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Abstract

Cancer immune evasion is a major stumbling block in designing effectiveraeticherapeutic
strategies. Although considerable progress has been made in understanding bosvevaue
destructive immunity, measures to counteract tumor escape have not kept peeardla
number of factors that contribute to tumor persistence despite having a normairhasei
system. Immune editing is one of the key aspects why tumors evade anpeedhusing the
tumors to lie dormant in patients for years through “equilibrium” and “senesckaf® re-
emerging. In addition, tumors exploit several immunological processes staryeting the
regulatory T cell function or their secretions, antigen presentation, modifeéngroduction of
immune suppressive mediators, tolerance and immune deviation. Besides these, tumor
heterogeneity and metastasis also play a critical role in tumotlgrddsnumber of potential
targets like promoting Th1, NK celfd T cell responses, inhibiting Treg functionality, induction
of IL-12, use of drugs including phytochemicals have been designed to counter tumor
progression with much success. Some natural agents and phytochemicals therisfudy. For
example, use of certain key polysaccharide components from mushrooms and plantswave sh
possess therapeutic impact on tumor-imposed genetic instability, anti-gignahrg,

replicative immortality, deregulated metabolism etc. In this revieawwll discuss the advances
made towards understanding the basis of cancer immune evasion and summalrizadtlyeoef
various therapeutic measures and targets that have been developed or are bauaféchviest

enhance tumor rejection.

Keywords. Cancer, Immune evasion, T cells, Therapy
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1. Introduction

Cancer remains one of the leading causes of death globally, with an estimated|itix tases
around the world affecting both sexes equally. This number is expected to inor2agaitlion

by 2030. The immune system interacts intimately with tumors over the entiespraicdisease
development and progression to metastasis. This complex cross talk between iramainity
cancer cells can both inhibit and enhance tumor growth and is now classified as a hallmark of
cancer [1]. The balance of these actions between and across the hallmanks eetiée

eventual outcome, which in the case of clinically overt cancer resultsefrasion of the
destructive elements of the immune response by the tumor. Mechanisms resuitasgan ef
immune attack include the selection of tumor variants resistant to immun@esff@sometimes
designated “immunoediting”) and progressive formation of an immune suppressive egvitonm
within the tumor. Although considerable knowledge has been accumulated on howauandrs
immune destruction, discovering effective cancer therapies still remaiasnting task for the
researcher and clinician. In this report, we will briefly present an ovefidwow tumors evade
immune surveillance by focusing on how the immune system reacts to the development of
tumors, how certain cancers evade immunity, and what measures can be tak#inateera
cancer. We will address important aspects of tumor and host immune interacsehsais

below.

2. Tumorsand immunity
The involvement of the host immune system in cancer progression is well esthldigheugh
greater emphasis has been placed on tumor eradication by immunity than tumor immune

potentiation, which may be equally important. These interactions between th@énsystem
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and the tumor occur through complex events that usually eventually climaxieifuecessful
tumor eradication or immune evasion by the tumor [2].

2.1 Relationship between tumor formation and immune responses

Tumor development and survival is a chaotically governed process involving the interplay
between cancer cells, normal stromal cells and host defense mechanisnad.dblesefactors
such as cellular changes due to infection or disease-induced stress may &lsatedattumor
growth or tumor suppression. Generally, CR$totoxic T cells (CTL) and CD4elper T (Th)1
cells curb cancer development via mechanisms commonly involving their production of
interferon (IFN)y and cytotoxins [3] but other factors such as chronic inflammation may
override these effects to promote cancer development [4,5]. For examplek thfeoriert
hepatocellular carcinoma (HCC) appears to be closely linked to the duratiorHz=thttis B
and C viral-induced inflammatory state [6-9]. Compelling evidence has also doedmeoth in
animal tumor models and in human cancers, that chronic inflammation plays a @ié@dalthe
development of colon and pancreatic cancers [6]. Therefore, when beneficalespdnses fail
to resolve tumors/cancer, lingering chronic inflammation can lead to promotiomof cell
growth and angiogenesis [6,10]. In addition, ongoing activity due to autoimmune diasase
also been shown to support development of many cancers including lymphoma [6,10-12].
2.2 Tumor progression and immunity

Vital fundamental discoveries made over the last few decades have unequisiooalh that the

immune system plays a critical role in maintaining an equilibrium between imracognition

and tumor development with a dual capacity to both promote and suppress tumor growth. These

discoveries collectively support the concept of “immunoediting” and help to explaituwiors

can sometimes lie dormant in patients for years before re-emerging, grdmdrs grow
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despite the host having a fully functional immune system [13]. During cancer imediimg,

the immune system is able to recognize and destroy the most immunologitadiyable cancer
cells because they present tumor antigens, resulting in their elimination fivgthéless, due to
genetic instability, constant tumor cell division can generate with redosadnogenicity that
can evade immune elimination. This state of production of new tumor cell variamsdzhlay

the elimination has been dubbed “equilibrium”, during which the cancer cells continwelt di
accumulating mutational changes by chance or in response to immune-inducechatitam
Thus, a balance between immune control and tumor growth is maintained, giving thewagpear
of tumor dormancy [15]. However, these processes eventually enable tumors tahpair
capacity of the immune system to eradicate them by immune suppressitve @ffiey loss of
target antigen expression. It is at this stage that tumor escape, oesultgng in overt clinical
cancer. Nonetheless, there may also be conditions under which tumor cells atermawnt, for
example by induction of “senescence”. In this case, they would be likely tonrdoranant
permanently, as replicative senescence is generally believed to besibievg6].

