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ORIGINAL ARTICLE

Quantum digital spiral imaging

Lixiang Chen1, Jijin Lei1 and Jacquiline Romero2

We demonstrate that the combination of digital spiral imaging with high-dimensional orbital angular momentum (OAM) entanglement

can be used for efficiently probing and identifying pure phase objects, where the probing light does not necessarily touch the object, via

the experimental, non-local decomposition of non-integer pure phase vortices in OAM-entangled photon pairs. The entangled photons

are generated by parametric downconversion and then measured with spatial light modulators and single-mode fibers. The fractional

phase vortices are defined in the idler photons, while their corresponding spiral spectra are obtained non-locally by scanning the

measured OAM states in the signal photons. We conceptually illustrate our results with the biphoton Klyshko picture and the effective

dimensionality to demonstrate the high-dimensional nature of the associated quantum OAM channels. Our result is a proof of concept

that quantum imaging techniques exploiting high-dimensional entanglement can potentially be used for remote sensing.
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INTRODUCTION

In 1992, Allen and co-workers recognized that a light beam with a helical

phasefront of exp (i‘w) carries a well-defined orbital angular momentum

(OAM) of ‘�h per photon, where ‘ is an integer and w is the azimuthal

angle.1 In 2002, Leach and co-workers2 developed an interferometric

technique to distinguish and route single photons according to their

individual OAM states. The associated OAM eigenstates, ‘j T, form a

complete, orthogonal and infinite-dimensional basis3 and have been

demonstrated to be a useful degree of freedom exploited for quantum

information applications in a high-dimensional Hilbert space.4,5 The

discrete OAM spectrum (or spiral spectrum) can also be useful for

imaging, such as in the work of Torner et al.6 called digital spiral imaging.

In their work, a fundamental Gaussian beam illuminates a sample to be

probed. Then the sample scatters the beam and alters its OAM compo-

nents. By analyzing the spiral spectrum of the scattered beam, one can

thus extract a wealth of information from the object. This technique can

be effectively used to probe canonical geometrical objects.7 Recently, this

technique has also been extended to study and characterize the position

of the dielectric sphere on the micrometer scale.8

Here, we measure the digital spiral spectrum in a ghost-imaging set-

up using a fractional helical phase as an object. Ghost imaging is a

different approach toward imaging, in which the image can be recon-

structed using information from one light beam that never touches the

object placed in the other beam.9 This approach was initially developed

to reveal the intriguing quantum effects between photon pairs created

by spontaneous parametric downconversion (SPDC).10 Recently, ghost

imaging explored with OAM quantum correlations has been imple-

mented to achieve the edge contrast enhancement of images.11 Angular

ghost diffraction, as an angular analog to conventional diffraction,12

has also been reported, establishing the Fourier relationship between

the angle position and OAM for entangled photon pairs.13 Previously,

we quantified the high-dimensional quantum nature of angular ghost

diffraction using a non-local Young’s double slit.14

In this work, we present a quantum analog to digital spiral imaging,

in which we have treated a fractional phase vortex as our object. We

report the first experimental non-local spiral spectrum of non-integer

phase vortices in OAM-entangled SPDC photon pairs. The non-integer

phase vortex is measured in the idler arm (corresponding to the

object), while we acquire the corresponding spiral spectra non-locally

by scanning the OAM measurements in the signal arm. The use of

OAM for probing such pure phase objects is a natural choice because

of the characteristic helical phase of OAM. Moreover, because OAM

modes are orthogonal, our technique can be used for efficiently prob-

ing and identifying pure phase objects in remote sensing. We draw a

conceptual OAM Klyshko picture and calculate the effective dimen-

sionality of the channels probed by the fractional phase vortices with

respect to the actual measured spiral bandwidth.

MATERIALS AND METHODS

Theoretical method

We focus on fractional phase vortices, which we treat as the object to be

probed. Mathematically, the phase of vortex beams is characterized by

exp (iMw), where M is the topological charge, which is not restricted to

an integer.15 Such beams are called non-integer phase vortices rather

than non-integer OAM16 because M is generally not equal to the OAM

expectation per photon.17 Various methods have been proposed to

generate such a fractional vortex, such as the spiral phase plate

with fractional step height,18 specially designed holograms,19 a pair
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of electro-optic phase plates20 and internal conical diffraction.21 These

methods can also be used to explore high-dimensional entanglement

in downconverted photon pairs. Based on half-integer spiral phase

plates, Oemrawsingh et al.22,23 proposed, and later demonstrated

experimentally, the high-dimensional quantum entangled nature of

a half-integer vortex, although they did not obtain the spiral spectrum

experimentally. It has also been demonstrated that the fractional vor-

tices can be introduced in hyperentanglement to increase the related

Shannon dimensionality.24 At the single photon level, Gotte et al.25

has generalized the quantum theory of rotation angles to fractional

vortices and has demonstrated the theoretical decomposition of frac-

tional vortices into the integer OAM basis of single photons. In this

perspective, a fractional vortex represents a multidimensional vector

state in a high-dimensional Hilbert space that is spanned by the OAM

eigenstates. Here, we establish experimentally the OAM decomposi-

tions of such fractional vortices between entangled photon pairs and

present a conceptual Klyshko picture that highlights the high-dimen-

sional OAM channels in the entangled photons.

