
,nn 

 
 
 
 

Vinay, D. S. et al. (2015) Immune evasion in cancer: mechanistic basis and 
therapeutic strategies. Seminars in Cancer Biology, 

 

Copyright © 2015 Elsevier, Ltd. 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

 
Content must not be changed in any way or reproduced in any format 
or medium without the formal permission of the copyright holder(s) 

 

 
 
 
http://eprints.gla.ac.uk/104521/ 

 
 
 
  Deposited on:  30 March 2015 

 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



Accepted Manuscript

Title: Immune evasion in cancer: Mechanistic basis and
therapeutic strategies

Author: Dass S. Vinay Elizabeth P. Ryan Graham Pawelec
Wamidh H. Talib John Stagg Eyad Elkord Terry Lichtor
William K. Decker Richard L. Whelan Shantha Kumara Hmc
Emanuela Signori Kanya Honoki Alexandros G. Georgakilas
Amr Amin William G. Helferich Chandra S. Boosani Gunjan
Guha Maria Rosa Ciriolo Sophie Chen Sulma I. Mohammed
Asfar S. Azmi W. Nicol Keith Dipita Bhakta Dorota Halicka
Hiromasa Fujii Katia Aquilano S. Salman Ashraf Somaira
Nowsheen Xujuan Yang Beom K. Choi Byoung S. Kwon

PII: S1044-579X(15)00019-X
DOI: http://dx.doi.org/doi:10.1016/j.semcancer.2015.03.004
Reference: YSCBI 1179

To appear in: Seminars in Cancer Biology

Received date: 4-4-2014
Revised date: 10-3-2015
Accepted date: 13-3-2015

Please cite this article as: Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J,
Elkord E, Lichtor T, Decker WK, Whelan RL, Hmc SK, Signori E, Honoki K,
Georgakilas AG, Amin A, Helferich WG, Boosani CS, Guha G, Ciriolo MR, Chen
S, Mohammed SI, Azmi AS, Keith WN, Bhakta D, Halicka D, Fujii H, Aquilano K,
Ashraf SS, Nowsheen S, Yang X, Choi BK, Kwon BS, Immune evasion in cancer:
Mechanistic basis and therapeutic strategies, Seminars in Cancer Biology (2015),
http://dx.doi.org/10.1016/j.semcancer.2015.03.004

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.semcancer.2015.03.004
http://dx.doi.org/10.1016/j.semcancer.2015.03.004


Page 1 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 
 

Manuscript Number; YSCBI-14-00032 1 

 2 

Immune evasion in cancer: mechanistic basis and therapeutic strategies 3 

 4 

Dass S. Vinaya, Elizabeth P. Ryanb, Graham Pawelecc, Wamidh H. Talibd, John Stagge, 5 

Eyad Elkordf, Terry Lichtorg, William K. Deckerh, Richard L. Whelani, Shantha Kumara 6 

HMCi, Emanuela Signorij, Kanya Honokik*, Alexandros G. Georgakilasl*, Amr Aminm*, 7 

William G. Helferichn*, Chandra S. Boosanio*, Gunjan Guhap*, Maria Rosa Cirioloq*, 8 

Sophie Chenr*, Sulma I. Mohammeds*, Asfar S. Azmit*, W. Nicol Keithu*, Dipita Bhaktap*, 9 

Dorota Halickav*, Hiromasa Fujiiw*, Katia Aquilanoq*, S. Salman Ashrafx*, Somaira 10 

Nowsheeny*, Xujuan Yangn*, Beom K. Choiz, and Byoung S. Kwona,z,ab  11 

 12 

aSection of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane 13 

University Health Sciences Center, New Orleans, Louisiana, United States 14 

bDepartment of Environmental and Radiological Health Sciences, Colorado State University, 15 

Fort Collins, Colorado,  United States 16 

cCenter for Medical Research, University of Tübingen, Tubingen, Germany  17 

dDepartment of Clinical Pharmacy and Therapeutics, Applied Science University, Amman, 18 

Jordan  19 

eCentre de Recherche du Centre Hospitalier de l’Université de Montréal, Faculté de Pharmacie et 20 

