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PRESENTATION CONTENTS 

 

 Stacking sequence listings are derived for Bending-Twisting coupled laminates with up to 21 plies.  

 The common design rule of balanced and symmetric stacking sequences will be shown to 

predominantly give rise to Bending-Twisting coupling; all exceptions are presented in Journal of 

Aircraft, 2009, 46 (4) pp. 1114-25.  

 The symmetry rule will be shown to be a constraint that serves only to restrict the number of 

possible configurations to a very small proportion of the total design space. 

 Dimensionless parameters will be presented from which the laminate properties are readily 

calculated.   

 Expressions relating the dimensionless parameters to the well-known lamination parameters are also 

given, together with graphical representations of the design space. 

 Finally, bounds on buckling performance under compression will be presented with specific 

reference to the lamination parameter design space. 
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CHARACTERIZATION 

 

Composite laminate materials are typically characterized in terms of their response to mechanical or 

thermal loading, which is generally associated with a description of the coupling behavior, described by the 

ABD relation: 
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Couplings generally exist between: 

 in-plane (extension or membrane) and out-of-plane (bending or flexure) actions, when Bij  0,  

 shear and extension, when A16 = A26  0, and  

 bending and twisting, when D16 = D26  0. 
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Balanced and symmetric stacking sequences, may or may not possess Bending-Twisting coupling, 

and are therefore characterized, respectively, by the designations:  

 ASB0DF or ASB0DS  

signifying, in both cases, that the elements of the extensional stiffness matrix (A) are Simple or 

orthotropic in nature, i.e.:  
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the (bending-extension) coupling matrix (B) is null, whilst all elements of the bending stiffness 

matrix (D) are either Finite, i.e.: 
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or of the same Simple or orthotropic form as the extensional stiffness matrix. 
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Table 1 – Unrestrained thermal (contraction) response of square, initially flat, composite laminates.  

Stacking sequence configurations containing angle- and cross-ply sub-sequences are a representative 

sample from the minimum ply number grouping of each class of laminate.  Note that cross-ply laminates 

with stacking sequences [/]T also represent the minimum ply number grouping for designation 

ASB0DS, but such configurations are not considered in this study. 

Uncoupled in Extension (AS) Extension-Shearing (AF) 
 

Uncoupled in  

Bending (DS) 
Bending-Twisting 

(DF) 
Bending-Twisting 

(DF) 
Uncoupled in  

Bending (DS) 
 

 

ASB0DS 

[/2//2/]T 

 
Simple laminate 

 

ASB0DF 

[///]T 

 
B-T 

 

AFB0DF 

[/]T 

 
E-S;B-T 

 

AFB0DS 

[////3//3//]T 
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ARRANGEMENT AND FORM OF STACKING SEQUENCE DATA 

 

Stacking sequences are characterized by sub-sequence symmetries using a double prefix notation: 

the first character relates to the form of the angle-ply sub-sequence and  

the second character to the cross-ply sub-sequence.  

The double prefix contains combinations of the following characters:  

A to indicate Anti-symmetric form;  

N for Non-symmetric; and  

S for Symmetric.  

Additionally, for cross-ply sub-sequence only,  

C is used to indicate Cross-symmetric form. 

 

To avoid the trivial solution of a stacking sequences with cross plies only, the first ply in every sequence 

is an angle-ply ().    



STABILITY OF STRUCTURES 14TH SYMPOSIUM, JUNE 8-12, 2015, (HOTEL BIALY POTOK) ZAKOPANE. 

