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Abstract: This paper presents a unified approach to model the influence of fabric anisotropy 6 

and its evolution on both the elastic and plastic responses of sand. A physically based fabric 7 

tensor is employed to characterize the anisotropic internal structure of sand. It is incorporated 8 

into the nonlinear elastic stiffness tensor to describe anisotropic elasticity, and is further 9 

included explicitly in the yield function, the dilatancy relation and the flow rule to characterize 10 

the anisotropic plastic sand response. The physical change of fabric with loading is described 11 

by a fabric evolution law driven by plastic strain which influences both the elastic and the 12 

plastic sand behavior. The proposed model furnishes a comprehensive consideration of both 13 

anisotropic elasticity and anisotropic plasticity, particularly the nonlinear change of elastic 14 

stiffness with the evolution of fabric during the plastic deformation of sand. It also offers a 15 

natural and rational way to capture the non-coaxial behavior in sand caused by anisotropy. It 16 

also facilitates easy determination of the initial anisotropy in sand based on simple laboratory 17 

tests and avoids the various arbitrary assumptions on its value made by many previous studies. 18 

The model predictions on sand behavior compare well with test data. 19 

 20 

Keywords: Sand; fabric tensor; anisotropic elasticity and plasticity; fabric evolution; critical 21 

state; constitutive model. 22 
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Introduction 1 

Natural soil deposits commonly show a physical feature of cross anisotropy due to natural 2 

deposition and/or compaction processes. The physical structure in these soils, known to be soil 3 

fabric, exhibits a largely isotropic behavior within the deposition plane and an apparently 4 

different behavior along the normal direction to this plane (this normal direction is called the 5 

axis of anisotropy) (Miura & Toki, 1982; Yoshimine et al., 1998). It has been well documented 6 

that the overall behavior of a soil, including its strength, deformation and failure, is greatly 7 

affected by the presence and the change of the anisotropic fabric structure. The bearing capacity 8 

of a strip footing composed of cross-anisotropic sand, for example, was found to differ by 25% 9 

as much when the load was applied along the axis of anisotropy as compared to the case with 10 

load applied in parallel with the deposition plane (Oda et al., 1978; Azami et al., 2010). Since 11 

all the other testing conditions are identical, fabric anisotropy caused by sample preparation 12 

was considered the major attributable reason for the observed difference (Oda et al., 1978; 13 

Azami et al., 2010). The vulnerability of sand to liquefaction was also found closely related to 14 

fabric anisotropy in sand. Indeed, both Uthayakumar & Vaid (1998) and Yoshimine et al. (1998) 15 

reported that a sand sample under undrained shear may show a dilative and strain hardening 16 

behavior in triaxial compression, but may end up with static liquefaction in triaxial extension. 17 

The apparent difference between the two cases is the loading direction with respect to the fabric 18 

anisotropy in the sample.  19 

 20 

The important influence of fabric anisotropy on the overall soil behavior has hence drawn 21 

increasing attentions and has become a focal subject of recent studies on constitutive modeling 22 



 3 

of sand (see, e.g., Sekiguchi & Ohta, 1977; Pestana & Whittle, 1999; Zhang et al., 2007; Li & 1 

Dafalias, 2002; Dafalias et al., 2004; Li & Dafalias, 2012; Gao et al., 2014, and among others). 2 

Notably, all these studies placed a predominant focus on the influence of anisotropy on the 3 

plastic responses of sand where the effect of anisotropy has been considered either by the 4 

rotation of yield surface or by the incorporation of a fabric tensor in the plasticity part of the 5 

constitutive relation. Meanwhile, the majority of these studies employed an overly simplified 6 

assumption of isotropic elasticity in describing the elastic behavior of sand. In the viewpoint 7 

of the authors, however, there are at least three outstanding issues related to the status quo of 8 

sand anisotropy modeling.  9 

 10 

Firstly, there is compelling experimental evidence indicating that the elastic response of sand 11 

is frequently anisotropic due to the physical presence of cross-anisotropic fabric structure 12 

formed by vertical compaction/deposition and/or pre-shearing of sand (or so-called initial 13 

anisotropy) (see, e.g., Bellotti et al., 1996; Jiang et al., 1997; Hoque & Tatsuoka, 1998; 14 

Fioravante, 2000; Kuwano & Jardine, 2002; Anhdan & Koseki, 2005). While the sand behavior 15 

is dominantly plastic, proper consideration of elastic stiffness anisotropy at small strain regime 16 

is crucial to the design and evaluation of the operational performance for a wide range of 17 

geotechnical structures where the induced displacement and deformation is small to moderate 18 

(Addenbrooke et al., 1997; Ng et al., 2004; Schädlich & Schweiger, 2013). The commonly 19 

assumed isotropic elasticity is evidently inadequate to address these issues.  20 

 21 

Second, when a sand goes beyond the purely elastic regime and proceeds to the more dominant 22 

http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Hoque%2C+E.)
http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Tatsuoka%2C+F.)
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plastic deformation stage, significant changes of the internal physical fabric structure will occur, 1 

which helps the sand to develop optimal resistance to the applied load. This is indeed supported 2 

by many recent micromechanical investigations (see Zhao & Guo, 2013; Guo & Zhao, 2013). 3 

However, except in only a few recent studies (Li & Dafalias, 2012; Gao et al., 2014; Wan and 4 

Guo, 2001; Bauer et al., 2004), the evolving nature of fabric has not been considered in 5 

constitutive modeling of sand. The majority of fabric-based sand models have considered a 6 

constant fabric during the loading course, which may deviate from both physical and numerical 7 

observations. We also note that those approaches based on yield surface rotation cannot 8 

adequately account for the anisotropic and the evolving nature of internal fabric structure, since 9 

they are typically associated with the initial stress state. To capture the realistic behavior of 10 

fabric anisotropy, a proper fabric evolution law is necessary. 11 

 12 

Indeed pertinent to the above two points, the third issue is concerning with how an evolving 13 

fabric affect the elastic response in the plastic deformation stage of a sand. Though the fabric 14 

of a sand sample is initially isotropic, an isotropic nonlinear elasticity assumption is valid to 15 

only certain stage of deformation. When the accumulation of plastic deformation gradually 16 

changes the soil fabric, the elastic stiffness will become anisotropic (Ishihara et al., 1975; Kayto 17 

et al., 2001; Kuwano & Jardine, 2002; Gajo et al., 2004; Gajo, 2010). Proper characterization 18 

of such changes of the elastic stiffness anisotropy during the plastic deformation stage is 19 

especially important for modeling the sand behavior in cyclic loading (Lashkari, 2010) and 20 

strain localization in sand (Bigoni and Loret, 1999; Gajo et al., 2004; Gao & Zhao, 2013). 21 

There have been several attempts to address the fabric effect on the elastic response of sand 22 



 5 

(Bigoni & Loret, 1999; Gajo et al., 2004; Hicher & Chang, 2006; Lashkari, 2010; Schädlich & 1 