Institut du Cancer de Montréal, Montréal, Québec, Canada  21 

fCollege of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab 22 

Emirates  23 

*Manuscript

http://ees.elsevier.com/yscbi/viewRCResults.aspx?pdf=1&docID=524&rev=3&fileID=12249&msid={5483C8FE-71E3-4CF0-9924-681EF32AB398}


Page 2 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 
 

gDepartment of Neurosurgery, Rush University Medical Center, Chicago, Illinois, United States  24 

hDepartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas,  United 25 

States 26 

 iDepartment of Surgery, St. Luke’s Roosevelt Hospital, New York, New York, United States 27 

jCNR, Institute of Translational Pharmacology,  Rome, Italy  28 

kNara Medical University, Kashihara, Nara, Japan  29 

lPhysics Department, School of Applied Mathematics and Physical Sciences, National Technical 30 

University of Athens, Athens, Greece  31 

mDepartment of Biology, College of Science, United Arab Emirates University, Al Ain, United 32 

Arab Emirates  33 

nUniversity of Illinois at Urbana Champaign, Urbana, Illinois, United States   34 

oCreighton University, Omaha, Nebraska, United States   35 

pSchool of Chemical and Bio Technology, SASTRA University, Thanjavur, India  36 

qDepartment of Biology, University of Rome “Tor Vergata”, Rome, Italy  37 

rOvarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom  38 

sPurdue University Cancer for Cancer Research, West Lafayette, Indiana, United States   39 

tKarmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States   40 

uUniversity of Glasgow, Glasgow, United Kingdom   41 

vNew York Medical College, Valhalla, New York, United States   42 

wNara Medical University, Kashihara, Japan  43 

xDepartment of Chemistry, College of Science, United Arab Emirates University, Al Ain, United 44 

Arab Emirates  45 

yMayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, Minnesota, United 46 



Page 3 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 
 

States   47 

zCancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, 48 

Gyeonggi, Korea  49 

abProgram for Immunotherapy Research, National Cancer Center, Goyang, Gyeonggi, Korea 50 

 51 

*These authors contributed to the cross-validation activity. 52 

 53 

Correspondence: Byoung S. Kwon, R&D Center for Cancer Therapeutics, National Cancer 54 

Center, Goyang, Gyeonggi-do, 410-769, Korea. E-mail:bskwon@ncc.re.kr, Phone: +82-31-920-55 

2531, Fax: +82-31-920-2542. 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 



Page 4 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 
 

Abstract 70 

Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic 71 

strategies. Although considerable progress has been made in understanding how cancers evade 72 

destructive immunity, measures to counteract tumor escape have not kept pace. There are a 73 

number of factors that contribute to tumor persistence despite having a normal host immune 74 

system. Immune editing is one of the key aspects why tumors evade surveillance causing the 75 

tumors to lie dormant in patients for years through “equilibrium” and “senescence” before re- 76 

emerging. In addition, tumors exploit several immunological processes such as targeting the 77 

regulatory T cell function or their secretions, antigen presentation, modifying the production of 78 

immune suppressive mediators, tolerance and immune deviation. Besides these, tumor 79 

heterogeneity and metastasis also play a critical role in tumor growth.  A number of potential 80 

targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction 81 

of IL-12, use of drugs including phytochemicals have been designed to counter tumor 82 

progression with much success. Some natural agents and phytochemicals merit further study. For 83 

example, use of certain key polysaccharide components from mushrooms and plants have shown 84 

possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, 85 

replicative immortality, deregulated metabolism etc. In this review, we will discuss the advances 86 

made towards understanding the basis of cancer immune evasion and summarize the efficacy of 87 

various therapeutic measures and targets that have been developed or are being investigated to 88 

enhance tumor rejection. 89 

 90 

 91 

Keywords: Cancer, Immune evasion, T cells, Therapy 92 
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1. Introduction 93 