P A G E  |  7  

Fully uncoupled laminates have the following forms of sub-sequence symmetries: 

 

Form (Number of stacking sequences): Example stacking sequence: 

AC (210)  

AN (14,532) // 

AS (21,609) /

NN (5,498) 

NN (15,188) []T

NN


 = NN


 (10,041) ]T

NS (220) 

NS (296) /

SC (12) 

SN (192) 

SS (1,029) 
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Design space (%) comparisons for each sub-symmetric grouping: 

Fully uncoupled (ASB0DS) or Simple laminates  

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

AC - - - - - - - - - - - 6.7 3.3 4.6 - 2.7 

AN - - - - - - - - - - - 6.7 - 12.7 8.2 8.8 

AS - - - 100 100 100 100 100 84.0 100 86.4 80.0 74.4 54.7 58.3 61.8 

NN - - - - - - - - - - - 5.6 11.9 24.0 24.6 20.5 

NS - - - - - - - - - - - - 0.6 0.7 1.5 0.9 

SC - - - - - - - - - - - - 0.6 0.2 - 0.1 

SN - - - - - - - - - - - - - 0.4 0.5 0.4 

SS - - - - - - - - 16.0 - 13.6 1.1 9.2 2.7 6.9 4.9 

n 0 0 0 2 1 6 6 24 25 84 88 360 360 1,832 1,603 4,391 

Bending-Twisting coupled (ASB0DF) laminates 

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

NC - - - - - - - - - - - - - 0.1 - 0.1 

NN - - - - - 16.7 - 35.8 20.0 52.1 32.0 68.0 54.0 79.9 69.5 72.4 

NS - - - - - - - 7.5 6.2 10.8 11.2 10.5 11.8 8.0 10.3 9.4 

SC - - - - - - - 3.8 2.8 0.9 - 0.9 1.1 0.3 - 0.3 

SN - - - - - - - - - 4.8 4.8 4.3 4.0 3.8 4.7 4.2 

SS 100 100 100 100 100 83.3 100 52.8 71.0 31.4 52.0 16.3 29.1 7.9 15.5 13.7 

n 1 2 4 8 15 36 56 212 290 1,336 1,500 9,666 10,210 75,540 73,068 171,944 



STABILITY OF STRUCTURES 14TH SYMPOSIUM, JUNE 8-12, 2015, (HOTEL BIALY POTOK) ZAKOPANE. 

P A G E  |  9  

DEVELOPMENT OF NON-DIMENSIONAL PARAMETERS 

The derivation of non-dimensional bending stiffness parameters is readily demonstrated for the 9-ply NN 5 

laminate, with stacking sequence [//2//2//]T, where the bending stiffness terms, 

Dij = 


n

k 1

Qij(zk
3
 – zk-1

3
)/3 

may be written in sequence order as: 

Dij = {Qij((-7t/2)
3
 – (-9t/2)

3
) + Qij((-5t/2)

3
 – (-7t/2)

3
) + Qij


( (-3t/2)

3
  

– (-5t/2)
3
) + Qij


((-t/2)

3
 – (-3t/2)

3
) + Qij((t/2)

3
 – (-t/2)

3
) + Qij((3t/2)

3
  

– (t/2)
3
) + Qij((5t/2)

3
 – (3t/2)

3
) + Qij


((7t/2)

3
 – (5t/2)

3
) + Qij((9t/2)

3
  

– (7t/2)
3
)}/3 

where subscripts i,j = 1, 2, 6. 

 

The bending stiffness contributions from the different ply orientations are: 
 

Dij = 96.75t
3
/3  Qij = t

3
/12  Qij  = 387 

Dij = 42.75t
3
/3  Qij = t

3
/12  Qij  = 171 

Dij


 = 42.75t
3
/3  Qij


 = 


t
3
/12  Qij


 


 = 171  

    +  + 
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 = n
3
 = 729 
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CALCULATION OF THE LAMINATE BENDING STIFFNESS 

Calculation of the bending (D) stiffness matrix, follows from the dimensionless parameters using: 

Dij = {Qij + Qij + 


Qij


 + 


Qij


}  t
3
/12 (1) 

 

The transformed reduced stiffness terms in Eqs. (1) are given by: 

 

Q11 = Q11cos
4
 + 2(Q12 + 2Q66)cos

2
sin

2
 + Q22sin

4
 

Q12 = Q21 = (Q11 + Q22  4Q66)cos
2
sin

2
 + Q12(cos

4
 + sin

4
) 