Schweiger, 2013). For example, Lashkari (2010) proposed a sand model by employing an 2 

elastic stiffness tensor expressed in terms of a fabric tensor based on the work by Cowin (1985), 3 

while Gajo et al. (2004) introduced an elastic potential dependent on both the fabric tensor and 4 

the accumulated plastic strain. However, without fully accounting for the evolving nature of 5 

fabric, the effect of fabric anisotropy on the elastic portion of the overall sand response during 6 

the plastic deformation regime cannot be fully characterized. A comprehensive and consistent 7 

consideration of fabric anisotropy in characterizing both the elastic and plastic behaviors of 8 

sand is highly desirable but unavailable.  9 

 10 

This study presents a unified elasto-plastic sand model accounting for fabric anisotropy and its 11 

evolution. The model is based on an anisotropic plasticity model recently proposed by the 12 

authors (Gao et al., 2014). Developed within the framework of anisotropic critical state theory 13 

(Li and Dafalias, 2012), the model considered the effect of fabric evolution on the plastic sand 14 

behavior only. In this study, an anisotropic elastic stiffness tensor expressed in terms of the 15 

fabric tensor will be introduced in the model based on the work by Cowin (1985). The same 16 

fabric tensor is integrated into the plasticity portion of the model formulation in conjunction 17 

with a fabric evolution law which is driven by the plastic strain. The unified formulation 18 

enables us to calibrate the initial degree of anisotropy directly by test data based on the elastic 19 

stiffness tensor, and helps to capture the continuous change of elastic stiffness anisotropy with 20 

plastic deformation. The model will be verified by comparison of model predictions with the 21 

torsional shear test results for Toyoura sand reported in Yoshimine et al. (1998). 22 
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Model formulation 1 

Anisotropic elasticity tensor 2 

Cowin (1985) proposed the following expression of stiffness tensor 
ijklE  to describe 3 

anisotropic elasticity in a porous medium  4 
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           (1) 5 

wherein 
ijF

 
is a second-order fabric tensor representing the anisotropic geometry of internal 6 

structure in a soil. The nine coefficients 
1a , 

2a , 
3a , 

1b , 
2b , 

3b , 
1c , 

2c  and 
3c  are 7 

functions of void ratio e  and the invariants of 
ijF , and 

ij  (=1 for i j  and 0 for i j ) 8 

is the Kronecker delta. Being a special case of the more general anisotropic elasticity, Eq. (1) 9 

can be used to characterize isotropic, cross-anisotropic and orthotropic elasticity, as has been 10 

demonstrated by Cowin (1985). The present study is based on Eq. (1) to consider the 11 

anisotropic elasticity in sand. A second-order deviatoric fabric tensor similar to the one used in 12 

Li and Dafalias (2012) is employed to characterize the void-based fabric anisotropy in sand (Li 13 

& Li, 2009). For an initially cross-anisotropic sample with the isotropic plane coinciding with 14 

the x
2
- x

3
 plane and the axis of anisotropy aligning with the x

1
-axis, ijF  can be expressed 15 

as below 16 

11 0
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F F
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F F
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            (2) 17 

where 0F  ( 0 ) is the initial degree of anisotropy. For a general case where the axes of 18 

anisotropy of a sample are not coincident with the reference coordinate system, ijF  can be 19 



 7 

obtained by orthogonal transformation of the expression in Eq. (2). To facilitate the formulation 1 

of constitutive equations, 
ijF  is normalized such that its norm F  (=

ij ijF F ) is unity and the 2 

maximum at the critical state in this study. Despite being general and accurate in describing 3 

elastic stiffness anisotropy in sand, Eq. (1) is too cumbersome for practical use and has received 4 

various simplifications in constitutive modeling (e.g., Bigoni and Loret, 1999; Gajo et al., 2004; 5 

Gajo, 2010; Lashkari, 2010). In this study, we simplify Eq. (1) by neglecting the second and 6 

higher order terms of 
ijF , and further assume the following relationships for the relevant 7 

coefficients: 8 

1 2 3r ra K G                             (3) 9 

 2 2 3 2r ra K G                           (4) 10 

1 rc G                                (5) 11 

2 2rc G                               (6) 12 

where rK  and rG  denote a reference elastic bulk modulus and a reference elastic shear 13 

modulus, respectively, based on the following expressions 14 
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where 0G  is a model parameter and ap  (=101kPa) is the atmospheric pressure.   is the 17 

Poisson’s ratio. p is the mean normal stress. Consequently, the following simplified elastic 18 

stiffness tensor of Eq. (1) is used in this study 19 
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It is evident that Eq. (9) can be recovered to the isotropic elastic stiffness tensor when the 1 

material fabric is isotropic ( 0ijF  ). In this case, 
rK  and 

rG  become the commonly 2 

referred elastic bulk modulus and shear modulus, respectively. 3 

 4 

Yield function 5 

The same fabric-dependent explicit yield function f  as assumed in Gao et al. (2014) is 6 

employed here 7 

 
 

2
1

0hk AR
f He

g 

 
                (10) 8 

where 3 2 ij ijR r r  with  ij ij ij ijr p p s p     being the stress ratio tensor, in which 9 

ij  is the stress tensor, / 3iip   is the mean normal stress; 
ijs  is the deviator stress tensor; 10 

H  is a hardening parameter related to the frictional property of sand; hk  is a positive model 11 

constant and  g   is an interpolation function based on the Lode angle   of 
ijr  as follows 12 

 
     

 

2
2 2 21 4 1 sin 3 1

2 1 sin 3

c c c c
g

c





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


          (11) 13 

where e cc M M , the ratio between the critical state stress ratio R  in triaxial extension 14 

eM  and that in triaxial compression cM .  15 

 16 

In proposing the yield function in Eq. (10), it is assumed that the shear resistance of sand is 17 

jointly contributed by the isotropic Coulomb friction and fabric anisotropy. The latter is 18 

considered in Eq. (10) by the inclusion of an anisotropic variable A  defined by the following 19 

joint invariant of the deviatoric fabric tensor ijF  and the loading direction tensor ijn  (see also 20 

Li & Dafalias, 2004; Gao et al., 2014) 21 
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ij ijA F n                      (12) 1 

The deviatoric unit loading direction tensor 
ijn  in Eq. (12) is defined as below following Li & 2 

Dafalias (2004) and Gao et al. (2014) 3 

3

3

ij mn mn ij

ij

ij mn mn ij

N N
n

N N

 

 





 with  N

ij
=

¶f

¶r
ij

    (13) 4 

where .  5 

 6 

Hardening law and fabric evolution 7 

The model employs the following hardening law for H  and evolution law for 8 

   
1

n

r h c

h

G c e M g e
dH L r L

p R

  
   

 
            (14) 9 

 ij ij f ij ijdF L L k n F               (15) 10 

where  are the Macauley brackets with L = L  for L > 0  and 0L   for L £ 0 , L  11 

is the loading index, hc , n , and 
fk
 
are non-negative model parameters,   is the dilatancy 12 

state parameter defined as follows (Li & Dafalias, 2012) 13 

 1Ae A                           (16) 14 

where Ae  is a model parameter, ce e    is the state parameter defined by Been & Jefferies 15 