Cancer remains one of the leading causes of death globally, with an estimated 12.7 million cases 94 

around the world affecting both sexes equally. This number is expected to increase to 21 million 95 

by 2030. The immune system interacts intimately with tumors over the entire process of disease 96 

development and progression to metastasis. This complex cross talk between immunity and 97 

cancer cells can both inhibit and enhance tumor growth and is now classified as a hallmark of 98 

cancer [1].  The balance of these actions between and across the hallmarks determines the 99 

eventual outcome, which in the case of clinically overt cancer results from evasion of the 100 

destructive elements of the immune response by the tumor. Mechanisms resulting in evasion of 101 

immune attack include the selection of tumor variants resistant to immune effectors (sometimes 102 

designated “immunoediting”) and progressive formation of an immune suppressive environment 103 

within the tumor. Although considerable knowledge has been accumulated on how tumors avoid 104 

immune destruction, discovering effective cancer therapies still remains a daunting task for the 105 

researcher and clinician. In this report, we will briefly present an overview of how tumors evade 106 

immune surveillance by focusing on how the immune system reacts to the development of 107 

tumors, how certain cancers evade immunity, and what measures can be taken to eradicate 108 

cancer. We will address important aspects of tumor and host immune interactions as set out 109 

below. 110 

 111 

2. Tumors and immunity  112 

The involvement of the host immune system in cancer progression is well established, although 113 

greater emphasis has been placed on tumor eradication by immunity than tumor immune 114 

potentiation, which may be equally important. These interactions between the immune system 115 
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and the tumor occur through complex events that usually eventually climax either in successful 116 

tumor eradication or immune evasion by the tumor [2].  117 

2.1 Relationship between tumor formation and immune responses 118 

Tumor development and survival is a chaotically governed process involving the interplay 119 

between cancer cells, normal stromal cells and host defense mechanisms. Several other factors 120 

such as cellular changes due to infection or disease-induced stress may also contribute to tumor 121 

growth or tumor suppression. Generally, CD8+ cytotoxic T cells (CTL) and CD4+ helper T (Th)1 122 

cells curb cancer development via mechanisms commonly involving their production of 123 

interferon (IFN)-γ and cytotoxins [3] but other factors such as chronic inflammation may 124 

override these effects to promote cancer development [4,5]. For example, the risk of overt 125 

hepatocellular carcinoma (HCC) appears to be closely linked to the duration of the Hepatitis B 126 

and C viral-induced inflammatory state [6-9]. Compelling evidence has also documented, both in 127 

animal tumor models and in human cancers, that chronic inflammation plays a critical role in the 128 

development of colon and pancreatic cancers [6]. Therefore, when beneficial acute responses fail 129 

to resolve tumors/cancer, lingering chronic inflammation can lead to promotion of tumor cell 130 

growth and angiogenesis [6,10]. In addition, ongoing activity due to autoimmune disease has 131 

also been shown to support development of many cancers including lymphoma [6,10-12]. 132 

2.2 Tumor progression and immunity  133 

Vital fundamental discoveries made over the last few decades have unequivocally shown that the 134 

immune system plays a critical role in maintaining an equilibrium between immune recognition 135 

and tumor development with a dual capacity to both promote and suppress tumor growth. These 136 

discoveries collectively support the concept of “immunoediting” and help to explain why tumors 137 

can sometimes lie dormant in patients for years before re-emerging, and why tumors grow 138 
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despite the host having a fully functional immune system [13]. During cancer immune editing, 139 

the immune system is able to recognize and destroy the most immunologically vulnerable cancer 140 

cells because they present tumor antigens, resulting in their elimination [14]. Nonetheless, due to 141 

genetic instability, constant tumor cell division can generate with reduced immunogenicity that 142 

can evade immune elimination. This state of production of new tumor cell variants balanced by 143 

the elimination has been dubbed “equilibrium”, during which the cancer cells continue to divide, 144 

accumulating mutational changes by chance or in response to immune-induced inflammation. 145 

Thus, a balance between immune control and tumor growth is maintained, giving the appearance 146 

of tumor dormancy [15]. However, these processes eventually enable tumors to impair the 147 

capacity of the immune system to eradicate them by immune suppressive effects or by loss of 148 

target antigen expression. It is at this stage that tumor escape occurs, resulting in overt clinical 149 

cancer. Nonetheless, there may also be conditions under which tumor cells are truly dormant, for 150 

example by induction of “senescence”. In this case, they would be likely to remain dormant 151 

permanently, as replicative senescence is generally believed to be irreversible [16].  152 