2.3 Factorsthat tumors exploit to avoid immune responses

2.3.1. Regulatory cells

Immune suppression in the tumor microenvironment, mediated by FoxP3

regulatory T cells (Tregs), or other types of suppressive cells, seema tadjer mechanism of
tumor immune escape and can be a crucial hurdle for tumor immunotherapy [17]. A @iimber
studies have shown that tumor-derived Tregs have comparatively higher suppréssiye ac
than naturally occurring Tregs [18,19]. Tregs are drawn into the tumor microemént via
tumor cell-mediated chemokine production [20,21]. Evidence also suggests that transforming

growth factor (TGF)B, produced by tumor cells among other cells, aids conversion of TD4
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cells into suppressive Tregs in situ [22]. Thus, elimination of Tregs by anti-CD25 localoc
antibodies (mAbs) or by other means may promote tumor rejection. Myeloid cpésjadly
“myeloid-derived suppressor cells” (MDSCs), modulated dendritic ces)@nd alternatively-
activated M1 and M2 macrophages create an inflammatory microenvironmenhaasidcact as
mediators of tumor initiation, angiogenesis, and metastasis [23,24]. Moreovegus gcle
may be instigated in that higher levels of inflammatory mediators coegstance to apoptosis
in MDSCs which would otherwise be subject to downregulation by T cells in complex
interaction networks [25]. Thus, CDITir1" MDSCs suppress CDd cell-mediated antitumor
immunity [26], one mechanism for which may be TGBhain downregulation. MDSCs with
this phenotype accumulate in, for example, melanoma lesions in a manner intimiagelyo

the inflammatory milieu, implying that the tumor inflammatory microenviromnsepports
MDSC recruitment and immunosuppressive activity. Reduction of chronic inflanmat
mediators by pharmacological means can reduce the amounts of MDSC and decrease
immunosuppression [27]. CD14/80 macrophages having an M2 phenotype produce high
levels of TGF, IL-10, and vascular endothelial growth factor (VEGF) and promote tumor
growth [28-30]. In addition, a number of tumor-derived factors and gangliosides have been
reported to alter DC phenotype. These immature, functionally-impaired DCéolnaerdevels of
CD80, CD86, CD40, and high indoleamine 2,3-dioxygenase (IDO) expression that also
contributes to suppression of T cell immunity [31].

2.3.2. Defective antigen presentation

It is well established that another fundamental mechanism by which tumdesigvaune
surveillance is by down-modulating antigen processing machinery affeloéingéjor

histocompatibility complex (MHC) | pathway, proteosome subunits latent naemlprotein
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(LMP)2 and LMP7, transporter associated with antigen processing (TAf)mp and tapasin
[32-37]. Thus, expression of tumor antigen is downregulated, which can lead to enhanced tumor
incidence and metastasis because cytotoxic T lymphocyte (CTL) can nolecggnize target
antigens on the tumor cells [38].

2.3.3. Immune suppressive mediator s

As alluded to above, tumors can evade immune surveillance by crippling CTL fulittioiza
production of several immune suppressive cytokines, either by the cancer cglth@nbn-
cancerous cells present in the tumor microenvironment, especially including incellsnend
epithelial cells. TGR is a chief mediator of this activity [39]. In addition, tumor necrosis factor
(TNF)-a, IL-1, IL-6, colony stimulating factor (CSF)-1, IL-8, IL-10, and type NE-can also
significantly contribute to cancer growth [40-44]. In addition to immune suppressoler®s,
other factors such as VEGF produced by tumors, inhibit the differentiation of pgurgento

DCs [45], thus affecting efficient uptake and antigen presentation. VEGREdidand TGH

are also known inhibit maturation of DCs. DCs retaining the immature phenotypécaogénic
as they do not present antigen in the proper context (with appropriate costimtdati cells

[46]. Other factors such as tumor gangliosides and receptor-binding casoerated surface
antigen (RCAS1) also contribute to tumor progression [47,48]. Additional studiegeevieat
expression of RCAS1is associated with apotosis of tumor infiltrating lympe¢tLs) [49-