(1985), with ce  being the critical state void ratio corresponding to the current mean normal 16 

stress p . In this model, the critical state line in the e p  plane is given by the three-17 

parameter ( e , c  and  ) formulation proposed by Li & Wang (1998).  18 

 19 

It is noteworthy that the fabric evolution Eq. (15) only affects the plastic sand behavior in the 20 

original model developed by the authors (Gao et al., 2014). In the present study, it will also 21 
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have a crucial influence on changing the elastic stiffness of sand during the plastic loading 1 

process, which is self-evident from Eq. (9) in conjunction with Eq. (15). As the plastic shear 2 

strain accumulates and the material reaches critical state, the fabric tensor 
ijF  will eventually 3 

reach a constant critical value with its orientation being coaxial with the loading direction 
ijn  4 

[see, Eq. (15)]. This is indeed supported by the distinct element simulations (Li & Li, 2009; 5 

Zhao & Guo, 2013; Guo & Zhao, 2013). At the critical state, the degree of elasticity anisotropy 6 

will also reach a saturated value according to Eq. (9), which is in agreement with laboratory 7 

observations (e.g., Ishihara et al., 1975; Gajo et al., 2004; Lashkari, 2010; Gajo, 2010). 8 

 9 

According to the consistency condition on the yield function Eq. (10) in conjunction with the 10 

evolutions of H  and 
ijF

 
expressed in Eqs. (14) and (15), the plastic modulus 

pK  can be 11 

obtained as below 12 
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     (17) 13 

 14 

Flow rule and dilatancy 15 

An associated non-coaxial flow rule based on the yield function expressed in Eq. (10) is used 16 

in this model 17 

p

ij ijde L m , with 
 
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3
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ij
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           (18) 18 

where 
p

ijde  is the plastic deviatoric strain increment. Since ijf r   is a function of ijr  and 19 

ijF  and the evolution of ijF  is accounted for in the model, the non-coaxial response of sand 20 
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caused by fabric anisotropy can be naturally described. The readers are referred to Gao et al. 1 

(2014) on detailed discussion regarding the non-coaxiality feature offered by the yield function 2 

in Eq. (10). 3 

The following fabric-dependent dilatancy relation is used in the model (Li & Dafalias, 2000, 4 

2012; Gao et al., 2014): 5 

   
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 

    (19) 6 

where 
1d  and m are two model constants, p

vd  and p

qd  denote the plastic volumetric and 7 

shear strain increments, respectively. 8 

 9 

Determination of the initial degree of anisotropy 0F  10 

It remains difficult to measure the initial anisotropy in soil, especially in the field. There have 11 

been attempts to measure the sand particle orientation or void space distribution inside a real 12 

sand sample based on various techniques such as image analysis using sliced section or the 13 

wave-based measuring of anisotropic shear stiffness to obtain the initial degree of anisotropy 14 

(e.g., Oda & Nakayama, 1989; Yang et al., 2008). These methods are frequently costly, time-15 

consuming and require specially designed equipment, and most often are fabric-definition 16 

specific. They may also cause great disturbance to the tested sample and thus lead to inaccurate 17 

measurement of the initial fabric anisotropy. In previous fabric-based studies, 0F  has 18 

commonly been assumed a value which appears to be rather arbitrary (e.g., Li & Dafalias, 2002; 19 

Dafalias et al., 2004; Li & Dafalias, 2012; Gao et al., 2014). Indeed, this difficulty can be 20 

conveniently overcome by the present model with a comprehensive consideration of 21 

anisotropic elasticity and plasticity as outlined in the previous sections. Based on the 22 
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anisotropic elastic stiffness tensor in Eq. (9), one can readily determine 
0F  for use in our 1 

model based on test data in conventional undrained triaxial compression/extension or isotropic 2 

compression tests on sand. The calibration procedure is described as follows. For a sand sample 3 

with initially cross-anisotropic fabric whose deposition plane coincides with the x
2
- x

3
 plane 4 

such that the fabric tensor can be expressed by Eq. (2). The independent components of the 5 

initial anisotropic elasticity tensor in Eq. (9) present the following expressions 6 
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           (20) 7 

As all the five elastic constants on the left-hand side of Eq. (20) can be measured using the 8 

small strain tests (see, e.g., Bellotti et al., 1996; Kuwano et al., 2000), one can solve for the 9 

three unknowns rK , rG  and 0F  (or equivalently 0G ,   and 0F ) based on the lest-square 10 

method. Alternatively, 0F  can be determined according to the test results at the very beginning 11 

of conventional undrained triaxial compression/extension or isotropic consolidation tests on 12 

sand where the fabric and stress are initially coaxial. The second method is relatively easier to 13 

execute in practice and is recommended in the present study. 14 

 15 

When the stress state for the sand sample is initially isotropic before shear (the initial values 16 

for both R  and H  are zero), the model will give purely elastic response at the very 17 

beginning of an undrained triaxial compression/extension test (CTC/CTE) as pK  is initially 18 

infinite (see Eq. 17). Under triaxial conditions, it is easy to render the major principal stress 19 
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perpendicular (CTC) or parallel (CTE) to the deposition plane ( x
2
- x

3
 plane in this study). 1 

Consequently, one obtains the following incremental stress strain relation according to Eqs. 2 

(20) and (29) 3 
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      (21) 4 

where dp  (  2 3a rd d   ) is the mean effective stress increment and dq  5 

(
a rd d   ) is the shear stress increment with 

ad  and 
rd  denoting the axial and radial 6 

stress increment, respectively; 
vd ( 2a rd d   ) is the volumetric strain increment and 

qd  7 

(  2 3a rd d   ) the shear strain increment with 
ad  and 

rd  denoting the axial and 8 

radial strain increments, respectively. Since 0vd   in undrained loading, the following 9 

relation between dq dp  and 0F  can be obtained according to Eqs. (7), (8) and (21) 10 
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or 12 
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F
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

 


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Since the Poisson’s ratio   (0 0.5  ) for sand is difficult to obtain and may be dependent 14 

on multiple factors including the void ratio, confining pressure as well as stress ratio, it is 15 

common that a typical value 0.2   is assumed for most sand, as is for the present model 16 

(Bellotti et al., 1996; Kuwano & Jardine, 2002). Thus, 0F  can be directly obtained based on 17 

the value of dq dp  at the very beginning of an undrained triaxial test and Eq. (23) as follows 18 

 0

6

1
F

dq dp



                           (24) 19 

If the initial effective stress path is perpendicular to the p-axis (see Path A in Fig. 1), Eq. (24) 20 



 14 

gives 
0 0F   as dq dp  , which is consistent with isotropic elasticity. If the sand samples 1 

have been prepared via vertical compaction in laboratory, 1dq dp   is typically observed in 2 

triaxial compression and extension tests (e.g., Yoshimine et al., 1998; Finge et al., 2006), and 3 

one has 
0 0F   according to Eq. (24) (Path B in Fig. 1). Note that 0dq   in triaxial 4 

compression and 0dq   in triaxial extension. 5 

 6 

In an isotropic compression test performed in a triaxial cell on a sand sample with the bedding 7 

plane being horizontal, the stress strain relation at the very beginning of loading can also be 8 

expressed by Eq. (21). Since 0dq   and the relation between 
rK  and rG  is expressed by 9 

