. The highlighted studies on Pten 

and MLL-AF9 provide direct evidence that leukaemia initiation, development and phenotype are 

influenced strongly by the age of the cell. There remains a research void however in the therapeutic 

implication of such studies. Research into the cell of origin, the age and phenotype, using appropriate 

mouse models could help to address this open question.  

 

Normal biology of haematopoietic cell ageing 

The normal biology of aging in the murine and human haematopoietic system has been 

extensively reviewed[57] but the implications on AML to date, have not. Here we will highlight the key 

differences with aging in both systems and how they may impact on AML. The proliferative and 

differentiative potential of normal murine and human HSCs changes with age. In the mouse model 

there are differences in proliferation, lineage output and gene expression in HSCs from prenatal and 

neonatal (fetal to 3w of age), adult (>6-8w old) and aged (greater than 24 months) mice. 

Haematopoietic cells isolated from fetal liver (FL) are more efficient at repopulating the BM of lethally 

irradiated mice compared to cells from adult mice which assume a more quiescent phenotype[58, 59]. 

The progeny of transplanted FL cells have a myeloid preponderance while ABM produces a balanced 
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lineage output. As mice age, the absolute and relative numbers of HSCs increase but function 

diminishes, with loss of lymphoid potential, increased self renewal and accumulation of DNA 

damage[60-62]. This coincides with a change in gene expression profiles. Analysis of the 

transcriptional program of definitive HSC ontogeny in the normal setting showed that FL derived 

HSCs have higher expression of genes involved in cell cycling and self renewal while in contrast, 

adult derived HSCs have higher expression of genes involved in HSC maintenance[59, 63]. 

Comprehensive integrated genomic analysis of HSCs from 4 month and 24 month old mice has 

shown changes in the transcriptome, DNA methylation and histone modification that play a part in 

increasing DNA instability with increasing age[64]. Genes involved in cell adhesion, proliferation and 

protein synthesis are upregulated in aged HSCs while there is a downregulation of genes related to 

DNA replication, DNA repair and cell cycle[64]. Recently, replication stress was identified as a potent 

driver of functional decline in old HSCs linked with decreased mini-chromosome maintenance (MCM) 

gene expression in old HSCs, rather than the failure of HSCs to activate the DNA damage 

response[65]. Interestingly, recent work has shown that DNA damage response proteins are activated 

in response to oncogene expression and this response is actually required for tumourigenic function 

in contrast to the conventional view that the DNA damage response is anti-tumourigenic[66]. Thus, 

gene expression studies provide important information regarding the genetic profile that influences the 

ability of the cell to respond to stress, and possibly the propensity of the cell to be transformed by 

oncogene expression or tumour suppressor deletion.   

Similar age related differences in human HSCs (defined as cells expressing the surface 

antigen CD34) have also been described in which fetal derived HSCs from fetal liver and cord blood 

had enhanced repopulating and differentiative potential when compared to HSCs derived from adult 

bone marrow[67]. When comparing young (20-35 years) and elderly (>65 years) adult CD34+ve cells, 

the older cells resulted in a lower level of engraftment when transplanted into immunodeficient mice, 

and reduced B-lymphoid differentiation both in vitro and in vivo, while young adult CD34+vecells had 

balanced myeloid-lymphoid differentiation. This corresponds to a change in the gene expression 

profile, with up-regulation of genes involved in myeloid lineage determination, DNA repair and cell 

death in older adult CD34+ve cells, as well as up-regulation in known leukaemia associated genes[68]. 

Measurement of telomere shortening as a surrogate for prior cell divisions suggest that HSCs in 

children divide rapidly in the first year, with an abrupt decline between 1-3 years and further decline 
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after 13 years to adult rates of cell division[69, 70]. Similar to murine models, aged human HSCs 

exhibit increased DNA damage, with an increase in double strand breaks and a diminished capacity 

for DNA repair[71]. This is supported by whole genome sequencing (WGS) studies of adult AML and 

healthy adults that reveal that HSCs accumulate somatic mutations with age[72]. Together our 

knowledge of normal stem cell biology highlights the age related differences in HSC proliferation, 

HSC lineage potential and HSC DNA stability that may have implications in age-related 

susceptibilities to AML (Figure 1). 

 

Age and gene expression in AML 

In the past two decades gene expression profiling has been undertaken to more accurately 

risk stratify AML, aiming to identify AML risk categories superior to those conventionally defined by 

clinical, cytogenetic and molecular methods. Gene expression profiling of AML has been shown to 

successfully predict cytogenetic risk categories[73, 74]. In particular, t(15;17), t(8;21) and inv(16) have 

distinctive gene expression signatures with high predictive value in validation sets. Gene expression 

profiling has also identified subclasses within CN patients[73, 74]. These subtypes have prognostic 

significance and may help to further risk stratify the heterogeneous CN group. These have been 

conducted in adult or paediatric sample sets. Data from paediatric patients are often included in 

predominantly adult datasets due to limitations in sample number. Critically, studies directly 

comparing paediatric and adult gene expression data are rare. One study of an adult cohort (525 