50]. Similarly, ganglioside antigens, on cell surface or shed from cells spai@known to
suppress CTL and DC function [51]. Immunosuppressive enzymes such as IDO, agagidase
inhibitor of nuclear factor kappa-B kinase (IKK)2 may also contribute sigmifig to tumor
progression [52-55] via direct actions on tumor cell proliferation or through induction df T ce

tolerance/suppression [56-58].
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2.3.4. Tolerance and immune deviation

Most tumor cells fail to express costimulatory molecules and can themdlogeianergy or
tolerance in T cells by engaging the T cell receptor in the absenceiafaton [59]. Tumors
are also known to evade immune attack by shifting the balance from Thl to Th2 (immune
deviation) in a TGH- and IL-10-dependent manner [60]. In addition, tumor expression of
inhibitory molecules like programmed cell death (PD)-LEHT has been shown to cause
deletion or anergy on tumor reactive cells [61,62]. There is also evidence that dowatioagil
death receptors prevents death ligand-mediated killing of tumor cells by both @I hataral
killer (NK) cells [63]. Slavin-Chiorini et al [64] have demonstrated that CTdiss in
conjunction with antibody blocking studies enhanced antitumor effector actiaithynthrough
CD54. There are reports to show that p53 tumor suppressive gene is implicate@ gu fdgon
of tumor cell death by CTLs [65]. Thus, factors promoting tolerance and immunéalegie
significant contributors to cancer immune evasion.

2.3.5. Apoptosis

A number of studies have shown that cancer cells delete tumor-specifidl@dugh apoptosis
[66,67]. The different influences governing tumor growth and immune evasion sisaegie

briefly outlined in Figure 1.

3. Tumor heter ogeneity and immune responses

Cells of the immune system can inhibit tumor growth and progression through tpeitieco
and rejection of malignant cells containing initiation mutations. Though tumorsaiggrom a
single transformed cell, due to genetic instability, they commonly becomecgdiget

heterogeneous, exhibiting multiple phenotypes both in terms of morphology and physiolog

10

Page 10 of 64



O©CO~NOOOTA~AWNPE

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

They also display striking heterogeneity in cell surface molecydeessgion, proliferative and
angiogenic potential [68], which is believed to stem from morphological and epigenetic
plasticity. Thus, the tumor cells express a wide variety of antigens includireggvgbich may be
tumor-specific or tumor-associated, differentiation antigens, and lecitlrlgi sites. These
antigens are unevenly distributed on tumor subpopulations and induce different immune
responses to the same determinant [69]. This tumor antigenic heterogeseityidpaificant
effect on genotype, gene expression, cellular morphology, metabolic acheityity, and
behavior such as proliferation rate, antigen expression, drug response and metadatial
[70-74]. Such heterogeneity has important implications for diagnosis, treatrmestyefand the
identification of potential targets [70,75]. The key aspects of tumor heteroganditis

subsequent effects on tumor growth are briefly outlined in Figure 2.

4. Immune system and cancer metastasis

It is fascinating how cancer cells migrate throughout the body from thginarlocation to
establish themselves at a new location [76]. How this exodus of tumor cells ocmigsnsw
beginning to be understood. In general, cancer cells detach from the pamaryand travel
through the surrounding tissues and basement membranes, avoid immune destruction and
metastasize to distant organs [77,78]. This metastatic process is whabtrsilggpgfor most
cancer deaths [79-82]. Although there are several underlying mechanisms of tumor
dissemination and colonization [83], the “progression model” which suggests thasaberie
mutational events occur either in a subpopulation of primary tumor or in dissemin&ted ce
resulting in a small fraction of the cells that acquire full metastatiapakés a well-accepted

theory [84]. This view has been corroborated by a number of investigations [85-88]. Among

11
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other factors, once again, it is the TGBecreted by the cancer cells that makes a major
contribution to tumor metastasis [89]. In addition, the vasculature also plays an mhpagan
metastatic seeding at different sites. It has been shown that tumor ttaschigerstimulated by
VEGF often has reduced pericyte coverage and that looser association of stdbgpetih the
endothelium facilitates metastatic dissemination [90]. In addition, hypexad around tumor
vessels also contributes to metastatic dissemination of cancer cellsyipaxmahinducible factor
(HIF)-, VEGF-, and inducible nitric oxide synthase (iNOS)-dependent manh@&?2]9 Notably,
hypoxia promotes the formation of pre-metastatic niches through the productioyl okigase
[93]. Hypoxia further conditions pre-metastatic niches by recruiting MC@dssuppressing NK
cell functions [94]. In support of a role for immunosurveillance in controlling tumorstasia, a
recent study revealed that high expression of Irf7-regulated genes imyphumaan breast
tumors is associated with prolonged bone metastasis-free survival [95]. Auetefew of the
events promoting tumor metastasis and the involvement of immune responses is provided in

Figure 3.