Eq. (8), the following relations can be obtained according to Eq. (21) 10 

 

0

3 6 6 2 1
6

3 2 2

v av

q v a

d dd

d d d F

  

   

  
    

  
              (25) 11 

or 12 

   

    
0

2 1 3
6

3 1 2 1

v a

v a

d d
F

d d

  

   

    
  

                 (26) 13 

If 0.2   is assumed, 0F  can be obtained according to the initial v ad d   in an isotropic 14 

compression test as follows 15 

 

 
0

3
6

2 3

v a

v a

d d
F

d d

 

 





                           (27) 16 

It is evident that 0 0F   when 3v ad d   , which corresponds to the initially isotropic 17 

fabric case. Since the sand samples are typically prepared through vertical compaction or 18 

pluviation, the elastic stiffness will be bigger in the vertical direction and 3v ad d    19 

(Hoque & Tatsuoka, 1998; Lade et al., 2005; Anhdan & Koseki, 2005; Finge et al., 2006; 20 

Abelev et al., 2007), and therefore, one has 0 0F   according to Eq. (27). 21 

http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Hoque%2C+E.)
http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Tatsuoka%2C+F.)
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Model verification and discussion 1 

In this section, the model will be first verified through a comparison of the model simulations 2 

with torsional shear test data on dry-deposited Toyoura sand (Yoshimine et al., 1998). The test 3 

setup is shown in Fig. 2, where   denotes the angle between the major principal stress 4 

direction and the vertical axis. All the following simulations are based on the calibrated model 5 

parameters summarized in Table 1. The parameters are determined using the following 6 

procedure: 7 

(a) Initial degree of anisotropy 
0F : 

0F  can be determined based on the small strain tests, 8 

isotropic compression tests and triaxial compression tests. Detailed procedure has been 9 

discussed in the previous sections. In this paper, the value of 
0F  ( 0.47 ) is evaluated 10 

based on the value of  1 3d dp   ( 6.25 ) at the very beginning of the undrained 11 

triaxial compression test ( 0   and 0b  ) using Eq. (24) (Fig. 3c). In the figures, 12 

b  [    2 3 1 3      ] denotes the intermediate principal stress variable, with 1 , 13 

2  and 3  denoting the major, intermediate and minor principal stress, respectively.  14 

(b) Elastic parameters: The parameter 
0G  can be determined based on the stress-strain 15 

relations at the very beginning of triaxial tests. More detailed discussion on this can be 16 

found in Taiebat and Dafalias (2008). It is assumed that 0.2   in this model. 17 

(c) Critical state parameters: The critical state parameters can be obtained directly from the 18 

critical state stress ratio in triaxial compression and extension (for 
cM  and c ) and the 19 

location of the critical state line in the e-p plane (for e , 
c  and  ). 20 

(d) Parameters relevant to sand behavior subjected to shear. The parameters hc , n , 
1d  21 

and m  can be determined by trial and error to fit the monotonic triaxial compression 22 



 16 

tests. It is found that n , 
1d  and m  are closely related to the particle constitution 1 

of sand such as gradation, maximum and minimum void ratio (Gao et al. 2014). Note 2 

that 
hc  varies in a small range and only fine tune is needed for different sands to 3 

capture the effect of void ratio on plastic hardening of sand in monotonic loading. The 4 

parameter Ae  describes the effect of fabric anisotropy and loading direction on 5 

dilatancy and plastic hardening of sand in shear. It can thus be determined by fitting the 6 

test results in triaxial extension. It is also found that the variation of Ae  is small for 7 

different sands (Gao et al. 2014).  8 

(e) Fabric evolution parameter. While it is still not possible to measure the fabric evolution 9 

in laboratory tests, 
fk  cannot be directly obtained. A feasible way for determining 10 

fk  is to use the data for non-coaxial sand behavior in simple shear tests (Fig. 8 of this 11 

paper). It is shown by Gao et al. (2014) that 
fk  changes in a small range for different 12 

sands. 13 

 14 

Model verification 15 

Figs. 3 and 4 show the model simulations of the fabric effect on the undrained behavior of sand 16 

for 0b   and 1b  , respectively. Clearly, the model predictions agree fairly well with the 17 

experimental curves in terms of both the stress-strain relation and the stress path. As   18 

increases, the sand response becomes more contractive while the shear stiffness becomes 19 

smaller. Evidently, the present model well captures the inclined stress paths (Path B illustrated 20 

in Fig. 1) at the initial loading stage in both figures, which will be further discussed below. Fig. 21 

5 further shows a comparison between the model simulations and the test data for the case of 22 



 17 

undrained simple shear test with initially anisotropic stress state. 
0K  denotes the initial value 1 

of 
3 1   in the figures. The model clearly captures the experimentally observed sand 2 

behavior under undrained simple shear tests. It should be mentioned that there will be 3 

numerical problems when the mean effective stress reaches absolutely 0 (Fig. 5). In our model 4 

implementation, the allowable minimum effective mean stress is set to be 1.0e-6 rather than 5 

exactly 0 to avoid such an issue. 6 

 7 

“Elasticity Anisotropy Only” versus “Plasticity Anisotropy Only” 8 

It is interesting to first show how the proposed model facilitates a more accurate description of 9 

the behavior observed in sand. For demonstration purpose, we compare in Fig. 6 the predictions 10 

by the “elasticity anisotropy only” version of our model by setting k
f

= e
A

= 0  (neglecting 11 

fabric effect on the plastic response) with the “plasticity anisotropy only” version where 12 

isotropic elasticity is considered (e.g., the model in Gao et al., 2014). Evidently, if isotropic 13 

elasticity is assumed (by the “plasticity anisotropy only” model), the predicted effective stress 14 

path at the initial loading stage of an undrained shear test is always perpendicular to the p-aixs, 15 

exemplified by the four cases in solid curves in Figs. 6b & d. In contrast, if anisotropic elasticity 16 

is employed according to Eq. (9), the predicted slope of the stress path (see the cases in dashed 17 

curves in Figs 6b & d) at the very beginning of loading,  1 3d dp  , is positive for both 18 

testing cases ( 0   and ) at b = 0  and negative for both cases (  and ) at 19 

b =1. Note that  1 3d dp dq dp    when b = 0  and  1 3d dp dq dp     when 20 

b =1 . In comparison with the test data presented in Figs. 3 & 4, it is evident that the 21 

consideration of anisotropic elasticity helps to capture the initial inclination of the effective 22 