Like linear position and linear momentum, angular position and

OAM also form a pair of conjugate variables and can be linked by the

discrete Fourier relationship:26

An(r,z)~
1ffiffiffiffiffi
2p
p

ð2p

0

exp {inwð Þu r,w,zð Þdw ð1Þ

u r,w,zð Þ~
X

n

1ffiffiffiffiffi
2p
p An r,zð Þ exp inwð Þ ð2Þ

where u(r,w,z) describes an arbitrary field distribution, and An(r,z) is

the corresponding OAM spectrum or spiral spectrum. In analogy with

Equations (1) and (2), the angular momentum content of a non-

integer phase vortex state, M(a)j T (a specifies the orientation of edge

dislocation), can be calculated from a projection into the basis of

integer OAM eigenstates nj T,25

M(a)j T~
X

n

An exp (ina) nj T ð3Þ

where An~eip(M{n)sinc½p(M{n)� sinc(x)~ sin x=xð Þ. One can see

that the orientation of the edge dislocation a brings a phase shift of

exp (ina) to each OAM eigenmode.

In SPDC, a pump photon of fundamental Gaussian mode yields a

pair of signal and idler photons. The photon pairs are entangled in

OAM, and the two-photon state can be written as27

Yj T0~
X
‘

C‘,{‘ ‘j Ts {‘j Ti ð4Þ

where C‘,{‘j j2 is the probability of finding a signal photon (s) with an

OAM of ‘h� and an idler photon (i) with an OAM of {‘h�. In our

experiment, the idler photon is imparted with the phase of the object,

which in this case is a non-integer phase vortex profile, while integer

values of OAM are measured in the signal photons. Consequently,

given the decomposition of the non-integer phase vortex in Equation

(3), the two-photon entangled state of Equation (4) is modified to

Yj T1~
X
‘

X
n

einaAnC‘,{‘ ‘j Ts {‘znj Ti ð5Þ

By substituting k~{‘zn, we can rewrite Equation (5) as

Yj T2~
X
‘

X
k

C 0‘,k ‘j Ts kj Ti ð6Þ

where C 0‘,k~ei(‘zk)aA‘zkC‘,{‘. A comparison between Equations (4)

and (6) shows that the entangled spiral spectrum is spread by the pres-

ence of the non-integer phase mask Mj Ti in the idler arm. We visualize

this spreading effect in Figure 1a and 1b, without loss of generality, where

we have assumed C‘,{‘ is constant (maximally entangled) and M522/3.

If we subsequently project the idler photon into the zero OAM state 0j T,

we can then recover the spiral imaging of the phase vortex with M522/3

in the signal arm, as shown in Figure 1c. Formally, this post-selection in

the idler arm causes the signal photons to collapse into

j Ts~iS0 j YT2~
X
‘

C‘,{‘A‘e
i‘a ‘j Ts ð7Þ

For the maximal entanglement with C‘,{‘ being constant, Equation (7)

predicts that the recovery of the spiral spectrum of the non-integer phase

vortex is perfect, while in an actual experiment the fidelity is less than unity.

Namely, F~ SM j Tsj j2~j
P

‘ SM j ‘TC‘,{‘S‘ j MTj2v1 due to the

limited spiral spectrum of the source, characterized by C,,2,;28,29 photon

pairs with smaller-valued OAM are produced more frequently than those

with higher-valued OAM, jCm,{mj2vjCn,{nj2 if m.n.

Experimental scheme

We employ the experimental set-up shown in Figure 2 to demonstrate

the non-local decomposition of non-integer phase vortices. A collimated

355-nm beam pumps a 5-mm long b-barium borate (BBO) crystal,

where a degenerate 710 nm signal and idler photons are produced in

pairs via type-I collinear SPDC and are separated by a non-polarizing

beam splitter. The crystal is imaged onto spatial light modulators (SLMs)

using a pair of lenses. The definition of non-integer phase vortices and

the scanning of OAM measurements are performed separately on these

SLMs in the idler and signal arms, respectively. Each SLM is imaged onto

a single-mode fiber (SMF) that is connected to an avalanche photodiode

serving as single-photon detectors. The outputs of the detectors are fed to

a coincidence counting circuit. A longpass filter (IF1) is used to block the

pump beam after the crystal, while two bandpass filters (IF2) of width

10 nm and centered at 710 nm are used to ensure that we measure signal

and idler photons near degeneracy in front of the SMF.