5. Conventional cancer therapy and the immune system

Although a variety of agents have been screened for their antitumor effectsantiave been
approved for the treatment of cancer patients, chemotherapy, radiation tlechpyrgery
remain the mainstays of standard cancer therapeutic strategies. A dowrikeke therapies is
their ability to cause a transient immune suppression which in turn increase thieimfection
and is also likely to decrease the immune system’s ability to inhibit furtketogenent of
cancer. For example, standard chemotherapy decreases the host’s natie sompetent cells

including T cell populations. However, this transient loss of immune activity has beem &how
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Page 12 of 64



O©CO~NOOOTA~AWNPE

277

278

279

280

281

282

283

284

285

286

287

288

289

290

201

292

293

294

295

296

297

298

299

return 2-3 weeks after chemotherapy [96]. In addition, patients are at riskdipfiungal, and
parasitic infections, and when chemotherapy continues long-term, these pasignts m
permanently lose their cell-mediated immune function [97]. Neverthelessit madence
suggests that some chemotherapeutic drugs rely on the induction of anticanoeeiresponses
for therapeutic activity by inducing a type of tumor cell death that is tinogenic” [98]. The
immune-stimulating property of some chemotherapeutic drugs, such as aclthescgnd
oxaliplatin, requires preapoptotic translocation of calreticulin (CRT) on thertoetl surface,
post-apoptotic release of the chromatin-binding protein high mobility group B1 giy/@nd
extracellular release of ATP. Interestingly, phosphohydrolysis cheitular ATP by ecto-
nucleotidases (i.e. CD39 and CD73) acts as a counterbalancing process to dlapyatdaced
immunogenic cell death [99].0Other chemotherapies appear to alter the phenotypevigsu
tumor cells making them better targets for immune cells [100,101]. Radiationythesplso
been shown to impact cell-mediated immunity. On the one hand, radiotherapy can suppress
antitumor immunity, presumably due to the high radiosensitivity of lymphocytes [102je &re
also reports to suggest that high doses of total lymphocyte irradiation in€reappressor cell
activity and loss of the ability to recognize autoantigens [103]. On the other hand, Eswoflos
radiation result in the generation of reactive oxygen species (ROS) leadimggéactivation of
intracellular signaling pathways that induce T cell proliferation andrifitiation [104,105].
Radiation has been shown to alter the phenotype of cells resulting in increasediermt
death receptors [106], chemokines [107], adhesion molecules such as intercellulanadhes
molecule (ICAM)-1 and MHC-I [108], and costimulatory molecules [109, 110] on tumor cells.
Moreover, tumor cells surviving radiation have also been shown to be more sensitivdygiyt

by T cells [108, 111]. Radiation has also been shown to result in the increased expression of
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proinflammatory cytokines such as TNFand IL-18 that activate antigen presenting cells
(APCs) [112,113]. Radiotherapy can thus trigger significant antitumor immune respons
related to the well-known abscopal effect, that is, the regression of metagtaserradiation of
the primary tumor, despite the metastasis being outside of the radiatioji 1i¢|d15]. It is
indeed generally accepted that radiotherapy depends to some degree on thenactiva
antitumor immune responses for its efficacy [116].

Finally, trauma due to surgical resection of tumors has profound effects on the inystene s
because of increased production of proinflammatory cytokines and other immunetorsdula
like IL-6, C-reactive protein (CRP), TNé&-IL-1p etc [117,118]. Also, decreased delayed-type
hypersensitivity (DTH) reactions, due to surgery, pose a risk for infection [14@vdrcome
surgery-mediated transient immune suppression, the introduction of laparoscopic metfiods
reduce such suppression and thus decrease tumor growth [120]. Conversely, su@esoy has
been shown to induce danger/damage that enhances antitumor efficacy and retastasis
[121]. There is evidence that tumor growth control can actually potentibes thain curb
metastasis, again illustrating the general finding that very sipalidoways can have either
inhibitory or facilitatory activity on tumor growth. A case in point is thagrabtherapy,
radiotherapy, and biological/targeted therapies can promote tumor asetasa the so-called
tumor bed effect [122,123]. Currently, both primary and metastatic cancersased tog similar
approaches where radiation is often the mainstay choice of therapy [124]. Ssirgeejy
performed on metastatic lesions. Thus, these standard anticancer therdyoieghahey can be
effective alone, will have enhanced therapeutic efficacy when combined wiits dlgat boost
the weakened immune system, if we are able to learn how to avoid potential tumor growth

stimulatory effects.

