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A first study of CP violation in the decay modes B± → [K 0
S K ±π∓]Dh± and B± → [K 0

S K ∓π±]D h±, where
h labels a K or π meson and D labels a D0 or D0 meson, is performed. The analysis uses the LHCb
data set collected in pp collisions, corresponding to an integrated luminosity of 3 fb−1. The analysis
is sensitive to the CP-violating CKM phase γ through seven observables: one charge asymmetry in
each of the four modes and three ratios of the charge-integrated yields. The results are consistent with
measurements of γ using other decay modes.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

A precise measurement of the unitarity triangle angle γ =
arg(− V ud V ∗

ub
Vcd V ∗

cb
) is one of the most important tests of the Cabibbo

Kobayashi Maskawa (CKM) mechanism. This parameter can be ac-
cessed through measurements of observables in decays of charged
B mesons to a neutral D meson and a kaon or pion, where D
labels a D0 or D0 meson decaying to a particular final state ac-
cessible to D0 and D0. Such decays are sensitive to γ through the
interference between b → cus and b → ucs amplitudes. They of-
fer an attractive means to measure γ because the effect of physics
beyond the Standard Model is expected to be negligible, thus al-
lowing interesting comparisons with other measurements where
such effects could be larger.

The determination of γ using B± → D K ± decays was first
proposed for D decays to the CP-eigenstates K +K − and π+π−
(so-called “GLW” analysis) [1,2]. Subsequently, the analysis of the
K ±π∓ final state was proposed (named “ADS”) [3,4], where the
suppression between the colour favoured B− → D0 K − and sup-
pressed B− → D0 K − decays is compensated by the CKM suppres-
sion of the D0 → K +π− decay relative to D0 → K +π− , result-
ing in large interference. The LHCb Collaboration has published
the two-body ADS and GLW analyses [5], the Dalitz analysis of
the decay B± → [K 0

S h±h∓]D K ± (h = π, K ) [6] and the ADS-like
analysis of the decay mode B± → [K ±π∓π±π∓]D K ± [7], where
[X]D indicates a given final state X produced by the decay of
the D meson. These measurements have recently been combined
to yield the result γ = (72.0+14.7

−15.6)
◦ [8], which is in agreement

with the results obtained by the BaBar and Belle Collaborations

of γ = (69+17
−16)

◦ [9] and γ = (68+15
−14)

◦ [10], respectively. In analogy
to studies in charged B meson decays, sensitivity to γ can also
be gained from decays of neutral B mesons, as has been demon-
strated in the LHCb analysis of B0 → [K +K −]D K ∗0 decays [11].

The inclusion of additional B± → D K ± modes can provide
further constraints on γ . In this Letter, an analysis of the D →
K 0

S K ±π∓ final states is performed, the first ADS-like analysis
to use singly Cabibbo-suppressed (SCS) decays. The two de-
cays, B± → [K 0

S K ±π∓]Dh± and B± → [K 0
S K ∓π±]Dh± , are distin-

guished by the charge of the K ± from the decay of the D meson
relative to the charge of the B meson, so that the former is la-
belled “same sign” (SS) and the latter “opposite sign” (OS).

In order to interpret CP-violating effects using these three-body
decays it is necessary to account for the variation of the D decay
strong phase over its Dalitz plot due to the presence of resonances
between the particles in the final state. Instead of employing an
amplitude model to describe this phase variation, direct measure-
ments of the phase made by the CLEO Collaboration are used,
which are averaged over large regions of the Dalitz plot [12]. The
same CLEO study indicates that this averaging can be employed
without a large loss of sensitivity. The use of the CLEO results
avoids the need to introduce a systematic uncertainty resulting
from an amplitude model description.

