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Abstract: Aerobic exercise, in spite of its multi-organ benefit and potent effect on the 

metabolome, has yet to be investigated comprehensively via an untargeted metabolomics 

technology. We conducted an exploratory untargeted liquid chromatography mass spectrometry 

study to investigate the effects of a one-h aerobic exercise session in the urine of three 

physically active males. Individual urine samples were collected over a 37-h protocol (two 

pre-exercise and eight post-exercise). Raw data were subjected to a variety of normalization 

techniques, with the most effective measure dividing each metabolite by the sum response 

of that metabolite for each individual across the 37-h protocol expressed as a percentage. 

This allowed the metabolite responses to be plotted on a normalised scale. Our results 

highlight significant metabolites located in the following systems: purine pathway, 

tryptophan metabolism, carnitine metabolism, cortisol metabolism, androgen metabolism, 

amino acid oxidation, as well as metabolites from the gastrointestinal microbiome. Many of 

the significant changes observed in our pilot investigation mirror previous research studies, 

of various methodological designs, published within the last 15 years, although they have 

never been reported at the same time in a single study.  
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1. Introduction 

From the smell and colour of urine as a tool for disease diagnosis [1] to the elusive promise of an 

“exercise pill” as a preventative measure of disease [2,3], could this be the future of health prescription? 

How could exercise, with its multi-factorial and multi-organ health benefits [2,4–7], be successfully 

administrated as an oral medication? If this theoretical pill existed, it would have to replicate the 

downstream metabolic effects of a single type of exercise tailored specifically to each unique 

metabolome or even metabotype [8,9]. Exercise, as an external challenge to the human metabolome, 

creates an immediate response (turn-over rate in seconds [10]) across this biological matrix, which, 

unlike studies investigating the effects of fasting, have been shown to exhibit large inter-subject 

variability [8,11]. Therefore, the question of dosing specific exercise regimes to varying population 

cohorts (sedentary vs. regularly active vs. athletes) in order to maximize the efficacy of the intervention 

remains to be answered. Therefore, how can we, by utilising evidence-based markers, predict the intensity 

and training modality that would ensure a quicker adaptation and improved outcome in these subgroups? 

The answer could lie within the plethora of human metabolism, which, in spite of its vast number of 

constituents, still is the most sensitive measure to investigate cellular and human phenotype [1,9,10].  

As such, metabolomics, the rapidly developing omics technology, allows for hundreds of metabolites 

(generally with a mass <1500 Da, at ≤5 ppm mass deviation) to be investigated within each metabolome 

at any given time-frame, creating a ‘snapshot’ of the biological state of an organism [12]. A number of 

metabolomics-based studies have provided evidence to suggest that there is a clear effect of exercise on 

the human metabolome [4,13–15]. The most persistent observations concern effects on the purine 

pathway, highlighting increases in adenine nucleotides (AdN) in both acute and prolonged exercise 

regimes [16–23], with reduced excretion exhibited following an adaptative response [23] that is 

accommodated by a reduced level of resting hypoxanthine [17,22,24–27]. Moreover, Hellsten et al. [28] 

showed that muscle urate, as well as allantoin levels, the latter being a product of urate oxidation, were 

increased in habitually active male subjects following exhaustive exercise. Allantoin can only be formed 

non-enzymatically in humans, and it was concluded that uric acid was acting as an antioxidant against 

reactive oxygen species (ROS) generated during exercise. Hence, this could be a useful tool in examining 

levels of oxidative stress. As previously mentioned, plasma levels of hypoxanthine were also increased 

after exercise, and this may result from xanthine dehydrogenase being a rate limiting enzyme in urate 

formation [24]. In muscle, ATP is degraded to hypoxanthine, which is lost from the muscle, but may be 

salvaged by hypoxanthine-guanine phosphoribosyl transferase. Several papers have observed that 

hypoxanthine salvage tends to be more efficient in trained individuals and that, along with other purine 

metabolites, can provide an indication of the effectiveness of a training regime [26]. A targeted 

metabolomics study examining approximately 200 plasma metabolites in relation to exercise in 

individuals from a longitudinal cohort study concluded that metabolic profiles obtained during exercise 

gave a signature of exercise performance, as well as cardiovascular disease susceptibility [5]. Important 

marker metabolites for the effect of exercise included purine metabolites, tryptophan metabolites, 
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citrulline (marker of nitric oxide formation and present to a lesser extent in the plasma of fitter 

individuals) and, finally, nicotinamide (tryptophan metabolite), which is known to enhance insulin  

release [5]. Lustgarten et al. [29] noted a positive correlation between maximum oxygen consumption 

(�̇�O2max) with tryptophan, and an increase in tryptophan-related metabolites, such as kynurenate, was 

exhibited in a study of individuals after running the 26.2-mile Boston marathon. A 1H-NMR investigation 

into same sex twins looked into the effect of prolonged physical activity adherence to metabolic and 

gene expression links [4]. Numerous differences were found between persistently physically active and 

inactive individuals in the circulating metabolome, and the results reflected better cardio-metabolic 

health in the physically active twin [4]. 