14

Page 14 of 64



O©CO~NOOOTA~AWNPE

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

6. Strategies for cancer immunotherapy

Tumor cells have developed multiple mechanisms for evading immune surveillanentC
treatments for cancer include chemotherapy, radiation therapy, immunothergpied therapy,
and surgery which all have limitations and detrimental side effects [125]nReeestigations
have identified several classes of anticancer agents that are tarfjetiedt,eand have less
adverse side effects. An increasing number of clinical trials arentlyrunderway to stimulate
the immune system to combat cancer. Important among these include vacciitatjoeptdes
[126], vaccination with DCs [127], vaccination with viral-based vectors [128,129] and
immunotherapy with autoreactive effector cells [130]. Interestingéretare also studies to
show that administration of bacteria can increase tumor immunogenicity [131].&foplex
treatment withClostridium nowyi-NT is shown to attract many inflammatory cells such as
neutrophils, monocytes, and lymphocytes that can kill tumor cells [132]. Espatiptytant

will be the extended use of immunomodulatory antibodies which have recently yieltled suc
dramatic effects in highly refractory tumors (see below). Many dirti@ls of all these
approaches, and especially combinations thereof, are currently ongoing anceholargmise.
6.1. Celular targets

In addition to the obvious targets, the tumor cells themselves, some of the seudaabre

cells including regulatory B cells or their products implicated in tumor estapeurrently being
targeted to promote tumor rejection. For example, IDO is an immunoregulatorgem#ych
suppresses T-cell immunity but can be targeted in the tumor microenvironm@-gactive
CD8'T cells. It was shown that IDO-specific T cells could enhance tumor intynogi
eliminating IDO suppressive cells and changing the regulatory microenvironment [133].

As mentioned above, important among suppressive cells are Tregs, which are powwéitals

15

Page 15 of 64



O©CO~NOOOTA~AWNPE

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

of antitumor immunity and an impediment to successful immunotherapy [22]. In support of this
inhibition of Tregs by monoclonal antibodies has been shown to decrease tumor development
[134,135]. In addition, other regulatory cell populations such as MDSCs which accumulate in
spleen, blood, tumors, and bone marrow of tumor-bearing mice and cancer patients [136,137]
have been considered as important targets for therapeutic intervention [138]. Mia&sTs H -

10 and TGH3 and enhance angiogenesis and metastasis by inducing Treg production [23,139].
Increasing evidence suggests that the M2 macrophages promote tumor growthastasmge

and strategies to target these cells are also being developed [140]. T¥edlliNare also

known to contribute to tumor development via their secretion of characteristic cygtoklnaut

60% of murine NK cells express Ly49 and CD94/NKGA inhibitory receptors, the lblecka

which augments antitumor activity [3,141,142]. In addition, regulatory DCs (expré3Bi2g,

PD-1, PD-L1, IL-10, TGH3, kynurenine, IDO, cyclooxygenase (Cox)-2, and arginase (Arg)-1)
play a significant role in tumor development [143] and therapies directed agassicells have
also been investigated [144].

6.2. Molecular targets

In addition to cellular targets, several molecular targets includingooytot -lymphocyte-
associated protein 4 (CTLA)-4 [145], 4-1BB [146], PD1/PD-L1 [147], and activation-inducible
TNFR (AITR), T cell immunoglobulin mucin (TIM)-3, Lymphocyte-activatiomggLAG)-3,

0OX40, CD40, CD39, CD73, A2A [148] and cancer antigens of different types, such as
melanoma-associated antigen (MAGE) family members and NY-ESO-1, haloaretase

reverse transcriptase (hnTERT) and Wilm’s tumor (WT)1 have been consideneploatant
antitumor targets [149]. In melanoma, MAGE, B melanoma antigen (BAGE), and @rantig

(GAGE) family antigens have been targeted for therapeutic vaccija&ori51]. The L antigen
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family member (LAGE)-1 gene closely related to NY-ESO-1 may alssmtappropriate target
[152]. The preferentially expressed antigen in melanoma (PRAME) is alstaaama-
associated antigen recognized by CTL [153]. Human telomerase activity BRI tépression
are detected in a majority (>90%) of human cancer cells [154]. To increaseg@&Hitacy,
hTERT promoters have been utilized for cancer gene therapy [155,156]. Wilms’ tumor gene
WT1 is expressed in several different cancers and illustrates the gensrgdl@rihat tumor
escape from immunity as a result of downregulation of target antigen agprisssnlikely to
occur when the gene product has an essential role in tumorigenesis [157]. A nunrdiesf s
suggest that the WT1 protein is a promising target for cancer immunotherapy [158,159].
Targeting cell surface molecules other than tumor antigen targets ifodynbased therapeutic
intervention of cancer is becoming an important available option for the clinidigines2, so

far only anti-CTLA-4 (ipilimumab) has been approved for clinical use in the USAadza
United Kingdom, and European Union [160,161], but PD1 and PD-L1-specific antibodies will
surely be licensed very soon. Ipilimumab is currently in phase 11l clitnedd for the treatment
of prostate cancer [162] and for cancers of the lung [163] and kidney [164] as well asmeela
In one recent trial, administration of the anti-PD-1 antibody nivolumab showed adpréed
therapeutic objective responses in 18-28% of patients with advanced non-small-cell lung
carcinoma, melanoma, and renal cell carcinoma [165]. While CTLA-4 and PD-1/PdKirg
Abs have shown efficacy by blocking inhibitory signals to responding T cells, addnist
OX40 and 4-1BB propel T-cell immunity by sending stimulatory signals. Sesleraal trials
are underway investigating their therapeutic properties [166]. Targatays by anti-CD25
antibodies showed inhibition of neuroblastoma tumors in mice [167]. There are also data

demonstrating that activation of the signal transducer and activator afripgios (STAT)3
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signaling pathway supports tumor development by inducing accumulations of MD&Cs a
inhibition of DC differentiation [168]; hence its inactivation leads to inhibitionaoicer
development by a DC- and Treg-dependent mechanism [169].