The analysis uses the full 2011 and 2012 LHCb pp collision data
sets, corresponding to integrated luminosities of 1 and 2 fb−1 and
centre-of-mass energies of

√
s = 7 TeV and 8 TeV, respectively. The

results are measurements of CP-violating observables that can be
interpreted in terms of γ and other hadronic parameters of the B±
meson decay.
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2. Formalism

The SS decay B+ → [K 0
S K +π−]D K + can proceed via a D0 or D0

meson, so that the decay amplitude is the sum of two amplitudes
that interfere,

A
(
m2

K 0
S K

,m2
K 0

S π

) = AD0

(
m2

K 0
S K

,m2
K 0

S π

)
+ rB ei(δB+γ ) AD0

(
m2

K 0
S K

,m2
K 0

S π

)
, (1)

where A{D0,D0}(m2
K 0

S K
,m2

K 0
S π

) are the D0 and D0 decay amplitudes

to a specific point in the K 0
S K +π− Dalitz plot. The amplitude ra-

tio rB is |A(B+→D0 K +)|
|A(B+→D0 K +)| = 0.089 ± 0.009 [8] and δB is the strong

phase difference between the B+ → D0 K + and B+ → D0 K + de-
cays. The calculation of the decay rate in a region of the Dalitz
plot requires the evaluation of the integral of the interference term
between the two D decay amplitudes over that region. Measure-
ments have been made by the CLEO Collaboration [12], where
quantum-correlated D decays are used to determine the integral
of the interference term directly in the form of a “coherence fac-
tor”, κK 0

S Kπ , and an average strong phase difference, δK 0
S Kπ , as first

proposed in Ref. [13]. The coherence factor can take a value be-
tween 0 and 1 and is defined through the expression

κK 0
S Kπ e

−iδ
K 0

S Kπ

≡
∫

A∗
K 0

S K −π+ (m2
K 0

S K
,m2

Kπ )AK 0
S K +π− (m2

K 0
S K

,m2
Kπ )dm2

K 0
S K

dm2
Kπ

Aint.
K 0

S K −π+ Aint.
K 0

S K +π−
,

(2)

where Aint.
K 0

S K ±π∓ = ∫ |AK 0
S K ±π∓ (m2

K 0
S K

,m2
Kπ )|2dm2

K 0
S K

dm2
Kπ . This

avoids the significant modelling uncertainty incurred by the deter-
mination of the strong phase difference between the D0 and D0

amplitudes at each point in the Dalitz region from an amplitude
model. The decay rates, Γ , to the four final states can therefore be
expressed as

Γ ±
SS,D K = z

[
1 + r2

Br2
D + 2rBrDκK 0

S Kπ cos(δB ± γ − δK 0
S Kπ )

]
Γ ±

OS,D K = z
[
r2

B + r2
D + 2rBrDκK 0

S Kπ cos(δB ± γ + δK 0
S Kπ )

]
(3)

where rD is the amplitude ratio for D0 → K 0
S K +π− with respect

to D0 → K 0
S K −π+ and z is the normalisation factor. Analogous

equations can be written for the B± → Dπ± system, with rπ
B and

δπ
B replacing rB and δB , respectively. Less interference is expected

in the B± → Dπ± system where the value of rπ
B is much lower,

approximately 0.015 [8]. These expressions receive small correc-
tions from mixing in the charm system which, though accounted
for in Section 7, are not explicitly written here. At the current level
of precision these corrections have a negligible effect on the final
results.

Observables constructed using the decay rates in Eq. (3) have a
sensitivity to γ that depends upon the value of the coherence fac-
tor, with a higher coherence corresponding to greater sensitivity.
The CLEO Collaboration measured the coherence factor and av-
erage strong phase difference in two regions of the Dalitz plot:
firstly across the whole Dalitz plot, and secondly within a re-
gion ±100 MeV/c2 around the K ∗(892)± resonance, which decays
to K 0

S π± , where, though the sample size is diminished, the co-
herence is higher. The measured values are κK 0

S Kπ = 0.73 ± 0.08

and δK 0
S Kπ = 8.3 ± 15.2◦ for the whole Dalitz plot, and κK 0

S Kπ =
1.00 ± 0.16 and δK 0

S Kπ = 26.5 ± 15.8◦ in the restricted region. The

branching fraction ratio of D0 → K 0
S K +π− to D0 → K 0

S K −π+ de-
cays was found to be 0.592 ± 0.044 in the whole Dalitz plot and
0.356 ± 0.034 in the restricted region [12].