 18 

stress paths considerably better than the isotropic elasticity. The observation is indeed 1 

consistent with that reported by Finge et al (2006).  2 

 3 

However, considering the effect of fabric on the elastic sand response alone cannot adequately 4 

characterize the overall sand behavior, especially when the shear deformation is large. As seen 5 

from Fig. 6, the predictions by the “anisotropic elasticity only” model apparently lead to 6 

pronounced deviations for the predicted stress-strain relation and the effective stress paths from 7 

the experimentally observations at large shear strains (c.f. test results in Figs. 3 and 4). Note 8 

that the effect of anisotropic plasticity is much less significant at relatively small strain level, 9 

as can be seen from Fig. 6e which shows the same results as Fig. 6a at small shear strain level. 10 

Proper account of the fabric effect on the plastic sand response is indeed mandatory for realistic 11 

modeling of sand behavior at large strain. The present model brings this feature by introducing 12 

the anisotropic variable A  into the yield function, the hardening law for H  as well as the 13 

dilatancy relation. Indeed, as is shown in Figs. 3 & 4, the simulations by our comprehensive 14 

anisotropic model exhibit much better agreement with the test data, both at the initial loading 15 

stage and at large shear strains. 16 

 17 

A unified description of fabric effect on the elastic and plastic sand behavior 18 

An important feature of the present model, as compared to all past anisotropic sand models 19 

including the recent one by the authors (Gao et al., 2014), is its universal consideration of fabric 20 

anisotropy and fabric evolution for both elastic and plastic responses of sand behavior. 21 

Specifically, the elastic stiffness tensor in our model changes with plastic strain, due to its 22 



 19 

dependence via Eq. (9) on the fabric tensor which evolves with plastic deformation. Since this 1 

is readily observed from Fig. 6, we demonstrate it with additional model simulations of 2 

undrained triaxial compression with small unloading-reloading cycles at different shear strain 3 

levels as shown in Fig. 7. In the simulations the initial sand fabric is assumed to be isotropic 4 

(
0 0F  ). While the stress-strain relations in Fig. 7a do not display appreciable differences 5 

(Note that the unloading-reloading lines are indeed not vertical in Fig. 7a. They are seemingly 6 

vertical due to the very large strain scale used in plotting the figure to show the entire curve to 7 

large strain), the effective stress paths in unloading-reloading after the phase transformation 8 

state predicted by our new model (Fig. 7b) are distinctly different from those based on isotropic 9 

elasticity and anisotropic plasticity (e.g., by Gao et al., 2014). Prior to the phase transformation 10 

state, the shear strain is generally small ( 1 3 3%   ) and the fabric evolution insignificant 11 

(Fig. 7c). Since the considered sample is initially isotropic, the degrees in both the fabric 12 

anisotropy and elastic stiffness anisotropy remain small to this stage (Fig. 7c). It is hence not 13 

surprising that the predicted unloading-reloading effective stress path is nearly perpendicular 14 

to the mean stress axis for both cases (c.f., the plasticity anisotropy only case in Figs. 6b & 6d). 15 

After the phase transformation state, the predicted unloading-reloading effective stress paths 16 

by the model with isotropic elasticity remain nearly vertical, while our model based on 17 

anisotropic elasticity predicts inclined effective stress paths for the unloading-reloading cycles 18 

which are consistent with experimental observations (Ishihara et al., 1975; Verdugo & Ishihara, 19 

1996; Gajo, 2010; Lashkari, 2010). Notably, the inclination angle    between the two cases 20 

(shown in Fig. 7b) increases with the maximum shear strain and ultimately reaches a saturated 21 

value at very large shear strain (Fig. 7b). This is also in agreement with the observations 22 



 20 

reported by Ishihara et al. (1975) and Gajo (2010). The increase of   with shear strain is 1 

indeed related to the increased degree of elastic stiffness anisotropy, e.g., the ratio of 2 

1111 3333E E  shown in Fig. 7c which denotes the ratio of the constraint modulus in the vertical 3 

and horizontal directions for the present study. The observed trend in the evolution of   4 

indicates that during the monotonic shear, the evolving fabric leads to steadily increased 5 

degrees in both the fabric and elastic stiffness anisotropy (Fig. 7c). When sand sample reaches 6 

the critical state at large deformation, the fabric eventually becomes coaxial with the loading 7 

direction and reaches a constant magnitude. Consequently, the degree of elastic stiffness 8 

anisotropy will cease to evolve further and reaches a saturated value, which is embodied by 9 

both   and 
1111 3333E E  (Figs. 7b and c). Fig. 7 highlights the important new features 10 

associated with the present model that have not been demonstrated by any existing models. 11 

 12 

Note that in Fig. 7 the sample has been sheared to a high shear strain level in an attempt to 13 

attain critical state (e.g., constant stress, void ratio and fabric). Indeed, distinct element studies, 14 

such as the recent one presented by Fu and Dafalias (2011), indicate the sand fabric and void 15 

ratio inside the shear band can only reach the critical state when the average shear strain in 16 

shear band is well above 200%. Our model has been formulated to offer pure elastic responses 17 

during the unloading and reloading process, so it is not capable of capturing the sand behavior 18 

in cyclic loading typically with a small elastic domain/nucleus. To this end, the bounding 19 

surface concept may be further introduced to generalize this model to describe the sand 20 

behavior in cyclic loading, which will be pursued in the future. 21 

 22 

 23 
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Prediction of non-coaxial sand behavior in undrained simple shear tests 1 

Another feature of the present model is its remarkable capability in predicting the non-coaxial 2 

behavior in sand. Experimental observations indicate that initial sand response is typically non-3 

coaxial (the major principal axes of the stress and strain increment do not coincide) if the sand 4 

fabric and loading direction are not coaxial at the beginning of loading, and the degree in non-5 

coaxiality decreases gradually with shear strain and vanishes at large deformation (Roscoe, 6 

1970; Yoshimine et al., 1998; Thornton and Zhang, 2006). There have been various attempts 7 

towards modeling such unique sand behavior, e.g., by assuming that the plastic strain increment 8 

is dependent on both the current stress state and the stress increment direction (e.g., Gutierrez 9 

et al., 1993; Yu & Yuan, 2006). Most often, the physical significance behind these approaches 10 

in treating non-coaxiality is unclear. The present model can describe such sand response in a 11 

rather natural and physically plausible manner. In the plasticity part, as entailed in Gao et al. 12 

(2014) and also discussed in Zhao & Guo (2013), the employment of an associated non-coaxial 13 

flow rule (Eq. 18) based on a fabric-dependent yield function (Eq. 10) leads to a natural fraction 14 

of contribution of non-coaxial fabric to the plastic strain to the total plastic strain, which 15 

facilitates the modeling of non-coaxiality.  16 

 17 

As an illustrative example, Fig. 8 shows the model simulations on the non-coaxial response in 18 

undrained simple shear tests on sand with initially isotropic (Figs. 8a & 8c) and anisotropic 19 

(Figs. 8b & 8c) stress states, where   ( 45  in simple shear tests) denotes the orientation 20 

of the major principal strain increment direction relative to the vertical axis and   is the angle 21 

between the major principal stress direction and the vertical axis (Fig. 8c). In the case with an 22 