Targeting immunosuppression by soluble mediators is another attractivecpfmoeancer
immunotherapy. A plethora of immunosuppressive factors has been associated with
tumorigenesis, including TGE-IDO, arginase, prostaglandin-E2 (PGEZ2) and extracellular
adenosine. Recent studies have shown that extracellular adenosine, essevdiatigdoby the
ecto-nucleotidase CD73, plays an important role in tumor development and mefagtasis
175]. These findings are corroborated by studies using mice deficient in CD73 ortthe hig
affinity A2A adenosine receptor [174-177]. These animals exhibit increasedr@dlated
antitumor immunity [178]. Inhibition of pH regulatory molecules and certain heat shoekngrot
limit cancer cell-mediated immune suppression. Targeting these moleouldssimultaneously
counteract the metastatic potential of cancer cells and restore antitomoné surveillance.
The above-mentioned cancer therapeutic targets and their beneficial etdntefy outlined

in Figure 4.

6.3. Vaccination therapy (Peptide, DNA, and DC)

Several studies demonstrated the efficacy of therapeutic viral vaccinesR&p8tle vaccines
derived from tumor-associated antigens (TAA) may significantly con&itmitmmune
enhancement or tumor regression. Many TAAs have been identified and molecularly
characterized. However, so far only a limited number of TAA peptides, mostignzed by
CDS8' T cells in melanoma patients, have been clinically tested. In some ctivats| partial or
complete tumor regression was observed in 10-30% of patients [180]. Peptides su@nas mel

A/MART-1,7.35and gp100, which readily activate specific T cellsitro [181] andin vivo
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[182,183], show limited immunogenicity when used as vaccines for cancer patients [184,185].
Alternatively, DNA cancer vaccines may also represent an effectiveagp[186]. Such
vaccines, although having many variants, utilize the same basic principleimgviiie isolation
of DNA from cancer cells and subsequent transfer, most commonly via theustiaar route,
into tumor-bearing individuals. It has been shown that the administration of DNAeacia
the intramuscular route effectively primes both the adaptive as well as amag of the
immune system [187]. While naked DNA is quite sturdy and stable at differentregomes, and
retains immune activating abilities, plasmid DNA vaccines are lasaimagenic [188].
Refinements to the existing DNA vaccination strategies are showinggmmgmesults. Among
these, the use of an electrical pulse, commonly called electropermegadilizlectroporation or
electrotransfer [189] is currently used in preclinical protocols and has been showa &irbag
immune activating abilities [190]. Recent therapeutic studies involving DNAnexbave
shown promise, for example, for the treatment of glioma. Incorporation of calicBNA into
healthy immune competent cells and subsequent transfer into tumor-bearinhowee s
decreased tumor burden and increased survival of both spontaneous as well as established
tumors. Further analysis revealed that DNA vaccine-mediated antituthotyao the above
case involved over-production of IFNand participation of T and NK/lymphokine activated
killer (LAK) cells [191,192]. Adoptive transfer of peptide-pulsed DC [193] is also dorogh
all cases, it takes a long time to develop such therapies and the newest reshésgow
published suggest that peptide vaccinations with selected multi-peptide vaccingisiecbwith
immunomodulatory agents, may indeed achieve impressive results. Thus, H phdSecenter
granulocyte macrophage colony stimulating factor (GM-CSF)-adjuvantegpentlde vaccine

for refractory late-stage renal cancer patients has yielded unpngeg@eyear survival benefits
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especially in those patients able to respond to more than one peptide, provided they \edl recei
a pulse of low-dose cyclophosphamide prior to vaccination. It was proposed that the
cyclophosphamide reduced the Tregs in the patients, for which some evidence eg@res
[194,195]. The United States FDA has approved the use of sipuleucel-T, a cellular pradeict m
of blood APCs cultured with a fusion protein of prostatic acid phosphatase (PAP) and EM-CS
[196]. Efficacy studies revealed a 4-month extended median survival in patientsositter
cancer [197].