Eight yields are measured in this analysis, from which seven
observables are constructed. The charge asymmetry is measured

in each of the four decay modes, defined as ASS,D K ≡ N D K−
SS −N D K+

SS

N D K−
SS +N D K+

SS

for the B± → [K 0
S K ±π∓]D K ± mode and analogously for the other

modes. The ratios of B± → D K ± and B± → Dπ± yields are de-
termined for the SS and OS decays, RD K/Dπ,SS and RD K/Dπ,OS
respectively, and the ratio of SS to OS B± → Dπ± yields, RSS/OS,
is measured. The measurements are performed both for the whole
D Dalitz plot and in the restricted region around the K ∗(892)±
resonance.

3. The LHCb detector and data set

The LHCb detector [14] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined
tracking system provides a momentum measurement with relative
uncertainty that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c,
and impact parameter (IP) resolution of 20 μm for tracks with large
transverse momentum. Different types of charged hadrons are dis-
tinguished by particle identification (PID) information from two
ring-imaging Cherenkov (RICH) detectors [15]. Photon, electron and
hadron candidates are identified by a calorimeter system consisting
of scintillating-pad and preshower detectors, an electromagnetic
calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire pro-
portional chambers.

The trigger consists of a hardware stage, based on information
from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction. The software trig-
ger searches for a track with large pT and large IP with respect
to any pp interaction point, also called a primary vertex (PV). This
track is then required to be part of a two-, three- or four-track sec-
ondary vertex with a high pT sum, significantly displaced from any
PV. A multivariate algorithm [16] is used for the identification of
secondary vertices consistent with the decay of a b hadron.

Samples of around two million B± → [K 0
S K ∓π±]Dπ± and two

million B± → [K 0
S K ∓π±]D K ± decays are simulated to be used in

the analysis, along with similarly-sized samples of
B± → [K 0

S π+π−]Dπ± , B± → [K 0
S K +K −]Dπ± and B± →

[K ±π∓π+π−]Dπ± decays that are used to study potential back-
grounds. In the simulation, pp collisions are generated using
Pythia [17] with a specific LHCb configuration [18]. Decays of
hadronic particles are described by EvtGen [19], in which final
state radiation is generated using Photos [20]. The interaction of
the generated particles with the detector and its response are im-
plemented using the Geant4 toolkit [21] as described in Ref. [22].

4. Candidate selection

Candidate B → [K 0
S K ±π∓]D K and B → [K 0

S K ±π∓]Dπ decays
are reconstructed in events selected by the trigger and then the
candidate momenta are refit, constraining the masses of the neu-
tral D and K 0

S mesons to their known values [23] and the B±
meson to originate from the primary vertex [24]. Candidates where
the K 0

S decay is reconstructed using “long” pion tracks, which
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leave hits in the VELO and downstream tracking stations, are anal-
ysed separately from those reconstructed using “downstream” pion
tracks, which only leave hits in tracking stations beyond the VELO.
The signal candidates in the former category are reconstructed
with a better invariant mass resolution.

The reconstructed masses of the D and K 0
S mesons are re-

quired to be within 25 MeV/c2 and 15 MeV/c2, respectively, of
their known values. Candidate B± → D K ± decays are separated
from B± → Dπ± decays by using PID information from the RICH
detectors. A boosted decision tree (BDT) [25,26] that has been de-
veloped for the analysis of the topologically similar decay mode
B± → [K 0

S h+h−]Dh′ ± is applied to the reconstructed candidates.
The BDT was trained using simulated signal decays, generated uni-
formly over the D0 Dalitz plot, and background candidates taken
from the B± invariant mass region in data between 5700 and
7000 MeV/c2. It exploits the displacement of tracks from the de-
cays of long-lived particles with respect to the PV through the use
of χ2

IP variables, where χ2
IP is defined as the difference in χ2 of a

given PV fit with and without the considered track. The BDT also
employs the B± and D candidate momenta, an isolation variable
sensitive to the separation of the tracks used to construct the B±
candidate from other tracks in the event, and the χ2 per degree of
freedom of the decay refit. In addition to the requirement placed
on the BDT response variable, each composite candidate is required
to have a vector displacement of production and decay vertices
that aligns closely to its reconstructed momenta. The cosine of
the angle between the displacement and momentum vectors is re-
quired to be less than 0.142 rad for the K 0

S and D0 candidates,
and less than 0.0141 rad (0.0100 rad) for long (downstream) B±
candidates.