Q16 = Q61 = {(Q11  Q12  2Q66)cos
2
 + (Q12  Q22 + 2Q66)sin

2
}cossin 

Q22 = Q11sin
4
 + 2(Q12 + 2Q66)cos

2
sin

2
 + Q22cos

4
 

Q26 = Q62 = {(Q11  Q12  2Q66)sin
2
 + (Q12  Q22 + 2Q66)cos

2
}cossin 

Q66 = (Q11 + Q22  2Q12  2Q66)cos
2
sin

2
 + Q66(cos

4
 + sin

4
) (2) 

 

and the reduced stiffness terms by: 

 

Q11 = E1/(1  1221) Q12 = 12E2/(1  1221)  Q22 = E2/(1  1221) Q66 = G12 

  (3) 
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LAMINATION PARAMETERS 

For optimum design of laminates with angle- and cross-ply orientations, lamination parameters are often 

preferred, since these allow the stiffness terms to be expressed as linear design variables.   

9 = 1
D
 = {cos(2) + cos(2) + 


cos(2


) + 


cos(2


)}/n

3
 

10 = 2
D
 = {cos(4) + cos(4) + 


cos(4


) + 


cos(4


)}/n

3
 

11 = 3
D
 = {sin(2) + sin(2) + 


sin(2


) + 


sin(2


)}/n

3
 

12 = 4
D
 = {sin(4) + sin(4) + 


sin(4


) + 


sin(4


)}/n

3
 (4) 

Calculation of the bending (D) stiffness matrix, follows from the dimensionless parameters using: 

D11 = {U1 + 9U2 + 10U3}  H
3
/12  

D12 = D21 = {U4  10U3}  H
3
/12  

D16 = D61 = {11U2/2 + 12U3}  H
3
/12 

D22 = {U1  9U2 + 10U3}  H
3
/12  

D26 = D62 = {11U2/2  12U3}  H
3
/12 

D66 = {-10U3 + U5}  H
3
/12 (5) 

U1 = {3Q11 + 3Q22 + 2Q12 + 4Q66}/8 

U2 = {Q11 – Q22}/2 

U3 = {Q11 + Q22  2Q12  4Q66}/8 

U4 = {Q11 + Q22 + 6Q12  4Q66}/8 

U5 = {Q11 + Q22  2Q12 + 4Q66}/8 

 (6) 

H (= n  t) is the laminate thickness. 
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Figure 7 – Bending lamination parameter (9, 10, 11) design space for symmetric (SS) laminates with up to 

18 plies, representing 23,470 configurations.  Note that 12 = 0 for  = 45. 
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BUCKLING STRENGTH ASSESSMENTS 

Numerous closed form solutions have been proposed in the literature.   

The most recent being: 

 

kx, = 2(1 - 4 - 3
4
 + 2

2
)

1/2
 + 2( - 3

2
) 

 

 
involving non-dimensional parameters, consisting of an orthotropic parameter, , and two anisotropic 

parameters,  and . 

 = (D12 +2D66)/(D11D22)
1/2

 

 = D16/(D11
3
D22)

1/4
 

 = D26/(D11D22
3
)
1/4

 

 

However, results for the fully uncoupled laminate ( =  = 0) do not match the relative buckling load, Nx, 

(with half-wavelength ), across the lamination parameter design space due to normalization with respect to 

(D11D22)
1/2

, i.e.:  

kx, = Nxb
2
/

2
(D11D22)

1/2
 with  



























2

42226612

2

11
2

x,

1
D

1
D2D2

1
DN 




bb
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An alternative assessment of the buckling strength between fully uncoupled (or Simple) laminates and 

Bending-Twisting coupled laminates is now considered.  Here, a mapping to the lamination parameter design 

space is developed. 