6.4. Cross Validation

A cross-validation team conducted a peer-reviewed literature review tdriets and

approaches listed in Tables 1 and 2, and these evidences of cross- hallmarkaaetivity
referenced accordingly. This process led to the creation of two unique matheesbwa series

of candidate compounds and molecular/cellular targets were identified foghaarmune

system evasion mechanistic relevance. The complete mapping of thésatatargets and
actions was screened for known complementary, contrary or combinations of actissall
cancer hallmarks described in Hanahan and Weinberg [1]. For example, inhibiting or
stimulating an immune evasion target may or may not have been examined in otharkhallm
mechanism. Each potential target-hallmark or approach-hallmark interacis considered to
have either a pro- or anti-chemotherapeutic effect. There were alsd imikeations or many
instances where no known relationship existed. In summary, the findings gathéisceffott
varied considerably by each hallmark. These tables provide information thatwaase

starting point for future basic and translational research on phytochemmhblnations for

immune evasion targets and for chemotherapeutic applications.

6.5. Phytochemicals
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Besides these conventional immunotherapeutic approaches, several phytdsHemeEdeen

shown to facilitate tumor regression. Prominent among these are isothio¢cganaienin,

genistein, epigallocatechin gallate, lycopene, resveratrol, and glucosm@aime have entered
clinical trials and are beginning to yield encouraging results [198]. There arenatheal, plant-
derived or nutrient substances, including flavonoids, omega-3 fatty acids, zinc, and @tam

that are purported to strengthen the immune system [199-202], yet their roleseagstdri

resolve inflammation or assist in suppressing tumorigenesis are notrgladidman studies.

Too often, these alternative or complementary agents are not evaluated withdssetslaf

clinical outcomes that are needed to advance our understanding of how nutritional campone
and phytochemicals may enhance tumoricidal immunity or inhibit tumor immuneevasi
mechanisms described above. While some dietary supplements have been shown tolenhance t
ability of NK cells to identify and destroy dysfunctional cells, such astedeor cancerous cells
[203,204], these studies have not comprehensively assessed increased T celbprofiucti
cytokines such as IFN and TNF, or reduced secretion of immune suppressieffaator

tumors. The emerging evidence for dietary supplement doses that far exgsietbgical

nutrient exposures suggests that some bioactive food components can even be hazardous [205],
and are now largely discouraged for consumption during cancer treatment [206]. Table 2

summarizes potential targets and approaches that may enhance anticemoee responses.

[Tables 1 and 2 about here]

6.6. Adoptive T cell therapy

Autoreactive T cells are potentially tolerant to self-tissues, due tcsdiveechanisms in the
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periphery [295]. Adoptive T cell therapy involves the isolation and expansion of autologous T
cells specific for tumor antigen and their subsequent re-infusion into the patierdr-reactive

T cells such as tumor-infiltrating lymphocytes (TIL) combined with ILh@wed potentially
interesting results already in the 1980°s, but objective response rate wasietastatic
melanoma patients [296,297]. In 2002, Rosenberg and colleagues [298,299] introduced a
lymphodepletion regimen before administering adoptive T cell therapy,ingsialtelimination

of the immune-suppressive cells, increase of key cytokines for T cells slicif asd IL-15,

and creation of a space for T-cell proliferation. When lymphopenia is induced, remaining
peripheral T cells initiate homeostatic proliferation to reconstitute thé& loslls, and the

tolerant autoreactive CD& cells acquire an opportunity to proliferate and become functional
[300,301]. This may be one mechanism by which self-tumor Ag-specific T celisaeased in
cancer patients after chemo- or radio-therapy [302,303]. This lymphodepletioretneatm
markedly improved the clinical efficacy of adoptive cell therapy using, Miith an objective
response in ~70% of melanoma patients and complete durable regressions were f60f@ in ~
[304]. Rosenberg et al [305] have demonstrated objective cancer regressioents path
metstatic melanoma. Though good clinical outcome has been observed by Roseslli8aHet
generating T cells for adoptive T cell therapy is a cumbersome pro¢esre have been many
efforts to develop a practical protocol to produce autologous self-tumor Ag-specéits;Tbut
most of them are still complicated and time-consuming because self-tumenétgre T cells
exist as a minor population. Recently, however, an efficient method has been developed to

produce tumor-specific CD8T cells from ~50 mis of peripheral blood mononuclear cells based

upon the unique property of 4-1BB (CD137) to be selectively expressed on antigen-engaged T

cells [306]. Clinical trials with various solid tumors are underway to test tatysmd efficacy
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of the CTLs thus generated. To overcome major hurdles in the preparation of auteklous
tumor Ag-specific T cells, gene-modified T cells like TCR or chimég receptor (CAR)-
modified T cells were developed [307]. Currently, these gene-modified T cebisiagetested

for safety and efficacy in the clinic and clinical results will tell eethher adoptive T cell

therapy could provide a new opportunity for cancer patients who failed to respond todstandar
therapies. However, the many mechanisms of tumor escape discussed abovsupynmession,
downregulation of target antigens etc.) need to be considered and counteracteainatomm

with these modalities.