2.3 Factors that tumors exploit to avoid immune responses 153 

2.3.1. Regulatory cells  154 

Immune suppression in the tumor microenvironment, mediated by CD4+CD25+ FoxP3+ 155 

regulatory T cells (Tregs), or other types of suppressive cells, seems to be a major mechanism of 156 

tumor immune escape and can be a crucial hurdle for tumor immunotherapy [17]. A number of 157 

studies have shown that tumor-derived Tregs have comparatively higher suppressive activity 158 

than naturally occurring Tregs [18,19]. Tregs are drawn into the tumor microenvironment via 159 

tumor cell-mediated chemokine production [20,21]. Evidence also suggests that transforming 160 

growth factor (TGF)-β, produced by tumor cells among other cells, aids conversion of CD4+ T 161 
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cells into suppressive Tregs in situ [22]. Thus, elimination of Tregs by anti-CD25 monoclonal 162 

antibodies (mAbs) or by other means may promote tumor rejection. Myeloid cells, especially 163 

“myeloid-derived suppressor cells” (MDSCs), modulated dendritic cells (DCs) and alternatively-164 

activated M1 and M2 macrophages create an inflammatory microenvironment and can also act as 165 

mediators of tumor initiation, angiogenesis, and metastasis [23,24]. Moreover, a vicious cycle 166 

may be instigated in that higher levels of inflammatory mediators confer resistance to apoptosis 167 

in MDSCs which would otherwise be subject to downregulation by T cells in complex 168 

interaction networks [25]. Thus, CD11b+Gr1+ MDSCs suppress CD8+ T cell-mediated antitumor 169 

immunity [26], one mechanism for which may be TCR ζ-chain downregulation. MDSCs with 170 

this phenotype accumulate in, for example, melanoma lesions in a manner intimately linked to 171 

the inflammatory milieu, implying that the tumor inflammatory microenvironment supports 172 

MDSC recruitment and immunosuppressive activity. Reduction of chronic inflammatory 173 

mediators by pharmacological means can reduce the amounts of MDSC and decrease 174 

immunosuppression [27]. CD11b+F4/80+ macrophages having an M2 phenotype produce high 175 

levels of TGF-β, IL-10, and vascular endothelial growth factor (VEGF) and promote tumor 176 

growth [28-30]. In addition, a number of tumor-derived factors and gangliosides have been 177 

reported to alter DC phenotype. These immature, functionally-impaired DCs have lower levels of 178 

CD80, CD86, CD40, and high indoleamine 2,3-dioxygenase (IDO) expression that also 179 

contributes to suppression of T cell immunity [31].  180 

2.3.2. Defective antigen presentation  181 

It is well established that another fundamental mechanism by which tumors evade immune 182 

surveillance is by down-modulating antigen processing machinery affecting the major 183 

histocompatibility complex (MHC) I pathway, proteosome subunits latent membrane protein 184 
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(LMP)2 and LMP7, transporter associated with antigen processing (TAP) protein, and tapasin 185 

[32-37]. Thus, expression of tumor antigen is downregulated, which can lead to enhanced tumor 186 

incidence and metastasis because cytotoxic T lymphocyte (CTL) can no longer recognize target 187 

antigens on the tumor cells [38].  188 

2.3.3. Immune suppressive mediators  189 

As alluded to above, tumors can evade immune surveillance by crippling CTL functionality via 190 

production of several immune suppressive cytokines, either by the cancer cells or by the non-191 

cancerous cells present in the tumor microenvironment, especially including immune cells and 192 

epithelial cells. TGF-β is a chief mediator of this activity [39]. In addition, tumor necrosis factor 193 

(TNF)-α, IL-1, IL-6, colony stimulating factor (CSF)-1, IL-8, IL-10, and type I IFNs can also 194 

significantly contribute to cancer growth [40-44]. In addition to immune suppressive cytokines, 195 

other factors such as VEGF produced by tumors, inhibit the differentiation of progenitors into 196 

DCs [45], thus affecting efficient uptake and antigen presentation. VEGF and IL-10 and TGF-β 197 

are also known inhibit maturation of DCs. DCs retaining the immature phenotype are tolerogenic 198 

as they do not present antigen in the proper context (with appropriate costimulation to T cells 199 