patients) identified a specific gene expression profile which was associated with an inferior CR rate, 

event free survival and OS, independent of cytogenetic risk group. This specific profile also correlated 

with an inferior OS in a smaller paediatric set (100 patients)[75] indicating paediatric data is in line 

with the adult results for this profile. However, more studies like this need to be conducted so that the 

similarities and differences in gene expression, pathway activation and biological processes between 

paediatric and adult AML can be identified. In an exclusively paediatric cohort (n=130) gene 

expression profiling study distinct clusters were identified including t(15;17), t(8;21), inv(16), MLL 

chimeric genes and FAB M7 that could be used with 93% accuracy to predict clusters in both a 

validated paediatric and adult cohort[76]. Improved predictions with 99% accuracy could be made 

from gene expression signatures from one paediatric cohort (n=237) on exclusively paediatric 

validation sets[77]. This higher accuracy may reflect age related differences to be discovered when 
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comparing adult and paediatric datasets. We must also consider the response of young or old AML to 

treatment; gene expression studies comparing paediatric and adult cohorts in response to treatments 

may provide us with important insights into the biology of AML across the ages.  

 

Clonal haematopoiesis and pre-leukaemia  

Advances in cancer genomics have revealed the spectrum of somatic mutations that give rise 

to human AML and have drawn our attention to the molecular evolution and clonal architecture of 

AML. Recently, several publications have shown that normal haematopoietic cells harbouring known 

leukaemia driver mutations gain a competitive survival advantage and clonally expand with increasing 

age[78-80]. These studies suggest that clonal haematopoiesis arises from the expansion of pre-

leukaemic cells expressing a driver mutation and may be an aspect of a normal ageing in the 

hematopoietic system. Whole-exome sequencing (WES) data from the peripheral blood of persons 

unselected for cancer or haematological disease revealed clonal haematopoiesis occurs in 10% of 

persons over 65 years of age, occurring in only 1% in <50 years, and found increased frequency of 

somatic mutations with increasing age in clonally expanded cells[78, 79]. Somatic gene mutations 

most frequently occurred in the epigenetic regulators DNMT3A, TET2 and ASXL1 (additional sex 

combs-like transcriptional regulator 1). These mutations predict age-related clonal haematopoiesis as 

a strong risk factor for the subsequent development of haematological malignancy. This is supported 

by previous work that implicates DNMT3A and TET2 mutations as early events that lead to the 

development of MDS and AML[72, 80, 81]. Other studies support the notion of a pre-leukaemic 

phenotype, whereby ancestral pre-leukaemic HSCs are able to regenerate the entire haematopoietic 

hierarchy while possessing competitive repopulation advantage over non-leukaemic HSCs, leading to 

clonal expansion; these pre-leukaemic cells can also carry DNMT3A, TET2 and ASXL1 mutations and 

are resistant to treatment compared to overt AML[82-85]. Collectively, these studies predict that 

mutations occurring in epigenetic regulators can occur in healthy adults and pre-date AML diagnosis 

by months or years, with secondary mutations in proliferative genes, such as NPM1 or FLT3-ITD 

translocations occurring at a later stage[83].  

In adult AML, DNMT3A mutations are considered to be independently associated with 

unfavourable prognosis and positively correlate with increasing age[86]. DNMT3A mutations occurring 



12 
 

in 15-25% of adult AML are enriched in CN and intermediate risk subgroups and commonly co-occur 

with FLT3, NPM1 and IDH1/2 (isocitrate dehydrogenase 1/2) mutations[32, 87, 88]. IDH1/2 mutations 

occur in 15-30% of adult AML[89]. In contrast to adult AML, mutations in DNMT3A (1%) and IDH1/2 

(0.9% and 0.48% respectively) are rarely observed in paediatric AML[90, 91]. In addition, mutations in 

the epigenetic regulators ASXL1 and TET2 have also been associated with an unfavourable 

prognosis in adult AML. TET2 mutations are found in 2-23% of adult AML in contrast to only 1.7% 

paediatric AML[91]. TET2 mutations in adult AML commonly co-occur with other somatic mutations 

including NPM1, RARα, KIT, FLT3, RAS, MLL and C/EBPα[92-96]. ASXL1 mutations occur in adult 

AML (5-30%) more often in patients over 60 years (16%) than in patients 60 years and younger 

(3.2%). Unlike TET2, ASXL1 mutations are rarely found in conjunction with NPM1 or FLT3 mutations, 

but are associated with C/EBPα mutations[97, 98]. Interestingly, in a limited gene set, paediatric AML 

had fewer gene mutations than adult AML. While one cannot conclude that more mutations are 

required for the development of adult AML, it does highlight that the mutational background of 

paediatric and adult AML is different[91]. Data supports that in contrast to adult AML where mutations 

of epigenetic regulators commonly co-occur, epigenetic mutations occurring in paediatric patients, 

whilst rare, appeared to be mutually exclusive and occur with other non-epigenetic related gene 

mutations. In fact, paediatric cancers on average contain fewer somatic mutations than comparable 

tumours arising in adults[99]. We do not yet have any evidence for the occurrence of mutations in 

epigenetic regulators in utero; whether this is because studies have not investigated this or because 

such mutations do not exist at that stage is not currently known. Research to date suggests that 

mutations in epigenetic regulators are somatically acquired and leukaemia-associated in children with 

AML[91]. 