7. Conclusions

Here we wish to emphasize that immunotherapeutic approaches may advancenciasion of
holistic or integrative therapy of cancer. Especially, we want to emehidisizdual approaches
which seek to 1) eliminate immune suppressing factors, and 2) enhance tumor-giiliitiga
will be necessary to achieve successful cancer therapy. In view of the irsoppressive
factors present in the tumor microenvironment from the very earliest stamgsarfformation,
nontoxic agents that control or eliminate the immunosuppressive factors can be usecpyr t
of cancer or also utilized as cancer control and chemopreventive agents. A tlimpagtnt
requires us to aim at cross-clonal common targets, which overcome the intra-eatannaral
heterogeneity.

An in-depth understanding of how tumors evade immune surveillance will help develdveffe

therapeutic strategies that can be used for the benefit of cancer patients.
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Tables

Table 1. Cross-Validation of potential targets that may enhantm@cér immune responses to
other cancer hallmarks

POTENTIAL (Promote/ | (Promote/ (Promote/ (Inhibit) Treg | (Promote/ | (Promote/
TARGETS for | Enhance) | Enhance) Activate) lymphocytes | Enhance) Induce)
IMM UNE- Thi v& T cell | macrophages NK  cel | IL-12
MODULATION responses | activities activity
via

Other Cancer L]nucr;et?:re of
Hallmarks NK cells
Genomic 0 0 0 0 0 0
Instability
Sustained 0 0 - 0 0 0
Proliferative [207]
Signaling
Tumor- - - + +/- + +
Promoting [208,209] [210] [211] [212-214] [215,216] [217,218]
Inflammation
Evasion of 0 + 0 + + 0
Anti-growth [219] [220] [221]
Signaling
Resistance to 0 0 + + 0 -
Apoptosis [222] [223] [224]
Replicative + 0 0 0 + 0
Immortality [225] [225]
Deregulated 0 0 0 0 0 0
M etabolism
Angiogenesis + - +/- + + +

[226-229] [230-233] [235] [236] [237]

[234]

Tissue + + - + + +
Invasion and [238] [239] [240] [241] [242] [243]
M etastasis
Tumor + + +- + + +
Microenviron [244] [245] [246-248] [249] [250] [251]
ment

The symbols presented above represent as follows:

controversial; 0, no known relationship.
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571331
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Table 2. Cross-Validation of phytochemicals that may enhanesaaoér immune responses to
other cancer hallmarks

Approach Ganoderma | Trametes Astragalus Lentinus Astaxan- polyphenol-
lucidum versicolor membranaceus | edodes thin resveratrol
(polysaccha | (protein- (polysaccha- (polysaccha- analogue
ride bound ride fraction) ride L-II, HS-1793
fraction) polysaccha- lentinan)
ride-k)
Other Cancer
Hallmarks
Genomic 0 0 0 0 0 0
Instability
Sustained + 0 0 + + 0
Proliferative [,252] [253,254] [255-257]
Signaling
Tumor- + 0 + + + 0
Promoting [258,259] [260] [261,262] [263,264]
Inflammation
Evasion of + + + + + 0
Anti-growth [265,266] [267] [268] [269] [270]
Signaling
Resistance to + 0 + + + +
Apoptosis [271] [272] [273] [274] [275]
Replicative + 0 0 0 0 0
Immortality [276]
Deregulated 0 0 0 0 0 0
M etabolism
Angiogenesis + 0 - + 0 +
[277,278] [279] [280] [281]
Tissue + 0 + + + +
Invasion and [282] [283] [284] [285] [286,287]
M etastasis
Tumor + + + + + +
Microenviron [288] [289] [290] [291,292] [293] [294]

ment

The symbols presented above represent as follows: +, complementary; - ycewtrar
controversial; 0, no known relationship.
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1332 Figurelegends
71333  Figure 1. Tumor growth and immuneresponse. An overview of the different key factors
91334 governing tumor formation, progression, and immune evasion. The numbers in parentheses

121335  represent the relevant references in support of the statements made.

13
141336
15

131337 Figure 2. Tumor heterogeneity and immuneresponse. Shown here are important sequential

18
191338 events leading to tumor heterogeneity and its consequences for the vagrexts asthe
20

5;1339 immune response. The numbers in parentheses are the relevant literature cited.

23

241340

25

531341 Figure 3. Immune system and tumor metastasis. Depicted here are the key sequential events

28 . . -
291342 based on the “Progression Model” leading to cancer cells exodus from theydooeion and
30

2;1343 subsequent establishment at a distant location and the possible role of various immune

221344 modulators that aid this process. The numbers in parentheses are the relexantlitéed.

35
361345
37

281346 Figure 4. Cancer therapy. A brief overview of the various available therapeutic options for

40
411347 cancer. A few of these have entered clinical trials some of which have been approved f
42

221348 treatment of specific types of cancers. The numbers in parentheses derdhedi cited.
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Important avenues of cancer therapy
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