[46]. Other factors such as tumor gangliosides and receptor-binding cancer-associated surface 200 

antigen (RCAS1) also contribute to tumor progression [47,48]. Additional studies revealed that 201 

expression of RCAS1is associated with apotosis of tumor infiltrating lymphocytes (TILs) [49-202 

50]. Similarly, ganglioside antigens, on cell surface or shed from cells surface, are known to 203 

suppress CTL and DC function [51]. Immunosuppressive enzymes such as IDO, arginase, and 204 

inhibitor of nuclear factor kappa-B kinase (IKK)2 may also contribute significantly to tumor 205 

progression [52-55] via direct actions on tumor cell proliferation or through induction of T cell 206 

tolerance/suppression [56-58]. 207 
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2.3.4. Tolerance and immune deviation  208 

Most tumor cells fail to express costimulatory molecules and can thereby induce anergy or 209 

tolerance in T cells by engaging the T cell receptor in the absence of costimulation [59]. Tumors 210 

are also known to evade immune attack by shifting the balance from Th1 to Th2 (immune 211 

deviation) in a TGF-β- and IL-10-dependent manner [60]. In addition, tumor expression of 212 

inhibitory molecules like programmed cell death (PD)-L1/B7-H1 has been shown to cause 213 

deletion or anergy on tumor reactive cells [61,62]. There is also evidence that down regulation of 214 

death receptors prevents death ligand-mediated killing of tumor cells by both CTLs and natural 215 

killer (NK) cells [63]. Slavin-Chiorini et al [64] have demonstrated that CTL studies in 216 

conjunction with antibody blocking studies enhanced antitumor effector activity mainly through 217 

CD54. There are reports to show that p53 tumor suppressive gene is implicated in the regulation 218 

of tumor cell death by CTLs [65].  Thus, factors promoting tolerance and immune deviation are 219 

significant contributors to cancer immune evasion. 220 

2.3.5. Apoptosis 221 

A number of studies have shown that cancer cells delete tumor-specific CTLs through apoptosis 222 

[66,67]. The different influences governing tumor growth and immune evasion strategies are 223 

briefly outlined in Figure 1. 224 

 225 

3. Tumor heterogeneity and immune responses  226 

Cells of the immune system can inhibit tumor growth and progression through the recognition 227 

and rejection of malignant cells containing initiation mutations. Though tumors originate from a 228 

single transformed cell, due to genetic instability, they commonly become genetically 229 

heterogeneous, exhibiting multiple phenotypes both in terms of morphology and physiology. 230 
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They also display striking heterogeneity in cell surface molecule expression, proliferative and 231 

angiogenic potential [68], which is believed to stem from morphological and epigenetic 232 

plasticity. Thus, the tumor cells express a wide variety of antigens including some which may be 233 

tumor-specific or tumor-associated, differentiation antigens, and lectin-binding sites. These 234 

antigens are unevenly distributed on tumor subpopulations and induce different immune 235 

responses to the same determinant [69]. This tumor antigenic heterogeneity has a significant 236 

effect on genotype, gene expression, cellular morphology, metabolic activity, motility, and 237 

behavior such as proliferation rate, antigen expression, drug response and metabolic potential 238 

[70-74]. Such heterogeneity has important implications for diagnosis, treatment efficacy, and the 239 

identification of potential targets [70,75]. The key aspects of tumor heterogeneity and its 240 

subsequent effects on tumor growth are briefly outlined in Figure 2. 241 

 242 

4. Immune system and cancer metastasis  243 

It is fascinating how cancer cells migrate throughout the body from their original location to 244 

establish themselves at a new location [76]. How this exodus of tumor cells occurs is only now 245 

beginning to be understood. In general, cancer cells detach from the primary tumor and travel 246 

through the surrounding tissues and basement membranes, avoid immune destruction and 247 

metastasize to distant organs [77,78]. This metastatic process is what is responsible for most 248 

cancer deaths [79-82]. Although there are several underlying mechanisms of tumor 249 

dissemination and colonization [83], the “progression model” which suggests that a series of 250 

mutational events occur either in a subpopulation of primary tumor or in disseminated cells, 251 

resulting in a small fraction of the cells that acquire full metastatic potential is a well-accepted 252 

theory [84]. This view has been corroborated by a number of investigations [85-88]. Among 253 
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other factors, once again, it is the TGF-β secreted by the cancer cells that makes a major 254 

contribution to tumor metastasis [89]. In addition, the vasculature also plays an important role in 255 

metastatic seeding at different sites. It has been shown that tumor vasculature hyperstimulated by 256 