 22 

initially isotropic stress state (Fig. 8a), the model well captures the evolution of  . When the 1 

initial stress state is anisotropic, the model prediction deviates moderately from the test data 2 

but can still reasonably describe the continuous increase trend of   towards  . For both 3 

cases,   will finally reach an identical value of   at the critical state when the fabric and 4 

loading direction are totally coaxial and the non-coaxial strain increment vanishes. 5 

 6 

Prediction of the effect of sample preparation method on sand behavior 7 

Numerous experimental investigations indicate the sand response is strongly affected by the 8 

sample preparation method (e.g. Miura and Toki, 1982; Vaid et al., 1999; Ishihara, 1993; 9 

Papadimitriou et al., 2005; Yang et al., 2008; Lee et al., 1999; Sze and Yang, 20104). Since the 10 

sand samples are typically prepared through vertical compaction or pluviation, the sand fabrics 11 

created by the various preparation methods are commonly cross-anisotropic but with varied 12 

degree of initial anisotropy. The present model is able to capture the influence of sample 13 

preparation method on the sand response, which is showcased in Fig. 9 with examples in 14 

drained and undrained triaxial tests. Note that 0a r    in triaxial compression and 15 

0a r    in triaxial extension. An initially isotropic fabric case ( 0 0F  ) is compared to an 16 

anisotropic fabric case ( 0 0.47F  ). Compared to the isotropic sample, the prediction on the 17 

initially anisotropic sample shows a higher shear resistance and a more dilative response in 18 

triaxial compression and displays a lower shear resistance and more contractive response in 19 

triaxial extension. The predicted responses are consistent with experimental observations, e.g., 20 

by Sze & Yang (2014) where the dry-deposited samples behave like the initially anisotropic 21 

case and the Moist-tamped ones behave like the initially isotropic case. Indeed, it is found that 22 
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the dry-deposited samples have higher initial degree of anisotropy (Yang et al., 2008). The 1 

phenomenon can by easily explained with the present model too. The initial anisotropic 2 

parameter A  for the initially anisotropic sand sample is respectively bigger and smaller in 3 

triaxial compression and extension than the isotropic case. Noting that both the relative 4 

orientation between fabric and loading direction and the initial degree of fabric anisotropy 5 

contribute the A , it is the different initial A  that causes the different responses in Fig. 9. 6 

Also notably, the differences between initially anisotropic and isotropic fabric cases decrease 7 

with the loading progress and totally vanish as the fabrics in both cases evolve towards the 8 

same critical state value (Fig. 9g). To further demonstrates this, the evolution of 
pK  and D  9 

for cases with 0 0F   and 0.47  in drained triaxial compression is shown in Figs. 9(e) and 10 

(f). As A  approaches the critical state value 1 for both cases, the differences between 
pK  11 

and D  for the two become smaller (Figs. 9e and f). At the critical state (e.g., 1 3 200%   ), 12 

the values of 
pK  and D  for both cases become become 0 ( 1A   for both cases). For more 13 

discussion of the influence of A  on sand response, please refer to Gao et al. (2014). 14 

 15 

Conclusions 16 

A unified approach has been proposed to model the fabric effect on both the elastic and plastic 17 

behavior of sand. The proposed model has the following main features: 18 

(a) The employment of a fabric-dependent anisotropic elastic stiffness tensor helps to 19 

realistically reproduce both the initial anisotropic sand response and the steady change of 20 

elastic behavior with plastic deformation through the evolution of fabric with plastic shear 21 

strain. At the critical state, the fabric tensor is coaxial with the loading direction and reaches 22 
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unity in magnitude, which leads to a saturated degree of elastic stiffness anisotropy.  1 

(b) The effect of fabric and its evolution on the plastic sand behavior is considered through 2 

explicit inclusion of the fabric tensor in the yield function, the dilatancy relation and the 3 

flow rule. In particular, the flow rule can naturally account for the non-coaxial behavior of 4 

sand under monotonic loading. 5 

(c) The unified consideration of anisotropic elasticity and anisotropic plasticity not only offers 6 

integrated and seamless modeling of sand behavior from the beginning to large strain, but 7 

also facilitates the calibration of initial anisotropy based on simply designed laboratory 8 

tests. This helps to avoid the arbitrariness in assuming the initial fabric commonly existing 9 

in most previous studies. 10 

 11 

The model simulations have been compared with undrained torsional shear test results on 12 

Toyoura sand (Yoshimine et al., 1998) with good agreements observed. The model can capture 13 

the inclined effective stress path at the very beginning of conventional undrained triaxial tests 14 

(when the fabric and stress are initially coaxial) typically observed in laboratory tests 15 

(Yoshimine et al., 1998) as well as the evolution of anisotropic elasticity with the loading 16 

history. Specifically, the study illustrates that the degree of anisotropy in the elastic stiffness 17 

increases with the plastic shear strain and reaches a saturated value at very large strain, which 18 

is mainly due to the fabric evolution with plastic deformation. At the critical state, the fabric is 19 

co-directional with the loading direction and reaches a constant magnitude, resulting in a 20 

consonant degree of anisotropy in elastic stiffness which depends on the fabric tensor. In 21 

addition, the consideration of fabric and fabric evolution in the plasticity part of a model is 22 
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shown to be essential for realistic modeling of the anisotropic sand response at large strain. 1 

With further illustrative examples, the model has been shown to capture the non-coaxial 2 

behavior in sand and effect of sample preparation method on sand behavior with reasonable 3 

agreement with experimental observations. While the present model has been developed for 4 

the monotonic loading case, it remains exploratory to improve it to furnish modeling of cyclic 5 

behavior of sand. 6 
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Appendix: Constitutive equations 14 

The condition of consistency for the yield function can be expressed as 15 

0ij ij ij p

ij ij ij

f f f f
df d dH dF d L K

H F
 

 

   
     
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        (28) 16 

where pK  is shown in Eq. (17) and  17 

e

ij ijkl kld E d                             (29) 18 

where 
e

ijd  is the elastic strain increment and ijklE  is expressed by Eq. (9). According to Eqs. 19 

(18) and (9), the plastic strain increment 
p

ijd  can be calculated as below 20 
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Based on the additive decomposition of the total strain increment  2 

 e p

ij ij ijd d d                               (31) 3 

and Eqs. (28)-(31), one can get 4 
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               (32) 5 

and thus, 6 

                      (33) 7 

Combining Eqs. (29), (31) and (33), the constitutive equation can be obtained as below 8 

ij ijkl kld d                               (34) 9 

where 10 

  ijkl ijkl ijmn mn klE h dL E x                       (35) 11 

where  h dL  is the Heaviside step function, with  0 1h dL    and  0 0h dL   . 12 

 13 

The expression for 
f

H




, 

ij

f

F




, ijn  (or ijN ), ijm  (or 

ij

f

r




) are shown in Gao et al. (2014) 14 

and 15 

23

ki lj kl
ij

ij ij

f f

r p p

  




  
  

   
                          (36) 16 

 17 

 18 



 27 

Reference 1 

Abelev, A. V., Gutta, S. K., Lade, P. V., and Yamamuro, J. A. (2007). “Modeling cross-2 

anisotropy in granular materials.” J. Eng. Mech., 133(8), 919-932. 3 

Addenbrooke, T. I., Potts, D. M., and Puzrin, A. M. (1997). “The influence of pre-failure soil 4 

stiffness on the numerical analysis of tunnel construction.” Géotechnique, 47(3), 693-712. 5 