The non-integer phase vortices are defined in the idler arms, while

the corresponding OAM spectra are scanned in the signal arm. The

SLMs in individual arms act as computer reconfigurable refractive ele-

ments that can imprint any desired phase structure on incoming

photons. In practice, the desired phase structure is usually added to a

linear grating with a carrier frequency such that the first-order diffracted

beam acquires the required phase structure.17 For vortex beams, the

design of the diffractive component is the modulo 2p addition of a

simple blazed grating with an azimuthal 2p‘w phase ramp, yielding the

characteristic ,-pronged fork dislocation on the beam axis. This design

is readily adapted to non-integer M, giving an additional radial discon-

tinuity to the pattern,30 and the orientation of this radial discontinuity

coincides with the edge discontinuity of the resultant non-integer vor-

tex. However, as can be seen in Equation (7), the non-local spiral

spectrum measured experimentally is the mode weight, namely,

jC‘,{‘A‘j2, which is independent of the rotation of edge discontinuity.

We show in the upper and bottom insets of Figure 2 the formation of

the desired patterns for producing a non-integer vortex of M522/3

and an integer OAM state of ‘~2, respectively.

RESULTS AND DISCUSSION

Experimental results

Without loss of generality, we investigate the non-local spiral spectra

of four non-integer phase vortices with different topological charges,
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that is, M521/2, 22/3, 25/2 and 28/3. The gratings for producing

these phase vortices and the phase profiles of these vortices are shown

in the insets of Figure 3. There is a horizontal discontinuity in each

grating in addition to the fork dislocation in the center. After scanning

OAM from ‘~{7 to 17 in the signal arm, we obtain the experi-

mental results shown in Figure 3.

In each subplot, the red bars are the theoretical predictions of the

spiral spectrum for an individual phase vortex based on Equation (3),

while the green bars are the experimentally measured spiral spectra.

We demonstrate good agreement between the experimental and

theoretical spectral profiles, consisting of the probabilities of each ‘

mode. If we denote M5m1m, where m is the integer part and m[½0, 1)

is the fractional part, then we find that the distribution is just peaked

around m, while the spread profile of the spectra is determined by m.

For a half-integer with m51/2 in Figure 3a and 3c, the theory predicts

two peaks of equal height at two neighboring integers. However, we

observe a slight asymmetry of these two peaks in the ghost experi-

mental set-up. This asymmetry can be attributed to the limited spiral

bandwidth, namely, jCm,{mj2vjCn,{nj2 if m.n, as shown in the inset

of Figure 4a. In Equation (7), A‘ is multiplied by coefficients C‘,{‘,

which are ideally constant but actually decrease as the ‘ value increases.

The OAM eigenstates form an infinite-dimensional, complete set of

orthogonal modes and can be used for the classical digital spiral

imaging technique using a single-light beam to acquire information

of a target object.6–8 Our results further suggest that the combination

of the spiral imaging technique with an entangled source enables a

quantum analog of digital spiral imaging, which can be useful in

remote sensing. A one-to-one relationship exists between the non-

local spiral spectrum and the spatial shape of the target. Hence, one

light beam can illuminate a target phase object, and information on

this target can be remotely acquired by analyzing the coincidences as

the OAM measurements in the other light beam are scanned through

different OAM values.

Klyshko picture and effective dimensionality

Our results present the quantum analog of digital spiral imaging for

entangled photon pairs. We can illustrate this technique via the asso-

ciated quantum channels by drawing the biphoton OAM Klyshko

picture presented in Figure 4. In a conventional Klyshko picture, the

signal and idler apparatus are unfolded with respect to the crystal, and

the straight lines represent the advanced light rays.31 In contrast, the

solid (red) lines in the biphoton OAM Klyshko picture of Figure 4

represent the OAM channels rather than the real light rays.32 As

defined previously,33 a channel is an electromagnetic wave whose

distinct character allows it to remain independent from others during

simultaneous transmission. We can adopt the concept of an OAM

channel due to the orthogonality of twisted light beams with different

helical indexes.34 As illustrated in Figure 4a, the ultraviolet pump of
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the BBO crystal coherently emits pairs of Schmidt modes, ‘j Ts {‘j Ti ,

and each can be treated as a biphoton OAM channel. In this scenario, a

high-dimensional OAM-entangled state Yj T~
P

‘ C‘,{‘ z‘j Ts {‘j Ti

can be regarded as a coherent superposition of these biphoton OAM

channels of different indexes ‘, each with an assigned weight of C‘,{‘.