 

An 18-ply quasi-homogeneous laminate configuration (ASB0DS) was chosen to check for convergence of the 

buckling strength predictions of an exact infinite strip method, VICONOPT
1
, since it represents the simplest 

form of laminate, i.e.:  

 Dij = AijH
2
/12 (7) 

 

Additionally, this laminate becomes a fully isotropic (/3) laminate when angle plies (are changed from 

45/45 to /60.  This is used as a datum case. 

 

////// (ASB0DS), (AIB0DI) 

Buckling factor results have been normalised against DIso, representing the equivalent isotopic composite 

bending stiffness, where 

 DIso = EIsoH
3
/(1 – Iso

2
) = U1H

3
/12 (8) 

 EIso = 2(1 + Iso)GIso = U1(1 – Iso
2
) (9) 

 Iso = U4/U1 (10) 

                                                      
1
 Williams FW, Kennedy D, Butler R, Anderson MS. VICONOPT: program for exact vibration and buckling analysis or design of prismatic plate 

assemblies. AIAA J 1991;29:1927–8. 
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Figure 1 – Compression buckling contours, kx (= Nxb
2
/

2
DIso), for fully uncoupled laminates, i.e. 11 = 0. 

 

The closed form buckling solution, representing an infinitely long, simply supported plate, and from which 

the contours are subsequently plotted, can be derived from 15 lamination parameter points, giving: 

 

kx, = 4.000– 1.04910 – 1.2179
2
 + 0.340109

2
 – 0.3609

4
 – 0.34010

2
9

2
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4.0

3.5

3.0

4.42
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1.0
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
1

0
9

 

 

Figure 2 – Compression buckling factor contours, kx (= Nxb
2
/

2
DIso), for 11 = 0.5, representing Bending-

Twisting coupled laminates, demonstrating increasing asymmetry.  When 11 = 1.0, the design space 

degenerates to a single point with kx = 2.19. 

 

For 11 = 0.5, the new closed form buckling solution for the infinitely long plate can be stated as: 

 

kx,ortho, = 3.374 – 0.3299 – 1.0610 – 1.7429
2
 – 0.01210

2
 + 0.145109 – 0.5989

3
 – 0.00110

3
 – 0.01410

2
9 

+ 0.671109
2
 – 1.4569

4
 – 0.00310

3
9 – 0.08310

2
9

2
 – 0.008109

3
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Figure 3 –Compression 

buckling factor curves 

for:  

 

(a) quasi-

homogeneous, quasi-

isotropic laminates 

with (9, 10) = (0,0) 

and 0  11  0.5 and;  

 

(b) angle-ply laminates 

with (9, 10) = (0,-1) 

and 0.0  11  1.0.   

 

Asymptotes represent 

kx, for the infinitely 

long plate, and reveal 

bounds on buckling 

strength reductions of 

16% for the quasi-

homogeneous, quasi-

isotropic laminates and 

57% for angle-ply 

laminates. 
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Results for isotropic skew plates – mode shape analogy. 
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CONSIDERATIONS FOR FML 

Initial buckling strength. 

 

Material properties of FML are essentially isotropic.   

[Al/+45/-45/Al/-45/+45/Al]T gives the highest magnitude of Bending-Twisting coupling, but the buckling 

curves have no diminishing cusps, as seen previously in the Uni-Directional (UD) CFRP designs.  

The buckling strength of this design increased in comparison to equivalent design with ‘isotropic’ fibre 

layers, since 10 < 0; see trends in buckling factor contours in Figs. (1) and (2). 

 

Delamination buckling 

 

Favourable designs were found to be dominated by 

anti-symmetric UD laminate designs.   

The use of woven cloth or Non-Crimp Fabric (NCF) 

designs using thin ply technologies may improve 

isotropic characteristics and potentially improve 

damage tolerance.  

 

 

 

Compos Sci Technol (2011) 

doi:10.1016/j.compscitech.2011.09.010 
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Woven Cloth Mateial. 