To date, it is clear that mutations in epigenetic modifiers are enriched in adult AML (16 years 

and above) and that the frequency of mutations in epigenetic modifiers correlates with the increasing 

age of AML patients[97, 98, 100]. The identification of gene mutations involving epigenetic modifiers 

in paediatric AML is rare, accounting for approximately one tenth of those identified in adult AML[91]. 

However, comparison of the epigenetic landscape of paediatric and adult AML investigated by 

assessing promoter hypermethylation in a paediatric (n=70) and adult (n=383) cohort revealed that 

there was a non-random pattern of promoter hypermethylation in childhood AML that accompanied 

specific genetic aberrations. In paediatric samples there was a higher degree of methylation in CBF 
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leukaemia compared to 11q23 AML suggesting that promoter hypermethylation plays a part in the 

leukaemogenesis of CBF AML. This did not reach significance in the adult cohort, which may reflect 

the differences in 11q23 aberrations found in paediatric and adult AML.[101]. When taking into 

consideration the mutational data on epigenetic regulators in paediatric and adult AML however, the 

current strategies in precision therapies to target epigenetic regulators may not impact on AML across 

all ages. Further study into epigenetic regulators in the initiation and maintenance of paediatric AML 

are warranted. 

There is evidence of chromosomal translocations occurring in utero including MLL 

rearrangements (discussed previously), t(8;21)[102] and case reports of inv(16) and t(15;17)[103]. 

Matched Guthrie cards from 12 patients with childhood AML with t(8;21) were screened. The AML1-

ETO fusion transcript was detected in 50% of Guthrie cards proving that the translocation had 

originated in utero during fetal haematopoiesis. Interestingly, the oldest age of presentation of AML in 

a patient with evidence of genomic AML1-ETO at birth was over 12 years old[103]. Unlike MLL 

translocations which present early in life, it appears that prenatal t(8;21) can have a protracted latency 

to AML development. Furthermore, both AML1-ETO and PML-RARA transcripts can be detectable in 

patients post remission. In the case of AML1-ETO, transcripts are detectable in a fraction of stem 

cells, myeloid and B cells[104], implying that some but not all multipotent progenitor cells retain this 

translocation. This is in contrast to the age-related clonal haeamtopoiesis associated with DNMT3A 

mutations, in which all haematopoietic cells exhibit this mutation. AML harbouring AML1-ETO or PML-

RARA has very good outcomes and low rates of relapse, suggesting that while a ‘pre-leukaemic 

clone’ is persistent, the leukaemogenicity, and therefore relapse rate is lower than the clonal 

haematopoiesis seen with age. 

Although there are now several publications that document the frequency of somatic 

mutations occurring in epigenetic regulators expressed by healthy adults[78-80], no equivalent studies 

have been performed on healthy children, therefore it is hard to speculate if paediatric AML follows 

the same step-wise accumulation of mutations leading to the onset of disease. The age-related clonal 

evolution model has important clinical implications for the development of curative therapies for adult 

AML. The development of DNMT and TET2 inhibitors may provide a potential way to eradicate pre-

leukaemic subclones, which are currently chemotherapy resistant[83] and need to be eradicated to 

avoid AML relapse. In contrast, the low incidence of these mutations in childhood AML suggests that 
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the pathogenic process of AML development and relapse is very different between paediatric and 

adult AML. Therefore, more studies are warranted to elucidate the mechanism of development of 

paediatric AML allowing treatment to be tailored to the pathogenic mechanisms. 

 

Concluding remarks 

There is growing evidence that cell ontogeny affects cellular biology with respect to epigenetic marks, 

gene expression and resultant cell characteristics. It therefore seems reasonable to hypothesise that 

the age of the cell will influence these cellular processes following an oncogenic insult. Evidence for 

the origins of many childhood AML associated translocations in utero, developing in a fetal stem cell 

implies different pathogenic mechanism are at play. This is in contrast to adult AML which has little 

evidence of a fetal origin but rather the generation of clonal haematopoiesis originating from an 

accumulation of somatic mutations in hematopoietic subclones. If pathogenesis is different, then 

treatment and particularly, development of novel therapies in childhood AML will be different to adult 

AML. Paediatric AML clearly has distinct biological properties compared to adult AML and 

extrapolating treatment from adult AML may not always be entirely appropriate. There is a need for 

more clinical trials dedicated to paediatric AML but in order to accrue enough participants, 

cooperation of multinational sites is required. Ideally, background rates of cancer-associated genetic 

abnormalities in healthy children will be carried out. This has obvious ethical considerations both in 

the collection of samples but also in investigating for such genetic anomalies in a population unable to 

give consent.  Finally, further preclinical studies investigating the role of ontogeny in leukemogenesis 

will help determine if cell instrinsic factors contribute to the biological and clinical disparity between 

childhood and adult AML.  
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