VEGF often has reduced pericyte coverage and that looser association of such pericytes with the 257 

endothelium facilitates metastatic dissemination [90]. In addition, hypoxia in and around tumor 258 

vessels also contributes to metastatic dissemination of cancer cells in an hypoxia inducible factor 259 

(HIF)-, VEGF-, and inducible nitric oxide synthase (iNOS)-dependent manner [91,92]. Notably, 260 

hypoxia promotes the formation of pre-metastatic niches through the production of lysyl oxidase 261 

[93]. Hypoxia further conditions pre-metastatic niches by recruiting MDSCs and suppressing NK 262 

cell functions [94]. In support of a role for immunosurveillance in controlling tumor metastasis, a 263 

recent study revealed that high expression of Irf7-regulated genes in primary human breast 264 

tumors is associated with prolonged bone metastasis-free survival [95]. A brief overview of the 265 

events promoting tumor metastasis and the involvement of immune responses is provided in 266 

Figure 3. 267 

 268 

5. Conventional cancer therapy and the immune system 269 

Although a variety of agents have been screened for their antitumor effects and some have been 270 

approved for the treatment of cancer patients, chemotherapy, radiation therapy, and surgery 271 

remain the mainstays of standard cancer therapeutic strategies. A downside to these therapies is 272 

their ability to cause a transient immune suppression which in turn increases the risk of infection 273 

and is also likely to decrease the immune system’s ability to inhibit further development of 274 

cancer. For example, standard chemotherapy decreases the host’s native immune competent cells 275 

including T cell populations. However, this transient loss of immune activity has been shown to 276 
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return 2-3 weeks after chemotherapy [96]. In addition, patients are at risk for viral, fungal, and 277 

parasitic infections, and when chemotherapy continues long-term, these patients may 278 

permanently lose their cell-mediated immune function [97]. Nevertheless, recent evidence 279 

suggests that some chemotherapeutic drugs rely on the induction of anticancer immune responses 280 

for therapeutic activity by inducing a type of tumor cell death that is “immunogenic” [98]. The 281 

immune-stimulating property of some chemotherapeutic drugs, such as anthracyclines and 282 

oxaliplatin, requires preapoptotic translocation of calreticulin (CRT) on the tumor cell surface, 283 

post-apoptotic release of the chromatin-binding protein high mobility group B1 (HMGB1), and 284 

extracellular release of ATP. Interestingly, phosphohydrolysis of extracellular ATP by ecto-285 

nucleotidases (i.e. CD39 and CD73) acts as a counterbalancing process to chemotherapy-induced 286 

immunogenic cell death [99].Other chemotherapies appear to alter the phenotype of surviving 287 

tumor cells making them better targets for immune cells [100,101].  Radiation therapy has also 288 

been shown to impact cell-mediated immunity. On the one hand, radiotherapy can suppress 289 

antitumor immunity, presumably due to the high radiosensitivity of lymphocytes [102]. There are 290 

also reports to suggest that high doses of total lymphocyte irradiation increase T suppressor cell 291 

activity and loss of the ability to recognize autoantigens [103]. On the other hand, low doses of 292 

radiation result in the generation of reactive oxygen species (ROS) leading to the activation of 293 

intracellular signaling pathways that induce T cell proliferation and differentiation [104,105]. 294 

Radiation has been shown to alter the phenotype of cells resulting in increased expression of 295 

death receptors [106], chemokines [107], adhesion molecules such as intercellular adhesion 296 

molecule (ICAM)-1 and MHC-I [108], and costimulatory molecules [109, 110] on tumor cells. 297 

Moreover, tumor cells surviving radiation have also been shown to be more sensitive to cytolysis 298 

by T cells [108, 111].  Radiation has also been shown to result in the increased expression of 299 