Additional requirements are used to suppress backgrounds from
specific processes. Contamination from B decays that do not con-
tain an intermediate D meson is minimised by placing a minimum
threshold of 0.2 ps on the decay time of the D candidate. A po-
tential background could arise from processes where a pion is
misidentified as a kaon or vice versa. One example is the relatively
abundant mode B± → [K 0

S π+π−]Dh± , which has a branching frac-
tion around ten times larger than the signal. These are suppressed
by placing requirements on both the D daughter pion and kaon,
making use of PID information. For K 0

S candidates formed from
long tracks, the flight distance χ2 of the candidate is used to sup-
press background from B± → [K ±π∓π+π−]Dh± decays. Where
multiple candidates are found belonging to the same event, the
candidate with the lowest value of the refit χ2 per degree of
freedom is retained and any others are discarded, leading to a re-
duction in the sample size of approximately 0.3%.

The B± invariant mass spectra are shown in Fig. 1 for candi-
dates selected in the whole D Dalitz plot, overlaid with a para-
metric fit described in Section 5. The D Dalitz plots are shown
in Fig. 2 for the B± → D K ± and B± → Dπ± candidates that
fall within a nominal B± signal region in B± invariant mass
(5247–5317 MeV/c2). The dominant K ∗(892)± resonance is clearly
visible within a horizontal band, and the window around this res-
onance used in the analysis is indicated.

5. Invariant mass fit

In order to determine the signal yields in each decay mode, si-
multaneous fits are performed to the B± invariant mass spectra
in the range 5110 MeV/c2 to 5800 MeV/c2 in the different modes,
both for candidates in the whole D Dalitz plot, and for only those
inside the restricted region around the K ∗(892)± resonance. The
data samples are split according to the year in which the data were
taken, the decay mode, the K 0

S type and the charge of the B candi-
date. The fit is parameterised in terms of the observables described

in Section 2, rather than varying each signal yield in each category
independently.

The probability density function (PDF) used to model the signal
component is a modified Gaussian function with asymmetric tails,
where the unnormalised form is given by

f (m;m0,αL,αR ,σ )

≡
{

exp[−(m − m0)
2/(2σ 2 + αL(m − m0)

2)] for m < m0,

exp[−(m − m0)
2/(2σ 2 + αR(m − m0)

2)] for m > m0,

(4)

where m is the reconstructed mass, m0 is the mean B mass and σ
determines the width of the function. The αL,R parameters govern
the shape of the tail. The mean B mass is shared among all cate-
gories but is allowed to differ according to the year in which the
data were collected. The αL parameters are fixed to the values de-
termined in the earlier analysis of B± → [K 0

S π+π−]Dh± [6]. The
αR parameters are common to the B± → Dπ± and B± → D K ± ,
SS and OS categories, and are allowed to vary in the fit. Only the
width parameters σ(B± → D K ±) are allowed to vary in the fit.
The ratios σ(B± → Dπ±)/σ (B± → D K ±) are fixed according to
studies of the similar mode B± → [K 0

S π+π−]Dh± . The fitted val-
ues for σ(B± → D K ±) vary by less than 10% around 14 MeV/c2.
The total yield of B± → Dπ± decays is allowed to vary between
the different K 0

S type and year categories. The yields in the vari-
ous D decay modes and different charges, and all the B± → D K ±
yields, are determined using the observables described in Sec-
tion 2, rather than being fitted directly.

In addition to the signal PDF, two background PDFs are re-
quired. The first background PDF models candidates formed from
random combinations of tracks and is represented by a linear func-
tion. In the fit within the restricted Dalitz region, where the sam-
ple size is significantly smaller, the slope of the linear function
fitting the B± → Dπ± data is fixed to the value determined in
the fit to the whole Dalitz plot. The second background PDF ac-
counts for contamination from partially reconstructed processes.
Given that the contamination is dominated by those processes that
involve a real D0 → K 0

S K ±π∓ decay, the PDF is fixed to the shape
determined from the more abundant mode B± → [K ±π∓]Dh± .
The yields of both these background components are free to vary
in each data category.