Apart from the aforementioned studies, there have been very few comprehensive liquid chromatography 

mass spectrometry (LC-MS)-based investigations utilising an untargeted metabolomics method. The 

research conducted by Lewis et al. [5] and the Nieman et al. [13,30] on the effects of exercise have set 

a standard for future work; however, there are new prospects available in metabolite coverage and 

understanding due to the rise of high resolution and high throughput monitoring systems. Therefore, we 

conducted an exploratory, hypothesis generating pilot study utilising an untargeted LC-MS method in 

order to explore the effects of a one-h aerobic exercise challenge in the urine metabolome of three 

physically active males. We utilised our well-established hydrophilic interaction chromatography 

(HILIC) method to carry out the analysis [30–32]. The use of urine provides an ideal non-invasive 

method that results in a large overview of the metabolite matrix. As serialised time points, each 

individual urine sample provides an averaged response of the metabolic output of a particular individual 

and, in doing so, provides a unique overview of the daily metabolite variation. Hence, we devised a 

continuous 37-h protocol with sampling pre- and post-exercise accounting for the majority of the time-

points (across 31 h) in order to generate an understanding of the acute effects of exercise and, where 

possible, the duration of that response in the metabolite profiles.  

2. Materials and Methods 

2.1. Ethics Statement (UEC 14/28, Watson/Daskalaki: Pilot Exercise Trial) 

This study was approved by the Ethics Committee of the University of Strathclyde (Glasgow, UK) 

and conformed to the Declaration of Helsinki. Prior to successful recruitment, all subjects completed a 

physical activity readiness questionnaire, as well as a health questionnaire, in order to assess physical 

activity levels and to ensure that they had no history of the following: anaemia, diabetes, epilepsy, as 

well as any underlying respiratory or cardiovascular complications. All subjects gave written informed 

consent to participate. 

2.2. Subjects and Experimental Design 

Three physically active, non-smoking males (age range: 32–38 years) participated in the pilot study. 

The subjects were regularly engaged in predominantly running, long-distance walking and cycling. For 

at least two weeks prior to study commencement, subjects were asked to abstain from taking any sport 

or nutritional supplements and had no sign of illness. Subjects underwent a two-day (37 hour) trial, 

whereby urine samples were collected at regular intervals across this timeline: Day 1, ~08:00  
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Pre-exercise (P) 1 , first pass urine), 11:00 (P2), 14:00 (Post-exercise (PT) 1 17:00 (PT2) and 21:00 

(PT3); and Day 2, ~8:00 (PT4; first pass urine), 12:00 (PT5), 14:00 (PT6), 17:00 (PT7) and 21:00 (PT8)). 

Aerobic exercise was performed at the Strathclyde Sport and Recreational Centre (Glasgow, U.K.) on 

Day 1 between 12:00 and 13:00 (referred to as the A.E. session in this diagram) on either a treadmill, 

bicycle ergometer or in a combination. Subjects were permitted to control their own pace and drink water 

ad libitum, but had to be engaged in activity for at least 50 min. After the exercise session and for the 

remainder of the sample collection timeline, subjects were asked to refrain from any physical activity. 

Figure 1 provides a full illustration of the two-day protocol. 

 

Figure 1. Illustration of experimental design and sample collection. 

2.3. Sample Collection and Preparation  

Coded, pre-labelled sterilised urine containers were distributed to the subjects along with cool bags 

(Sistema Plastics, available from Amazon Co., Slough, UK) for storage and transport to the laboratory 

located at the Strathclyde Institute of Pharmacy and Biomedical Sciences. A designated drop-off section 

(at a temperature of −35 °C) was created for the samples. The unopened urine containers were stored for 

a maximum of two weeks prior to being thawed at room temperature and prepared for LC-MS analysis. 

For the analysis , using a ZIC-pHILIC column, 200 μL of urine were thoroughly mixed with 800 μL of 

ACN, followed by centrifugation at 7840 relative centrifugal force for 5 min; 800 μL of supernatant 

were then transferred to an LC auto-sampler vial (Thermo Fisher, UK). For quality control purposes, a 

pooled sample representing all subjects, as well as a subject-specific pooled sample were prepared (the 

latter utilised as a normalisation technique). For the pooled samples, 100 μL of urine were gathered from 

each sample and then treated as above. Four standard mixtures containing 150 authentic standards were 

run also after the samples. 
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2.4. Measurement of Creatinine  

Fifty microlitres of diluted samples and prepared creatinine standard stock solutions were thoroughly 

mixed with 100 μL of creatinine detection reagent (Enzo Life Sciences, Exeter, UK) in a 96-well plate. 

Absorbance was read at 490 nm via a Spectra Max M5 from Molecular Devices. The concentrations of 

creatinine in the test samples were calculated as stated previously in the literature [31]. 

2.5. Chemicals and Solvents 

HPLC-grade acetonitrile (ACN) was purchased from Fisher Scientific, U.K., and HPLC-grade water 

was produced by a Direct-Q 3 Ultrapure Water System (Millipore, U.K.). AnalaR-grade formic acid 

(98%) was obtained from BDH-Merck (Poole, Dorset, U.K.). Authentic stock standards were prepared 

as stated previously in the literature [30] and diluted 4 times with ACN before LC-MS analysis. 

Ammonium carbonate was purchased from Sigma-Aldrich, U.K. 

2.6. LC-MS Method 

LC-MS data were acquired on an Accela HPLC (Thermo Fisher Scientific) coupled to an Exactive 

Orbitrap (Thermo Fisher Scientific, Hemel Hempstead, UK) in both positive and negative mode set at 

50,000 resolution (controlled by Xcalibur version 2.1.0; Thermo Fisher Corporation, Hemel Hempstead, 

UK). The mass scanning range was m/z 75–1200; the capillary temperature was 320 °C; and the sheath 

and auxiliary gas flow rates were 50 and 17 arbitrary units, respectively. The separation was performed 

on a ZIC-pHILIC column (150 × 4.6 mm, 5 μm from HiChrom, Reading, UK) in binary gradient mode. 