We show in Figure 4a the case of ‘~0,+1 (other higher OAM are not

shown). The diffractive components displayed in the SLMs, which

specify the state being measured, can be regarded as devices that can

probe a certain number of the generated OAM channels (referred to as

the effective dimensionality; e.g., if the component imparts a helical

phase corresponding to a certain integer OAM value, then the effective

dimensionality is one35). The SMFs on both arms can support only the

fundamental mode; hence, the signal at the detector is a measure of the

overlap between the fundamental mode and the resulting field after

the generated photons are probed by the phase profiles encoded on the

SLMs.

The concept of biphoton OAM channels can also be well understood

in light of Klyshko’s advanced wave model,31 as illustrated in Figure 4b.

The detector D2 is substituted by a standard light source, and the

connected SMF transmits a Gaussian light with zero OAM, namely,

j T0~ 0j T. This light goes backward in time to illuminate SLM1, where

the reflected light acquires a desired fractional vortex. Accordingly, the

OAM spectrum is spread, namely, j T1~
P

‘ A‘ exp (i‘a) {‘j T, where

the additional reflection occurring on SLM1 has flipped each , to 2,.

The BBO crystal is replaced by a standard mirror, such that each OAM

is flipped again, and j T1 becomes j T2~
P

‘ A‘ exp (i‘a) ‘j T, which is

identical to j Ts of Equation (7). We note that Figure 4b does not

account for the effect of phase matching, which leads to a limited spiral

bandwidth generated by the BBO crystal.36 Because a standard mirror

replaces the BBO crystal, all the channels are reflected with equal

probability (i.e., the coefficients C‘,{‘ are all unity). If we assume that

the mirror in Figure 4b has a mode-dependent reflectivity of C‘,{‘,

then these two models should be equivalent. Thus, as we perform

OAM scanning in Figure 4a using a combination of SLM1, SMF and

D1 in the signal arm, we obtain the spiral spectra of the fractional

vortex, as shown in Figure 3.

As illustrated in Figure 4a, each OAM channel of ‘j Ts {‘j Ti has been

assigned an effective weight of A‘C‘,{‘. In other words, the two-

photon state post-selected by the idler fractional and signal integer

holograms effectively becomes

Yj T~
X
‘

A‘C‘,{‘ ‘j Ts {‘j Ti ð8Þ

Thus, the effective dimensionality (D) of these quantum channels

can be given by35,37

D~
1P

‘

A‘C‘,{‘j j4
ð9Þ

Note that in this expression, we have not only considered the

decomposition of the fractional vortex (A‘) but also the effect of the
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generated spiral spectrum (C‘,{‘). From our experiment, we can

estimate D if we assume that the higher OAM states do not contribute

significantly (the coefficients decrease rapidly with higher OAM

values). We compare the experimental effective dimensionalities of

the fractional vortex (calculated straightforwardly from Figure 3) to

the expected dimensionality (from Equation (9)). The values are listed

in Table 1. Compared with a simple integer helical phase, which effec-

tively probes just a single channel, the effective dimensionalities we

obtain are all greater than 1.

From a mathematical perspective, M521/2 and M525/2 (simi-

larly for M522/3 and M528/3) have the same fractional part m51/2

and are thus expected to have the same value D; we attribute the

difference to our detection system (including imperfections such as

misalignment). Aside from the finite spiral bandwidth of the source,

the detection system also has a characteristic bandwidth determined

by the geometry of the experiment, such as the sizes of the apertures

and details of the imaging, because the spatial modes are also inher-

ently sensitive to the radial field distribution.29,38 The radial distri-

bution is unavoidably truncated in any given experiment, leading to

a loss in bandwidth.39 To isolate the effects of detection, one can

implement a backprojection experiment,40 where one actually replaces

one detector with a laser and ensures that optimal coupling to the

other SMF is present. However, for this work, we have used the

Klyshko picture mainly as a conceptual tool to understand the high-

dimensional OAM channels in the context of quantum digital spiral

imaging.

CONCLUSIONS

We have presented a quantum analog to classical digital spiral

imaging. We demonstrate experimentally the non-local recovery of

the spiral spectrum of a phase object using OAM-entangled photons.

Although we focused on non-integer phase vortices, our technique,

which exploits high-dimensional OAM entanglement, can be applied

to probe and characterize pure phase objects as used in remote sensing.

The experimental results are in good agreement with the theoretical

predictions. The OAM decomposition in terms of the biphoton OAM

quantum channels in the ghost set-up can be understood in light of the

Klyshko picture. As expected, the effective dimensionality when mea-

suring fractional phase vortices is higher compared with when only

integer-valued OAM modes are measured. This finding holds promise

for high-dimensional quantum imaging, particularly when using the

multidimensional non-integer vortex states.
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Theory 2.56 1.82 2.69 2.09
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Abbreviation: OAM, orbital angular momentum.
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