A further significant background is present in the B± → D K ±
samples due to π → K misidentification of the much more abun-
dant B± → Dπ± mode. This background is modelled in the B± →
D K ± spectrum using a Crystal Ball function [27], where the pa-
rameters of the function are common to all data categories in
the fit and are allowed to vary. The yield of the background in
the B± → D K ± samples is fixed with respect to the fitted B± →
Dπ± signal yield using knowledge of the RICH particle identi-
fication efficiencies that is obtained from data using samples of
D∗± → [Kπ ]Dπ± decays. The efficiency for kaons to be selected is
found to be around 84% and the misidentification rate for pions is
around 4%.

Production and detection asymmetries are accounted for, fol-
lowing the same procedure as in Refs. [5,7]. Values for the B± pro-
duction and K detection asymmetries are assigned such that the
combination of production and detection asymmetries corresponds
to the raw asymmetry observed in B± → J/ψ K ± decays [28].
The detection asymmetry assigned is −0.5 ± 0.7% for each unit
of strangeness in the final state to account for the differing inter-
actions of K + and K − mesons with the detector material. An anal-
ogous asymmetry is present for pions, though it is expected to be
much smaller, and the detection asymmetry assigned is 0.0 ± 0.7%.
Any potential asymmetry arising from a difference between the re-
sponses of the left and right sides of the detector is minimised by
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Fig. 1. Distributions of B± invariant mass of the SS and OS samples for the (a, c, e, g) B± → D K ± and (b, d, f, h) B± → Dπ± candidates in the full data sample. The fits are
shown for (a, b, e, f) B+ and (c, d, g, h) B− candidates. Fit PDFs are superimposed.
combining approximately equal data sets taken with opposite mag-
net polarity.

A further correction is included to account for non-uniformities
in the acceptance over the Dalitz plot. This efficiency correction
primarily affects the RSS/OS observable, given the difference in the
Dalitz distributions for the two D meson decay modes. A correc-
tion factor, ζ , is found by combining the LHCb acceptance, ex-
tracted from the simulated signal sample, and amplitude models,
ASS,OS(m2

K 0
S K

,m2
K 0

S π
), for the Dalitz distributions of the SS or OS

decays,

ζ ≡
∫
D dm2

K 0
S K

dm2
K 0

S π
[ε(m2

K 0
S K

,m2
K 0

S π
) × |AOS(m2

K 0
S K

,m2
K 0

S π
)|2]∫

D dm2
K 0

S K
dm2

K 0
S π

[ε(m2
K 0

S K
,m2

K 0
S π

) × |ASS(m2
K 0

S K
,m2

K 0
S π

)|2] ,

(5)

where ε(m2
K 0

S K
,m2

K 0
S π

) is the efficiency at a point in the Dalitz plot.

The typical deviation of ζ from unity is found to be around 5%. The
acceptance is illustrated in Fig. 3, where bins of variable size are
used to ensure that statistical fluctuations due to the finite size of
the simulated sample are negligible. The Dalitz distributions are
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Fig. 2. Dalitz plot distribution of candidates selected in (a) the B± → [K 0
S Kπ ]D K ± and (b) the B± → [K 0

S Kπ ]Dπ± decay modes, where the data in the SS and OS modes, and
the two K 0

S categories, are combined. Candidates included are required to have a refitted B± mass in a nominal signal window between 5247 MeV/c2 and 5317 MeV/c2.
The kinematic boundary is added in blue, and the restricted region around the K ∗(892)± resonance is indicated by horizontal red lines. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Dalitz acceptance determined using simulated events and normalised relative
to the maximum efficiency.

determined using the fact that little interference is expected in
B± → Dπ± decays and, therefore, the flavour of the D meson
is effectively tagged by the charge of the pion. In this case, the
Dalitz distributions are given by considering the relevant D0 de-
cay (D0 → K 0

S K −π+ for SS and D0 → K 0
S K +π− for OS). These D0

decay Dalitz distributions are known and amplitude models from
CLEO are available [12] from which the Dalitz distributions can be
extracted.

Due to the restricted sample size under study, small biases exist
in the determination of the observables. The biases are determined
by generating and fitting a large number of simulated samples us-
ing input values obtained from the fit to data, and are typically
found to be around 2%. The fit results are corrected accordingly.