The mobile phase used was 20 mM ammonium carbonate buffer (pH 9.2) and pure ACN; the flow rate 

was 300 μL·min−1. The gradient was programed as follows: 0 min 20% A/80% B to time 30 min 80% 

A/20% B. The injection volume was 10 μL, and the sample tray temperature was controlled at 12 °C 

during the measurement. Samples were run in a stratified method with between-subject samples placed 

in randomised order. 

2.7. LC-MS Data Processing with MzMatch and Ideom (Version 19) 

Raw LC-MS files were converted to mzXML (ProteoWizard) and separated into ESI positive and 

negative. Converted files were then processed with open source MzMatch (http://mzmatch.sourceforge.net/) 

and the identification of putative metabolites was made via the macro-enabled Excel file, Ideom 

(http://mzmatch.sourceforge.net/ideom.html). Details regarding the data processing, metabolite 

identification, as well as databases available through Ideom can be found in previous literature [33]. 

Details of the R script for data processing with MzMatch and Ideom configurations can be found in 

supplementary File S1, R script, and Table S1, Ideom settings, respectively. 

2.8. Statistical Analysis  

Graphical representations, tabular features and statistical analysis (p-value generation) were 

performed in Excel (Microsoft Office 2013). Raw data were subjected to a variety of normalisation 

techniques; pooled subject-specific MS creatinine samples, MS and spectrophotometric creatinine, as 
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well as a subject-specific area percentage. For the latter, the first step includes calculating the sum of the 

peak areas of each metabolite across the 37-h protocol for each subject individually. Secondly, each 

respective metabolite response from every time point is then divided by the subject specific sum and 

multiplied by 100. Paired t-tests and fold changes were calculated on the new area percentage dataset. 

In order to observe the effect of the various normalisation strategies, data were also subjected to 

unsupervised PCA (scaled to unit variance) via SIMCA-P 13 (Umetrics, Sweden).  

3. Results  

Normalisation 

Since the strength of urine can vary, a major question in urinary metabolomics is how does one 

normalise to allow for variation in strength? Creatinine normalisation is often used, yet the reliability of 

such a method is uncertain; this is, in fact, discussed at length in the review on urinary normalization 

techniques by Ryan et al. [34]. It is clear from a number of metabolomics studies examining differences 

between individuals that each person presents a unique metabolic profile [8,11]. These inter-individual 

variations can be seen between the clustering patterns of the principal component analysis (PCA), where 

data have been normalised to either: (1) MS creatinine; (2) pooled subject-specific MS creatinine; or  

(3) spectrophotometric creatinine (Figure 2). The result of normalising to MS response for creatinine  

(Figure 2a) does not vary from the original raw dataset and does not improve the observed clustering 

between the subjects. However, when attempting to normalise to pooled subject-specific (Figure 2b) and 

spectrophotometric (Figure 2c) creatinine, the results vary considerably, especially for the latter. Having 

previously seen the clustering of each subject uniquely, the results of normalisation via the assay kit aid 

in the potential further differentiation of two metabotypes within our results. In Figure 2c, all of  

Subject 3’s samples are separated from Subjects 1 and 2. Given that all our subjects were healthy, non-

smoking and regularly active, this could be an additional factor in determining relative fitness prior to 

any form of exercise challenge due to the relationship of creatinine clearance and muscle activity. The 

most effective strategy, however, can be seen in Figure 1d, as the data are normalised to the  

subject-specific area percentage. This approach has not been widely used, but there is some justification 

for doing this, as an almost complete recording for each metabolite was collected over the designated 

time-frame of the study. There are very few studies that have collected urine samples separately over 

long periods, so there is no information variability of individual metabolites with time. Table 1 shows a 

range of metabolites in urine with their relative standard deviation (RSD) over 30 samples taken from 

our three subjects. Many of the amino acids have only small variations over time, indicating that they 

are sufficiently abundant in the body. However, this may suggest that they are not affected to such a 

great extent by this particular form of exercise; ultimately, maintaining a relatively constant output. On 

the other hand, there are some metabolites shown in Table 1 that are very variable over time.  
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Figure 2. Normalisation strategies applied to the urine metabolome of three subjects  

(~1,000 putative metabolites). PCA of data normalised to: (a) the MS creatinine value of 

each unique sample detected exhibiting a similar pattern to raw data (R2X: 0.721; 

Q2: 0.432); (b) the MS creatinine value of subject-specific pooled samples (i.e., pooled 

Subject 1 creatinine value utilised to normalise all of Subject 1’s raw data, and so on;  

R2X: 0.767; Q2: 0.489); (c) spectrophotometric creatinine value (the normalised data are 

closely clustered in the PCA model with the exception of all sampling time-points from 

Subject 3; R2X: 0.883; Q2: 0.468); and (d) subject-specific area percentage (R2X: 0.704; 

Q2: 0.447; showing the smallest difference between the goodness of fit and predicted fit). 

The PRE group includes Pre 1 (P1) and P2; the POST1 group includes Post 1 (PT1), 2  

and 3; POST2 includes PT4, 5, 6, 7 and 8.  
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Table 1. RSD values for metabolites across 30 urine samples collected over 37 hours.  