Anhdan, L., and Koseki, J. (2005). “Small strain behaviour of dense granular soils by true 6 

triaxial tests.” Soils Found., 45(3), 21-38. 7 

Azami, A., Pietruszczak, S., and Guo, P. (2010). “Bearing capacity of shallow foundations in 8 

transversely isotropic granular media.” Int. J. Numer. Anal. Meth. Geomech., 34(8), 771-9 

793. 10 

Bauer, E., Huang, W. X., and Wu, W. (2004). “Investigations of shear banding in an anisotropic 11 

hypoplastic material.” Int. J. Solids Struct., 41(21), 5903-5919. 12 

Been, K., and Jefferies, M. G. (1985). “A state parameter for sands.” Géotechnique, 35(2), 99-13 

112. 14 

Bellotti, R., Jamiolkowski, M., Lo Presti, D. C. F., and O'Neill, D. A. (1996). “Anisotropy of 15 

small strain stiffness in Ticino sand.” Géotechnique, 46(1), 115-131. 16 

Bigoni, D., and Loret, B. (1999). “Effects of elastic anisotropy on strain localization and flutter 17 

instability in plastic solids.” J. Mech. Phys. Solids 47(7), 1409-1436. 18 

Cowin, S. C. (1985). “The relationship between the elasticity tensor and the fabric tensor.” 19 

Mech. Mater., 4, 137-147. 20 

Dafalias, Y. F., Papadimitriou, A. G., and Li, X. S. (2004). “Sand plasticity model accounting 21 

for inherent fabric anisotropy.” J. Eng. Mech., 130(11), 1319-1333.  22 

http://cat.inist.fr/?aModele=afficheN&cpsidt=17006549
http://cat.inist.fr/?aModele=afficheN&cpsidt=17006549
http://www.sciencedirect.com/science/article/pii/S0022509698001197##
http://www.sciencedirect.com/science/article/pii/S0022509698001197##
http://www.sciencedirect.com/science/journal/00225096/47/7


 28 

Fioravante, V. (2000). “Anisotropy of small stain stiffness of Ticino and Kenya sands from 1 

seismic propagation measured in triaxial testing.” Soils Found., 40(4), 129-142. 2 

Finge, Z., Doanh, T., Dubujet, P. (2006). “Undrained anisotropy of Hostun RF loose sand: new 3 

experimental investigations.” Can. Geotech. J., 43, 1195-1212. 4 

Fu, P. C., Dafalias, Y. F. (2011). “Fabric evolution within shear bands of granular materials 5 

and its relation to critical state theory.” Int. J. Numer. Anal. Meth. Geomech., 35, 1918-6 

1948. 7 

Gajo, A., Bigoni, D., Muir Wood, D. (2004). “Multiple shear band development and related 8 

instabilities in granular materials.” J. Mech. Phys. Solids 52, 2683-2724. 9 

Gajo, A. (2010). “Hyperelastic modelling of small-strain stiffness anisotropy of cyclically 10 

loaded sand.” Int. J. Numer. Anal. Meth. Geomech., 34(2), 111-134. 11 

Gao, Z. W., Zhao, J. D., Li, X. S., and Dafalias, Y. F. (2014). “A critical state sand plasticity 12 

model accounting for fabric evolution.” Int. J. Numer. Anal. Meth. Geomech., 38(4), 370-13 

390. 14 

Guo, N., and Zhao, J. D. (2013). “The Signature of shear-induced anisotropy in granular media.” 15 

Comput. Geotech., 47, 1-15. 16 

Gutierrez, M., Ishihara, K., and Towhata, I. (1993). “Model for the deformation of sand during 17 

rotation of principal stress directions.” Soils Found., 33(3), 105-117. 18 

Hicher, P. Y., and Chang, C. S. (2006). “Anisotropic nonlinear elastic model for particulate 19 

materials.” J. Geotech. Geoenviron. Eng., 132(8), 1052-1061. 20 

Hoque, E., and Tatsuoka, F. (1998). “Anisotropy in elastic deformation of granular materials.” 21 

Soils Found., 38(1), 163-179. 22 



 29 

Ishihara, K. (1993). “Liquefaction and flow failure during earthquakes.” Géotechnique, 43(3), 1 

351-415. 2 

Ishihara, K., Tatsuoka, F., and Yasuda, S. (1975). “Undrained deformation and liquefaction of 3 

sand under cyclic stresses.” Soils Found., 15(1), 29-44. 4 

Jiang, G. L., Tatsuoka, F., Fora, A., and Koseki, J. (1997). “Inherent and stress-state-induced 5 

anisotropy in very small strain stiffness of a sandy gravel.” Géotechnique, 47(3). 509-521. 6 

Kato, S., Ishihara, K., Towhata, I. (2001). “Undrained shear characteristics of sand under 7 

anisotropic consolidation.” Soils Found., 41(1), 1-11. 8 

Kuwano, R., Connolly, T. M., and Jardine, R. J. (2000). “Anisotropic stiffness measurements 9 

in a stress-path triaxial cell.” Geotech. Test J., 23(2), 141-157. 10 

Kuwano, R., and Jardine, R. J. (2002). “On the applicability of cross-anisotropic elasticity to 11 

granular materials at very small strains.” Géotechnique, 52(10), 727-749. 12 

Lade, P. V., and Abelev, A. (2005). “Characterization of cross-anisotropic soil deposits from 13 

isotropic compression tests.” Soils Found., 45(5), 89-102. 14 

Lashkari, A. (2010). “A SANISAND model with anisotropic elasticity.” Soil Dyn. Earthq. Eng., 15 

30(12), 1462-1477. 16 

Lee, K. M., Shen, C. K., Leung, D. H. K., and Mitchell, J. K. (1999). “Effects of placement 17 

method on geotechnical behavior of hydraulic fill sands.” J. Geotech Geoenviron Eng 18 

125(10): 832-846 19 

Li, X. S. (2002). “A sand model with state dependent dilatancy.” Géotechnique, 52(3), 173-20 

186. 21 

Li, X. S., and Dafalias, Y. F. (2000). “Dilatancy for cohesionless soils.” Géotechnique, 50(4), 22 

http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Jiang%2C+G%5C-L.)
http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Tatsuoka%2C+F.)
http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Fora%2C+A.)
http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Koseki%2C+J.)