The fit projections, with long and downstream K 0
S -type cate-

gories merged and 2011 and 2012 data combined, are given for
the fit to the whole Dalitz plot in Fig. 1. The signal purity in a
nominal mass range from 5247 MeV/c2 to 5317 MeV/c2 is around
85% for the B± → D K ± samples and 96% for the B± → Dπ± sam-
ples. The signal yields derived from the fits to both the whole
and restricted region of the Dalitz plot are given in Table 1. The
fitted values of the observables are given in Table 2, including
their systematic uncertainties as discussed in Section 6. The only
significant difference between the observables fitted in the two
regions is for the value of RSS/OS. This ratio is expected to dif-
fer significantly, given that the fraction of D0 → K 0

S K −π+ decays
that are expected to lie inside the restricted portion of the Dalitz
plot is around 75%, whereas for D0 → K 0

S K +π− the fraction is
around 44% [12]. This accounts for the higher value of RSS/OS
in the restricted region. The ratios between the B± → D K ± and
B± → Dπ± yields are consistent with that measured in the LHCb
analysis of B± → [Kπ ]Dh± , 0.0774 ± 0.0012 ± 0.0018 [5]. The CP
asymmetries are consistent with zero in the B± → Dπ± system,

Table 1
Signal yields and their statistical uncertainties derived from the fit to the whole
Dalitz plot region, and in the restricted region of phase space around the K ∗(892)±
resonance.

Mode Whole Dalitz plot K ∗(892)± region

D K ± Dπ± D K ± Dπ±

SS 145 ±15 1841 ±47 97 ± 12 1365 ±38
OS 71±10 1267 ±37 26 ± 6 553 ±24

Table 2
Results for the observables measured in the whole Dalitz plot region, and in the
restricted region of phase space around the K ∗(892)± resonance. The first uncer-
tainty is statistical and the second is systematic. The corrections for production and
detection asymmetries are applied, as is the efficiency correction defined in Eq. (5).

Observable Whole Dalitz plot K ∗(892)± region

RSS/OS 1.528 ±0.058±0.025 2.57±0.13 ± 0.06
RD K/Dπ,SS 0.092±0.009±0.004 0.084±0.011±0.003
RD K/Dπ,OS 0.066±0.009±0.002 0.056±0.013±0.002
ASS,D K 0.040±0.091±0.018 0.026±0.109±0.029
AOS,D K 0.233±0.129±0.024 0.336±0.208±0.026
ASS,Dπ −0.025±0.024±0.010 −0.012±0.028±0.010
AOS,Dπ −0.052±0.029±0.017 −0.054±0.043±0.017

where the effect of interference is expected to be small. The asym-
metries in the B± → D K ± system, ASS,D K and AOS,D K , which
have the highest sensitivity to γ are all compatible with zero at
the 2σ level. The correlations between RSS/OS ratio and the ratios
RD K/Dπ,SS and RD K/Dπ,OS are −16% (−13%) and +16% (+16%),
respectively, for the fit to the whole Dalitz plot (K ∗(892)± region).
The correlation between the RD K/Dπ,SS and RD K/Dπ,OS ratios is
+11% (+15%). Correlations between the asymmetry observables
are all less than 1% and are neglected.

6. Systematic uncertainties

The largest single source of systematic uncertainty is the
knowledge of the efficiency correction factor that multiplies the
RSS/OS observable. This uncertainty has three sources: the un-
certainties on the CLEO amplitude models, the granularity of the
Dalitz divisions in which the acceptance is determined, and the
limited size of the simulated sample available to determine the
LHCb acceptance. Of these, it is the modelling uncertainty that is
dominant. In addition, an uncertainty is assigned to account for
the fact that interference is neglected in the computation of the
efficiency correction factor, which is shared between the Dπ± and
D K ± systems.

Uncertainties on the parameters that are fixed in the PDF are
propagated to the observables by repeating the fit to data whilst
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Table 3
Absolute values of systematic uncertainties, in units of 10−2, for the fit to the whole
Dalitz plot.

Observable Eff. correction Fit PDFs Prod. and det.
asymms.