Compound Mass Retention Time (RT) (min) RSD (%) 

* Creatinine 113.050 10.1 16.3 

* Threonine 119.058 14.9 25.4 

Imidazolone propanoate 156.053 11.5 25.5 

* Glutamine 146.069 15.5 27.2 

* Serine 105.043 16.1 27.7 

Dihydrothymine 128.058 15.2 31.2 

N-acetylhistidine 197.080 10.6 31.5 

Dimethylarginine 202.143 22.0 31.9 

Dihydrouridine 246.085 10.8 32.0 

* Betaine 117.079 11.7 32.3 

* N-acetylglucosamine 221.090 12.2 33.2 

N-acetylarginine 216.122 15.3 34.9 

* N6-acetyllysine 188.116 15.5 35.6 

* Adenine 135.055 9.5 37.9 

* Methylthioadenosine 297.089 7.0 38.1 

* Citrulline 175.096 15.9 39.0 

* Proline 115.063 13.2 40.0 

Methylimidazole acetic acid 140.058 9.7 41.0 

* Alanine 89.048 15.2 41.3 

* Methylhistidine 169.085 13.3 41.9 

Thymine 126.043 12.0 42.3 

* Isoleucine 131.095 11.6 42.5 

Butenyl carnitine 229.131 9.8 42.8 

Methylcytosine 125.059 11.0 43.2 

* N-acetylglutamine 188.080 11.0 44.2 

* Adenosine 267.097 9.3 44.9 

* Phenylalanine 165.079 10.5 46.8 

* Histidine 155.069 15.0 47.9 

* Kynurenine 208.085 11.2 51.2 

* Cytosine 111.043 11.6 51.1 

* Ornithine 132.090 22.3 56.6 

* Tryptophan 204.090 12.0 55.6 

Carnitine 161.105 13.8 60.4 

* Arginine 174.112 26.4 62.6 

Creatinine (assay kit) - - 73.0 

* Pantothenate 219.111 8.9 82.4 

Tetrahydro aldosterone glucuronide 542.273 7.4 84.8 

* Lysine 146.105 25.0 100.6 

* Pyruvate 88.016 8.3 106.3 

Cresol glucuronide 284.090 7.8 113.1 

* Urate 168.028 13.0 121.6 

* Xanthosine 284.075 12.7 141.3 

* Tyrosine 181.074 13.3 133.7 
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Table 1. Cont. 

Compound Mass Retention Time (RT) (min) RSD (%) 

* Inosine 268.081 11.2 180.3 

* Hypoxanthine 136.038 10.5 186.1 

Deoxyinosine 252.086 9.0 210.6 

* Matches the retention time of an authentic standard. 

Figure 3 shows the variation in MS creatinine compared to some other metabolites (phenylalanine, 

carnitine, threonine, glutamine and stachydrine) that do not change very much over time for the three 

subjects; whereas, in Figure 4, variations in metabolites of the purine pathway (hypoxanthine, xanthosine, 

inosine and guanine) are shown in comparison to MS creatinine. As exhibited in Table 1, there are large 

variations across variable, as well as non-variable metabolites, and Figure 3 further emphasises that 

creatinine does not, in fact, follow a similar pattern to other metabolite markers. It is obvious from the 

similar trend response across the three subjects that the purines reflect a very strong acute impact of 

exercise; with peak levels observed at the first post-exercise sample (PT1). They also exhibit fluctuations 

over a smaller range on the following day. These metabolites are all in the pathway for ATP catabolism. 

The levels of adenosine (RSD in Table 1) were not affected to the same extent by exercise as the other 

purines, and thus, the breakdown of ATP appears not to proceed via this branch of the purine metabolism 

pathway. The effects of exercise and purine catabolism have been extensively described in the  

literature [20–28], and in particular, hypoxanthine has been the most studied of the purines. 

 

Figure 3. Comparison of the exercise response of the area percentage for MS creatinine 

(orange) with phenylalanine (red), carnitine (purple), threonine (green), glutamine (dark 

blue) and the dietary xenobiotic stachydrine (light blue). 

Figure 4 shows the effects of exercise on four metabolites in the purine pathway in the three subjects. 

The four purines, hypoxanthine, inosine, xanthosine and guanine, fluctuate in a very similar manner and 
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are all high in PT1; they also exhibit fluctuation over a smaller range on the following day. These 

metabolites are all in the pathway for ATP catabolism. The levels of adenosine (RSD in Table 1) were 

not affected to the same extent by exercise as the other purines, and thus, the breakdown of ATP appears 

not to proceed via this branch of the purine metabolism pathway. Effects on purine catabolism have been 

extensively described in the literature [20–28]. 

 

Figure 4. Comparison of the exercise response of the area percentage for MS creatinine 

(orange) with the levels of some metabolites from the purine pathway, hypoxanthine (light 

blue), xanthosine (green), inosine (red) and guanine (purple). 

The possible permutations for comparison of the ten sampling points are large, so in order to investigate 

the impact of exercise on the wider metabolome, the first post-exercise sample was taken as the best to 

reflect the impact of exercise according to the previously established effect on purine metabolism. 

Hence, statistical analysis was carried out with the first post-exercise sample as the reference point in 

order to observe the metabolites that were most immediately impacted by exercise (Table 2). This would 

additionally provide a possible time series analysis in order to determine how long it took for the effect 

of the exercise intervention to subside. This adds statistical power, despite the small sample size, since 

nine points for each person can be referenced to the first post-exercise sample (PT1). Table 2 summarises 

the metabolites that were most significantly changed between the P1 and PT1 points. Having established 

the most significant changes between these two points, subsequent differences between PT1 and some 

of the other post-exercise points (PT2, 4, 5 and 7) were added to the table. Some of the metabolites 

affected by exercise took over 24 h to return to the level of the first pre-point. Comparison with the 

second pre-point (P2) did not produce as distinct differences for certain metabolites as can be seen in the 

comparison between PT1 and P1. This is probably due to the fact that the physical activity of the subjects 

(mainly in the morning travel methods of the subjects) prior to the exercise session was not strictly 

controlled. However, in many cases, there were still significant differences between P2 and PT1. 
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Table 2. Normalised urinary metabolites which are significantly changed by exercise for three subjects. P-value and ratio change for 

comparisons PT1 (first post-exercise sample) vs. P1 (pre 1), P2 (pre 2), PT4 (post 4), PT5 (post 6), PT5 (post 7) and PT7 (post 7). The majority 

of the metabolites match metabolites in the human metabolome to within 2 ppm and thus are characterised to MSI level 2 where alternative 

metabolites could be isomers of the identity assigned.  