 

Application to FML using Aluminium and Boron- or Carbon-Fibre epoxy woven cloth (TeXtreme™) layers, 

involving thin ply laminate technology with areal weights of 50g/m
2
, compared to standard materials with 

250g/m
2
, allows the possibility of designing isotropic layers, e.g.  

[///3/3///]T 

with  =  + /4, possessing similar moduli to Aluminium, and within the thickness constraints found in 

standard FML, such as Glare, e.g.:  

[Al.////3/3////Al.////3/3////Al.]T. 

 

Titanium may be required to avoid galvanic corrosion between Aluminium and Carbon-Fibre material.   

 

Non-Crimp Fabric (C-Ply)  

 

The four design freedoms associated with the stacking sequences for standard UD laminate manufacture, 

with ply orientations 0, 90 and 45, are increased to eight using 0/45 and 0/-45 bi-angle NCF: by flipping  

(-45/0 and 45/0), rotating (90/-45 and 90/45) or both (45/90 and -45/90). The underlining helps to 

differentiate between 0/45 and 0/-45 plies. 

A comparable isotropic sub-laminate to the TeXtreme design is given by: 

 

[135/90/0/45/0/45/90/45/-45/0/135/90/135/90/45/90/0/-45/0/45/0/45/135/90]T 
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Addendum: Matching of Stiffness and Thermal properties in FML 

Table 2 - Engineering constants, thermal expansion coefficients and specific gravity of typical unidirectional 

composites together with equivalent Isotropic laminate properties. 

Type 

[Material] 

E1 (EIso) E2 

(EIso) 
12 

(Iso) 

G12 

(GIso) 
1, 2 

(Iso) 

 

 (GPa) (GPa)  (GPa) (m/m)/K (g/cm
3
) 

T300/5208  

[Graphite/Epoxy] 

181 

(69.7) 

10.3 

(69.7) 

0.28 

(0.30) 

7.17 

(26.9) 

0.02, 22.5 

(11.3) 

1.6 

B(4)/5505  

[Boron/Epoxy] 

204 

(78.5) 

18.5 

(78.5) 

0.23 

(0.32) 

5.59 

(29.7) 

6.1, 30.3 

(18.2) 

2.0 

AS/3501  

[Graphite/Epoxy] 

138 

(54.8) 

8.96 

(54.8) 

0.30 

(0.28) 

7.1 

(21.4) 

-0.3, 28.1 

(13.9) 

1.6 

Scotchply 1002  

[Glass/Epoxy] 

38.6 

(18.97) 

8.27 

(18.97) 

0.26 

(0.27) 

4.14 

(7.47) 

8.6, 22.1 

(15.3) 

1.8 

Kevlar 49/Epoxy 

[Aramid/Epoxy] 

76 

(29) 

5.5 

(29) 

0.34 

(0.32) 

2.3 

(10.95) 

-4.0, 79.0 

(37.5) 

1.46 

Aluminium 

2014-T4 
73 0.33 28 23.0 2.7 

Titanium 

 
114 0.33 43 9.5 4.4 
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CONCLUSIONS 

 Definitive listings of Bending-Twisting coupled laminates demonstrate that the vast majority of 

the stacking sequences are non-symmetric.   

 Symmetric laminates with up to 18 plies occupy less than 7% of the total design space for 

Bending-Twisting coupled laminates. 

 Interrogation of these feasible design spaces has facilitated the calculation of bounds on the 

buckling strength of infinitely long simply supported plates. 

 Buckling strength comparisons for infinitely long laminated plates have revealed bounds on 

buckling strength reductions between fully uncoupled and Bending-Twisting coupled laminates of 

16% for the quasi-homogeneous, quasi-isotropic laminates and 57% for angle-ply laminates. 

 FML designs possess buckling behaviour consistent with the equivalent isotropic laminate, 

despite the presence of Bending-Twisting coupling in the fibre reinforcement. 

o The potential for improvements in delamination buckling strength (i.e., compression 

strength after impact) remains to be explored…. 

 