PID Total

RSS/OS 2.40 0.50 − 0.01 2.45
RD K/Dπ,SS 0.01 0.38 − 0.02 0.38
RD K/Dπ,OS 0.01 0.19 − 0.01 0.19
ASS,D K 0.14 0.44 1.71 0.01 1.78
AOS,D K 0.36 2.13 0.99 0.01 2.37
ASS,Dπ 0.02 0.05 0.99 < 0.01 0.99
AOS,Dπ 0.03 0.10 1.71 < 0.01 1.72

Table 4
Absolute values of systematic uncertainties, in units of 10−2, for the fit in the re-
stricted region.

Observable Eff. correction Fit PDFs Prod. and det.
asymms.

PID Total

RSS/OS 6.08 0.53 − 0.01 6.10
RD K/Dπ,SS 0.01 0.25 − 0.02 0.25
RD K/Dπ,OS 0.01 0.21 − 0.01 0.21
ASS,D K 0.13 2.27 1.71 0.01 2.85
AOS,D K 0.04 2.38 0.99 0.01 2.57
ASS,Dπ 0.04 0.17 0.99 < 0.01 1.00
AOS,Dπ 0.06 0.09 1.71 < 0.01 1.72

varying each fixed parameter according to its uncertainty. An ad-
ditional systematic uncertainty is calculated for the fit to the
restricted K ∗(892)± region, where the Dπ± combinatorial back-
ground slopes are fixed to the values determined in the fit to the
whole Dalitz plot.

Uncertainties are assigned to account for the errors on the B±
production asymmetry and the K ± and π± detection asymmetries.
The effect of the detection asymmetry depends on the pion and
kaon content of the final state, and the resulting systematic uncer-
tainty is largest for the ASS,D K and AOS,Dπ observables.

The absolute uncertainties on the particle identification efficien-
cies are small, typically around 0.3% for kaon efficiencies and 0.03%
for pion efficiencies. Of the four main sources of systematic error,
these result in the smallest uncertainties on the experimental ob-
servables.

In Table 3, the sources of systematic uncertainty are given for
each observable in the fit to the whole Dalitz plot. Similarly those
for the fit in the restricted region are given in Table 4.

7. Interpretation and conclusions

The sensitivity of this result to the CKM angle γ is inves-
tigated by employing a frequentist method to scan the γ − rB
parameter space and calculate the χ2 probability at each point,

given the measurements of the observables with their statistical
and systematic uncertainties combined in quadrature, accounting
for correlations between the statistical uncertainties. The effects of
charm mixing are accounted for, but CP violation in the decays of
D mesons is neglected. Regions of 1σ , 2σ and 3σ compatibility
with the measurements made are indicated by the dark, medium
and light blue regions, respectively, in Fig. 4. The small sample size
in the current data set results in a bound on γ that is only closed
for the 1σ contour.

Although it is not possible to measure γ directly using these
results alone, it is of interest to consider how this result re-
lates to the previous LHCb γ determination, obtained from other
B± → D K ± modes [8], since it will be included in future com-
binations. In order to aid this comparison, the scans of the γ − rB

space plots are shown in Fig. 4(a) for the measurement made using
the whole D → K 0

S Kπ Dalitz plot and in Fig. 4(b) for that made
in the restricted region. The current LHCb average, extracted from
a combination of B± → D K ± analyses [8], is shown as a point
with error bars at γ = 72.0◦ and rB = 0.089. The LHCb average
lies within the 2σ region allowed by the measurements presented
in this Letter. It is interesting to note that the bound determined in
the γ − rB space indicates a more stringent constraint when using
the restricted region, where the coherence is higher. This, and the
fact that the measurements in this Letter are limited by their sta-
tistical precision, motivates the use of this region in future analyses
of these decays in a larger data sample. Combination with analy-
ses in other, more abundant channels with sensitivity to the same
parameters will yield more stringent constraints upon γ .

In summary, for the first time a measurement of charge asym-
metries and associated observables is presented in the decay
modes B± → [K 0

S K ±π∓]Dh± and B± → [K 0
S K ∓π±]Dh± , and no

significant CP violation is observed. The results of the analysis
are consistent with other measurements of observables in related
B± → D K ± modes, and will be valuable in future global fits of the
CKM parameter γ .
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