 Mass 
RT 

(min) 

PT1/P1 PT1/P2 PT1/PT2 PT1/PT4 PT1/PT5 PT1/PT7 

Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value 

Purine metabolism               

N2-N2-Dimethylguanosine 311.123 9.0 2.59 0.0200 1.57 0.11 1.97 0.12 1.18 0.61 2.68 0.070 4.75 0.0043 

Xanthosine * 284.075 12.7 16.18 0.0191 8.24 0.019 3.98 0.014 5.25 0.022 13.7 0.017 18.6 0.019 

Inosine * 268.081 11.2 581 0.045 10.8 0.048 5.55 0.049 5.64 0.0591 12.14 0.045 88.8 0.046 

Deoxyinosine 252.086 9.0 43.3 0.010 15.6 0.0091 11.9 0.0060 8.87 0.0037 25.13 0.0062 53.4 0.0093 

Guanine * 151.049 12.7 5.01 <0.001 4.17 0.0017 33.7 <0.001 3.30 <0.001 10.17 <0.001 27.7 <0.001 

Hypoxanthine * 136.038 10.5 22.8 0.025 11.0 0.026 9.86 0.023 6.96 0.016 15.5 0.020 27.3 0.023 

Kynurenine pathway               

** 3-Hydroxytryptophan 220.085 10.3 2.69 0.012 1.45 0.12 1.52 0.27 0.93 0.83 2.14 0.095 3.66 0.0095 

† Xanthurenic acid isomer 205.037 11.3 4.55 0.0023 1.93 0.0072 1.95 0.085 1.76 0.15 2.14 0.044 3.91 0.0001 

Kynurenate 189.043 6.6 3.36 0.085 2.71 0.13 1.57 0.42 1.59 0.31 2.55 0.13 3.87 0.092 

Hydroxytryptophol 177.079 7.5 3.74 0.0048 0.98 0.97 1.86 0.14 2.22 0.016 2.43 0.026 4.01 0.0040 

N1-Methyl-2-pyridone-5-carboxamide 152.059 7.8 2.27 0.042 1.56 0.40 1.28 0.58 0.86 0.68 1.44 0.44 3.12 0.0012 

Glycolysis               

Pyruvate * 88.016 8.3 6.79 0.026 5.93 0.02 2.11 0.12 2.81 0.041 9.08 0.024 6.50 0.031 

Methyl oxalate 118.027 8.5 3.09 0.011 1.68 0.31 0.95 0.92 1.14 0.82 1.96 0.13 3.12 0.0026 

Vitamins               

Riboflavin * 376.138 8.9 3.01 0.047 1.19 0.59 2.63 0.055 0.75 0.50 2.92 0.043 8.94 <0.001 

Pantothenate * 219.111 8.9 5.09 0.031 3.18 0.048 1.96 0.13 2.19 0.071 3.44 0.034 4.37 0.042 

Neurotransmitter metabolism               

L-Metanephrine * 197.105 18.6 4.56 0.013 2.00 0.050 1.88 0.13 1.45 0.42 2.90 0.035 5.21 0.026 
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Table 2. Cont. 

 Mass 
RT 

(min) 

PT1/P1 PT1/P2 PT1/PT2 PT1/PT4 PT1/PT5 PT1/PT7 

Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value 

Microbial metabolism               

Indole-3-acetyl-glutamine 303.122 8.2 4.86 0.010 1.61 0.26 3.36 0.024 1.38 0.28 3.64 0.021 8.02 0.011 

5-Hydroxyindolepyruvate 219.053 5.3 3.99 0.0045 1.90 0.036 1.92 0.13 1.30 0.46 2.54 0.082 3.35 0.0067 

Indoxyl sulphate 213.010 7.4 3.07 0.050 2.05 0.19 2.23 0.1155 1.48 0.4326 3.62 0.044 11.57 0.040 

Hydroxyferulate 210.053 6.8 3.81 0.042 2.83 0.084 1.36 0.5378 1.55 0.27 6.27 0.040 5.87 0.044 

Cresol sulphate 187.008 4.5 2.97 0.037 1.37 0.34 2.14 0.13 0.96 0.91 3.48 0.029 4.05 0.026 

Phenol sulphate 173.999 5.0 3.32 0.0042 2.02 0.17 1.84 0.15 1.01 0.99 2.13 0.075 3.83 0.0034 

Urocanate 138.043 7.5 2.81 0.054 2.03 0.036 1.73 0.16 2.02 0.049 2.97 0.027 5.50 0.014 

Amino acids               

Tryptophan * 204.090 12.0 2.02 0.044 0.90 0.62 1.24 0.58 0.77 0.60 1.49 0.32 2.36 <0.001 

O-Acetyl-L-homoserine 161.069 8.6 3.76 0.019 2.91 0.047 1.54 0.42 1.75 0.1177 3.06 0.023 4.23 0.019 

Histidine * 155.069 15.0 0.41 0.047 0.39 0.073 0.67 0.44 0.62 0.30 0.29 <0.001 0.34 0.019 