 30 

449-460. 1 

Li, X. S., and Dafalias, Y. F. (2004). “A constitutive framework for anisotropic sand including 2 

non-proportional loading.” Géotechnique, 54(1), 41-55. 3 

Li. X. S., Dafalias, Y. F. (2012). “Anisotropic critical state theory: the role of fabric.” J. Eng. 4 

Mech., 138(3), 263-275. 5 

Li, X. S., Li, X. (2009). “Micro-Macro quantification of the internal structure of granular 6 

materials.” J. Eng. Mech., 135(7), 641-656. 7 

Li, X. S., Wang, Y. (1998). “Linear representation of steady-state line for sand.” J. Geotech. 8 

Geoenviron. Eng., 124(12), 1215-1217. 9 

Miura, S., Toki, S. (1982). “A sample preparation method and its effect on static and cyclic 10 

deformation-strength properties of sand.” Soils Found., 22(1), 61-77. 11 

Ng, C. W. W., Leung, E. H. Y., and Lau, C. K. (2004). “Inherent anisotropic stiffness of 12 

weathered geomaterial and its influence on ground deformations around deep excavations.” 13 

Can. Geotech. J., 41(1), 12-24. 14 

Oda, M., Koishikawa, I., and Higuchi, T. (1978). “Experimental study of anisotropic shear 15 

strength of sand by plane strain test.” Soils Found., 18(1), 25-38. 16 

PapadimitriouI, A. G., Dafalias, Y. F., and Yoshimine, M. (2005). “Plasticity modeling of the 17 

effect of sample preparation method on sand response.” Soils Found., 45(2), 109-123. 18 

Pestana, J. M., and Whittle, A. J. (1999). “Formulation of a unified constitutive model for clays 19 

and sands.” Int. J. Numer. Anal. Meth. Geomech., 23(12), 1215-1243. 20 

Roscoe, K. H. (1970). “The influence of strains in soil mechanics.” Géotechnique, 20(2), 129-21 

170. 22 

http://apapad.users.uth.gr/
http://cee.engr.ucdavis.edu/faculty/dafalias/
http://geot.civil.metro-u.ac.jp/~my/


 31 

Schädlich, B., and Schweiger, H. F. (2013). “The influence of anisotropic small strain stiffness 1 

on the deformation behavior of geotechnical structures.” Int. J. Geomech., 13(6), 861-868. 2 

Sekiguchi, H., and Ohta, K. (1977). “Induced anisotropy and time dependency in clays.” In 3 

Constitutive Equations of Soils, Proceedings of the 9th International Conference on Soil 4 

Mech. Found. Eng., Special Session 9, Tokyo, pp. 229-238. 5 

Sze, H. and Yang, J. (2014). ”Failure Modes of Sand in Undrained Cyclic Loading: Impact of 6 

Sample Preparation.” J. Geotech. Geoenviron. Eng., 140(1), 152–169. 7 

Taiebat, M., and Dafalias, Y. F. (2008). “SANISAND: Simple anisotropic sand plasticity 8 

model.” Int. J. Numer. Anal. Meth. Geomech., 32(8), 915-948. 9 

Thornton, C., and Zhang, L. (2006). “A numerical examination of shear banding and simple 10 

shear non-coaxial flow rules.” Philosophical Magazine, 86(21), 3425-3452. 11 

Uthayakumar, M., and Vaid, Y. P. (1998). “Static liquefaction of sands under multiaxial 12 

loading.” Can. Geotech. J., 35, 273-283. 13 

Vaid, Y. P., Sivathayalan, S., Stedman D (1999) Influence of specimen-reconstituting method 14 

on the undrained response of sand. Geotech Test J 22(3): 187-195 15 

Verdugo, R., and Ishihara, K. (1996). “Steady state of sandy soils.” Soils Found., 36(2), 81-91. 16 

Wan, R. G. and Guo, P. J. (2001). “Effect of microstructure on undrained behaviour of sands.” 17 

Can. Geotech. J., 38, 16-28. 18 

Yang, Z. X., Li, X. S., and Yang, J. (2008). “Quantifying and modelling fabric anisotropy of 19 

granular soils.” Géotechnique, 58(4), 237-248. 20 

Yoshimine, M., Ishihara, K., Vargas, W., (1998). “Effects of principal stress direction and 21 

intermediate principal stress on undrained shear behaviour of sand.” Soils Found., 38(3), 22 



 32 

179-188. 1 

Yu, H. S., and Yuan, X. (2006). “On a class of non-coaxial plasticity models for granular soils.” 2 

Proc. R. Soc., A 462(2067), 725-748. 3 

Zhang, F., Ye, B., Noda, T., Nakano, M., and Nakai, K. (2007). “Explanation of cyclic mobility 4 

of soils: approach by stress-induced anisotropy.” Soils Found., 47(4), 635-648. 5 

Zhao, J. D., and Guo, N. (2013). “Unique critical state characteristics in granular media 6 

considering fabric anisotropy.” Géotechnique, 63(8), 695-704. 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 



 33 

 1 

Fig. 1 Illustration of the stress paths at the very beginning of the undrained triaxial tests 2 

 3 

 4 

 5 
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 7 

 8 

Fig. 2 The torsional shear test setup and the stress state for the sand element (after 9 

Yoshimine et al., 1998) 10 
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(a)                               (b) 2 

   3 

(c)                                (d) 4 

Fig. 3 Test data and model simulations for influence of principal stress direction   on 5 

undrained behavior of Toyoura sand at 0b   (data from Yoshimine et al., 1998)  6 
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(a)                           (b) 2 
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(c)                                 (d) 4 

Fig. 4 Test data and model simulations for influence of principal stress direction   on 5 

undrained behavior of Toyoura sand at 1b   (data from Yoshimine et al., 1998)  6 
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(a)                            (b) 2 
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(c)                           (d) 4 

Fig. 5 Comparison between the model simulations and the undrained simple shear test 5 

data on Toyoura sand with initially anisotropic stress state (data from Yoshimine et al., 6 

1998) 7 
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(e) 6 

Fig. 6 Effect of anisotropic elasticity on the model response in undrained torsional shear 7 

tests: b=0 [(a) & (b)] and b=1 [(c) - (e)] 8 
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(c) 4 

Fig. 7 Effect of elasticity anisotropy evolution on sand response in undrained triaxial 5 

compression: (a) the shear stress-strain relation; (b) the effective stress path and (c) 6 

evolution of the ratio 1111 3333E E  with shear strain 7 
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(a)                           (b) 2 

 3 

(c) 4 

Fig. 8 Comparison between the tested and simulated non-coaxial sand response in 5 

undrained simple shear tests [(a) and (b)] (data from Yoshimine et al., 1998) and (c) 6 

illustration of the relation between   and   7 
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(a)                          (b) 2 
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 5 

(e)                        (f) 6 

(g) 7 

Fig. 9 Model simulation for the effect of sample preparation method on sand behavior in 8 

drained triaxial tests [(a) and (b)], undrained triaxial test [(c) and (d)] and evolution of 9 

pK , D  and A  for cases with 0 0F   and 0.47  in drained triaxial compression [(e)-10 

(g)] 11 
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Table 1 Model parameters for Toyoura sand ( 0 0.47F  ) 1 

Parameter Symbol Value 

Elasticity 
0G  125 

  0.2 

Critical state 

cM  1.25 

c  0.75 

e  0.934 

c  0.02 


 

0.7 

Plastic modulus 
hc  1.4 

n  2.2 

Dilatancy 

1d  0.35 

m  3.0 

Ae  0.095 

Fabric evolution 
fk  4.8 

 2 