D-Methionine * 149.051 7.6 2.40 0.017 1.32 0.16 1.51 0.27 1.11 0.70 1.78 0.21 1.98 0.015 

L-Proline * 115.063 13.2 3.88 0.018 1.85 0.091 2.18 0.058 1.74 0.12 2.38 0.047 3.53 0.035 

Amino acid metabolism               

N-Acetylvanilalanine 253.095 8.0 7.48 0.0020 3.19 0.035 2.28 0.15 2.52 0.085 4.18 0.018 7.21 < 0.001 

N-(Carboxyethyl) arginine 246.133 14.6 5.16 0.027 3.43 0.039 2.98 0.031 3.10 0.027 4.27 0.026 4.13 0.032 

N-Acetyl-D-tryptophan 246.101 6.6 3.60 0.051 3.28 0.047 1.29 0.68 1.45 0.25 2.47 0.087 5.42 0.055 

N-acetylmethionine 191.062 6.1 4.85 0.039 3.26 0.052 1.85 0.22 1.68 0.19 2.9 0.070 6.07 0.046 

Amino acid oxidation               

Indole pyruvate 203.059 6.9 2.36 0.030 1.59 0.40 1.14 0.81 1.44 0.46 3.07 0.025 3.39 0.014 

Acetamido-oxohexanoate 187.084 8.4 2.71 0.029 1.84 0.24 1.37 0.38 1.44 0.31 2.28 0.031 4.42 0.0075 

Hydroxyphenylpyruvate 180.042 7.9 4.43 0.0030 2.63 0.077 1.54 0.41 1.80 0.12 4.66 0.0032 4.94 0.0051 

Oxoarginine 173.080 14.7 1.99 0.04 1.78 0.089 1.96 0.052 1.63 0.078 2.88 0.018 2.18 0.045 

Guanidovaleramide 158.117 24.7 6.74 0.0015 2.33 0.032 1.61 0.37 1.33 0.65 3.42 0.080 9.27 0.0049 

Acetohydroxybutanoate 146.058 7.0 5.67 0.0016 3.51 0.0310 1.99 0.14 1.49 0.31 3.01 0.012 6.47 <0.001 

Acetamidobutanoate 145.074 7.1 3.17 0.0095 2.24 0.14 1.69 0.28 1.80 0.13 2.82 0.029 6.39 0.0069 
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Table 2. Cont. 

 Mass 
RT 

(min) 

PT1/P1 PT1/P2 PT1/PT2 PT1/PT4 PT1/PT5 PT1/PT7 

Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value Ratio p-Value 

Amino acid oxidation               

Dihydroxymethylbutanoate 134.058 9.2 8.00 0.030 3.23 0.053 1.74 0.32 0.79 0.74 1.31 0.58 2.54 0.10 

Methyl-oxopentanoic acid 130.063 5.2 4.21 0.026 2.65 0.068 1.51 0.45 1.18 0.66 2.32 0.084 3.68 0.030 

Dioxopentanoate 130.027 8.8 2.31 0.046 1.56 0.39 1.10 0.85 0.94 0.84 1.47 0.31 2.18 0.035 

Hydroxypentanoate 118.063 7.1 2.72 0.018 1.72 0.28 0.94 0.92 0.71 0.58 1.42 0.48 2.99 0.0035 

Methyloxobutanoic acid 116.047 6.9 3.12 0.013 1.95 0.19 1.25 0.70 0.85 0.78 1.46 0.48 3.60 0.0020 

Hydroxybutanoic acid 104.047 8.2 3.24 0.010 2.09 0.15 1.31 0.60 0.86 0.75 1.51 0.40 2.96 0.011 

Carnitine metabolism               

Dodecenoylcarnitine 341.256 5.5 4.59 0.0025 3.00 0.030 2.67 0.045 1.52 0.13 3.55 0.051 5.19 < 0.001 

Undecanoylcarnitine 329.256 5.5 3.08 0.026 1.57 0.20 1.48 0.35 1.32 0.40 2.07 0.17 3.83 0.028 

Decanoylcarnitine 315.241 5.8 3.07 0.045 2.00 0.065 1.71 0.24 1.18 0.66 2.40 0.1425 5.05 <0.001 

L-Octanoylcarnitine 287.209 6.4 2.15 0.016 1.41 0.19 1.52 0.31 0.71 0.51 1.46 0.47 3.18 0.004 

Methylglutarylcarnitine 261.121 5.6 1.92 0.078 2.08 0.18 1.24 0.58 0.60 0.23 2.10 0.023 2.06 0.013 

Hexanoylcarnitine 259.178 7.7 2.26 0.041 1.17 0.55 1.15 0.77 0.85 0.71 1.55 0.39 3.37 0.027 

Valerylcarnitine 245.162 10.7 2.33 0.0186 1.74 0.065 1.36 0.42 0.98 0.96 2.52 0.0082 2.91 0.0075 

Dehydroxycarnitine 145.110 15.8 2.76 0.0095 1.89 0.023 1.65 0.20 1.52 0.15 2.69 0.012 3.00 0.0082 

Steroid metabolism               

Urocortisol glucuronide 542.273 7.4 6.48 0.0036 2.68 0.062 1.84 0.16 2.16 0.063 2.60 0.045 5.84 0.011 

Dihydrocortisone glucuronide 540.257 5.5 5.47 0.029 2.59 0.082 3.70 0.028 2.04 0.075 3.65 0.032 8.43 0.033 

Hydrocortisone sulphate 442.166 4.3 8.83 0.060 3.13 0.084 5.16 0.060 2.74 0.092 5.40 0.051 25.26 0.055 

Hydroxyandrosterone glucuronide 482.252 5.5 4.27 0.0064 2.21 0.14 2.24 0.068 1.79 0.091 2.90 0.018 5.08 0.017 

Androstane diol glucuronide 468.272 5.6 2.77 0.0082 2.11 0.17 1.71 0.21 1.24 0.51 2.38 0.065 4.45 0.0029 

Androsterone glucuronide 466.257 4.8 3.59 0.0039 1.99 0.19 1.84 0.19 1.40 0.32 2.43 0.076 5.00 0.0069 

Oxoandrostane glucuronide 480.236 5.3 4.13 0.046 2.17 0.15 2.03 0.13 1.47 0.32 2.83 0.061 9.22 0.051 

* Metabolomics Standard Initiative Level 1: finding matches the retention time of the authentic standard; ** retention time earlier than the 5-hydroxytryptophan standard;  

† retention time later than the xanthurenic acid standard. 
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4. Discussion 

4.1. Tryptophan Metabolism 

In addition to the purine pathway, a number of other metabolite pathways were significantly affected 

by exercise. Lewis et al. [5] observed effects on the kynurenine pathway in response to exercise, and we 

observe the same type of effect in the current study with a weak effect on kynurenate and a clearer effect 

on 3-hydroxy tryptophan and hydroxyindole pyruvate, hydroxytryptophol, as well as pyridone 

carboxamide, which are also present in this pathway. Initially, we thought that xanthurenate  

(3-hydroxykynurenate) was also affected by exercise, but the affected compound shown in Table 2 

appears to be an isomer of xanthurenate. Effects on tryptophan metabolism following exercise were also 

observed by Lustgarten et al. [29]. There is an early report that kynurenate can be converted  

non-enzymatically into 6-hydroxykynurenate, and this may occur in urine when levels of kynurenate are 

high [35]. We have previously observed in the completely different metabolic system of Drosophila that 

inhibition of the purine metabolism pathway with allopurinol caused a fall in metabolism within the 

kynurenine pathway [36].  

4.2. Glycolysis 

Pyruvate is strongly elevated by exercise, and this would be expected as a result of increased  

reliance on glycolysis as the source of energy with the decreased entry of pyruvate into the Krebs cycle. 

Lewis et al. [5] observed increased levels of pantothenate in plasma taken from marathon runners, and 

we also observe a large increase. It was proposed that elevated pantothenate resulted from an increased 

demand for CoA biosynthesis [5], but in the current case, pantothenic acid is excreted, which might 

reflect a decreased demand for CoA. This could also reflect a switch to glycolysis in place of fat 

metabolism. It has been observed that fat metabolism decreases with an increasing exercise intensity, 

and there is an increase in reliance on glycogen to supply energy [37]. Fatty acid levels in plasma have 

been found to increase after exercise, and in the current case, possibly, this is reflected by the rapid fall 

in urinary pantothenic acid levels post-exercise. Furthermore, the urinary levels of the adrenaline 

metabolite, metanephrine, are elevated and do not decline to pre-exercise levels until nearly 24 h later. 

4.3. Microbiome Metabolites 

An unexpected and wide ranging effect of exercise is on the levels of microbial metabolites in urine. 

Five metabolites clearly associated with the gut microflora are moderately to highly elevated by exercise 

and include metabolites of tryptophan, such as the uremic toxin, indoxyl sulphate, indole pyruvate and 

hydroxyindole pyruvate [38], the tyrosine metabolites cresol sulphate and phenol sulphate [39], as well 

as the histamine, metabolite urocanic acid. Elevated levels of a number of other amino acid oxidation 

products are observed, and these may also result from microbial activity [40]. This could have important 

implications for physiological function during exercise when one considers that cresol sulphate and 

indoxyl sulphate are potent uremic toxins. Again, this effect has been previously observed by Lustgarten et al., 

highlighting increases in a range of products of gut microflora, including phenol sulphate, p-cresol sulphate, 

urocanic acid and 3-indoxyl sulphate in physically-impaired adults following an exercise programme [41].  
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4.4. Amino Acid Oxidation 

As shown in Table 2, there are many oxidation products of amino acids produced in response to 

exercise that are supported in previous studies. Lustgarten et al. [29] observed increases in  

α-hydroxyisocaproate, indolelactate hydroxyisovalerate and 2-hydroxy-3-methylvalerate in their study 

of exercise in physically-impaired adults. They linked increases in these metabolites with PPAR-α 

activation. In our study, we have observed the keto acids to a greater extent than the corresponding 

hydroxyl acids, which is more in line with Pechlivanis et al., who observed increased oxidation of branch 

chain fatty acids in the urine of moderately trained males post-exercise (three sets of 80-m maximal runs 

separated by either 10 s or 1 min) [17]. 

4.5. Carnitines  

Another group of metabolites that are affected by exercise are fatty acid carnitine conjugates. In 

particular, we observed increases in C12:0, C10:0 and C8:0 carnitines, which have been reported 

previously [42]. Romijn et al. [43] showed that glucose inhibited the metabolism of palmitic acid during 

exercise. Glycolysis is increased during exercise since two molecules of ATP are generated during the 

conversion of glucose to pyruvate without the requirement of oxygen. Pyruvate then enters mitochondria 

and is converted to acetyl CoA, which produces one molecule of NADH, but this does not require 

investment of ATP. In contrast, coupling of a fatty acid to CoA requires one molecule of ATP and the 

FADH and NADH produced during a fatty acid oxidation step. This requires oxygen in order for them 

to be converted to ATP in the terminal respiratory chain. Thus, it would seem logical that further 

oxidation of pyruvate via the Krebs cycle might take precedence over fatty acid oxidation when ATP is 

at a premium. In order to enter mitochondria, fatty acids have to be converted into acyl carnitines, where 

they are then conjugated to CoA and undergo oxidation. Carnitine conjugation is also used to transport 

fatty acids out of mitochondria in order to ensure that sufficient levels of free CoA are maintained; this 

allows the Krebs cycle to function [44]. CoA is released once acetyl CoA enters the Krebs cycle, but is 

required once more in the formation of succinyl CoA. Thus, in order to maintain free CoA, fatty acids 

conjugated to CoA may be converted to acyl carnitines and be removed from mitochondria and, 

ultimately, excreted. Measurement of urinary acyl carnitine levels is used to diagnose in born errors of 

fatty acid metabolism, which result from a defect in one of the beta oxidation steps during fatty acid 

metabolism in the mitochondria. In such conditions, in order to preserve free levels of CoA, the partly 

metabolised fatty acid is removed and excreted as its carnitine conjugate. The elevation in certain acyl 

carnitines may reflect something similar where fatty acids are removed to ensure the functioning of 

glycolysis followed by conversion of pyruvate to acetyl CoA and the oxidation of acetate in the  

Krebs cycle.  

4.6. Steroid Metabolism 

The final major group of metabolites varying between the first post-exercise sample and the other 

samples in the series are urinary steroid metabolites. Urocortisol glucuronide, which is the major 

metabolite of hydrocortisone, was greatly elevated in the first post-exercise sample. Cortisol 

concentration is well known to vary in the blood and its metabolites, urocortisone- 3-glucuronide and 
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urocortisol-3-glucuronide, are downstream metabolites of cortisone and cortisol. The peak times for 

cortisol, cortisone and urocortisone-3-glucronide concentration were found in a study of plasma levels 

to be in the afternoon [45]. This fits with our current observations in urine. However, from the data in 

Table 2, it can be seen that on the non-exercise day, the peak level was in the morning (only 50% of the 

peak level in the first post-exercise sample), and the afternoon samples were still lower. Thus, it would 

appear that exercise does influence the level of hydrocortisone metabolites. This is perhaps not 

surprising, since hydrocortisone is involved in many physiological functions relating to energy 

consumption. For instance, it has been found that corticosteroids can directly promote nitric oxide 

production [46]. There have been previous reports of cortisol metabolism being changed by  

exercise [47,48]. In addition to hydrocortisone metabolism, testosterone metabolism was also affected 

by exercise, and three androgen metabolites were elevated in the first post-exercise sample. There are 

numerous reports that testosterone is elevated in males following exercise [49].  

5. Conclusions 

There have been longitudinal studies looking at the collection of individual urine samples  

over time in normal subjects following exercise. By collecting 24-h pooled urine samples, a lot of 

interesting information could be lost. The metabolic changes we observed in the current pilot  

study have been observed across several papers, although they have not been reported in one single  

study [5,21–29,41,42,47–51]. It is vital, given the profound effects of exercise, that future  

metabolomics-based investigations also take into consideration the impact exercise has on the 

metabolome. For instance comparing a relatively sedentary patient cohort with a more active control 

group would highlight the metabolite changes due to exercise rather than changes due to disease. Another 

pertinent example is the carnitines, which are widely reported as disease markers [52,53]; however, given 

their response to exercise, differences could easily result from two groups that are not adequately 

matched for physical activity. Similarly, purines have been proposed as markers for various types of 

cancer [54], and it is obvious that normalising against creatinine would not compensate for the large 

fluctuations in this pathway due to physical activity. It is evident from the current study that creatinine 

may fluctuate over time with a similar pattern to numerous metabolites; however, it does not necessarily 

do so to the same degree. We therefore recommend that the most robust technique for normalisation 

would be to calculate subject-specific area percentages. This technique does not seem to remove any of 

the abundant features across the subjects, but merely acts to re-stabilise an already variant dataset, the 

latter considered as a norm in metabolomics investigations. In addition, it does not introduce large 

numbers of significant metabolites, but focuses the metabolites affected by exercise into distinct 

pathways, which have all been described before in various papers, ultimately adding increased weight 

to the observations.  

The data obtained from this simple study are extensive, and it would be possible to carry out further 

analysis to uncover further insights into human metabolic fluctuations. However, this will be better done 

on a larger sample size with better control over the dose of exercise administered. The purpose of the 

current study was to demonstrate the underappreciated impact of exercise when carrying out 

metabolomics studies and that continuous collection of all samples from individuals enables us to gain 

some confidence in normalising each metabolite to its total output. The current study, in fact, arose out 
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of the difficulties we experienced when trying to collaborate in a study investigating the effects of 

recombinant human erythropoietin in the spot urine and plasma samples of endurance trained males 

taken over 10 weeks [55]. Although we expected to see an impact on the metabolome, the metabolite 

data were thoroughly stochastic. There was no particular information in the literature that we could turn 

to on this, since few studies have been conducted over such a long period. Thus, we hypothesised that, 

since the individuals concerned were pursuing individual training regimens, the large fluctuations in the 

metabolites we were observing must be due to exercise masking any other effects. Therefore, the current 

study supports this view and also could explain why in metabolomics studies of humans it is often 

difficult to find differences in cohort comparisons, since the physical activity level for an individual is 

not something that is often normalised. It might be possible to normalise for this using a metabolite, such 

as hypoxanthine or a combination of the purine markers, that is greatly affected by exercise, but this 

remains to be studied. The effects of exercise on the metabolome have been recently reviewed [56]. 
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