Page 14 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 
 

proinflammatory cytokines such as TNF-α and IL-1β that activate antigen presenting cells 300 

(APCs) [112,113]. Radiotherapy can thus trigger significant antitumor immune responses, 301 

related to the well-known abscopal effect, that is, the regression of metastases upon irradiation of 302 

the primary tumor, despite the metastasis being outside of the radiation field [114,115]. It is 303 

indeed generally accepted that radiotherapy depends to some degree on the activation of 304 

antitumor immune responses for its efficacy [116]. 305 

Finally, trauma due to surgical resection of tumors has profound effects on the immune system 306 

because of increased production of proinflammatory cytokines and other immune modulators 307 

like IL-6, C-reactive protein (CRP), TNF-α, IL-1β etc [117,118]. Also, decreased delayed-type 308 

hypersensitivity (DTH) reactions, due to surgery, pose a risk for infection [119]. To overcome 309 

surgery-mediated transient immune suppression, the introduction of laparoscopic methods may 310 

reduce such suppression and thus decrease tumor growth [120]. Conversely, surgery has also 311 

been shown to induce danger/damage that enhances antitumor efficacy and reduces metastasis 312 

[121]. There is evidence that tumor growth control can actually potentiate rather than curb 313 

metastasis, again illustrating the general finding that very similar pathways can have either 314 

inhibitory or facilitatory activity on tumor growth. A case in point is that chemotherapy, 315 

radiotherapy, and biological/targeted therapies can promote tumor metastasis via the so-called 316 

tumor bed effect [122,123]. Currently, both primary and metastatic cancers are treated by similar 317 

approaches where radiation is often the mainstay choice of therapy [124]. Surgery is rarely 318 

performed on metastatic lesions. Thus, these standard anticancer therapies, although they can be 319 

effective alone, will have enhanced therapeutic efficacy when combined with agents that boost 320 

the weakened immune system, if we are able to learn how to avoid potential tumor growth 321 

stimulatory effects. 322 
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6. Strategies for cancer immunotherapy  323 

Tumor cells have developed multiple mechanisms for evading immune surveillance. Current 324 

treatments for cancer include chemotherapy, radiation therapy, immunotherapy, targeted therapy, 325 

and surgery which all have limitations and detrimental side effects [125]. Recent investigations 326 

have identified several classes of anticancer agents that are targeted, efficient, and have less 327 

adverse side effects. An increasing number of clinical trials are currently underway to stimulate 328 

the immune system to combat cancer. Important among these include vaccination with peptides 329 

[126], vaccination with DCs [127], vaccination with viral-based vectors [128,129] and 330 

immunotherapy with autoreactive effector cells [130].  Interestingly, there are also studies to 331 

show that administration of bacteria can increase tumor immunogenicity [131]. For example, 332 

treatment with Clostridium novyi-NT is shown to attract many inflammatory cells such as 333 

neutrophils, monocytes, and lymphocytes that can kill tumor cells [132]. Especially important 334 

will be the extended use of immunomodulatory antibodies which have recently yielded such 335 

dramatic effects in highly refractory tumors (see below). Many clinical trials of all these 336 

approaches, and especially combinations thereof, are currently ongoing and hold great promise. 337 

6.1. Cellular targets  338 

In addition to the obvious targets, the tumor cells themselves, some of the several regulatory 339 

cells including regulatory B cells or their products implicated in tumor escape are currently being 340 

targeted to promote tumor rejection. For example, IDO is an immunoregulatory enzyme which 341 

suppresses T-cell immunity but can be targeted in the tumor microenvironment by IDO-reactive 342 

CD8+ T cells. It was shown that IDO-specific T cells could enhance tumor immunity by 343 

eliminating IDO+ suppressive cells and changing the regulatory microenvironment [133]. 344 

As mentioned above, important among suppressive cells are Tregs, which are powerful inhibitors 345 
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of antitumor immunity and an impediment to successful immunotherapy [22]. In support of this, 346 

inhibition of Tregs by monoclonal antibodies has been shown to decrease tumor development 347 

[134,135]. In addition, other regulatory cell populations such as MDSCs which accumulate in 348 

spleen, blood, tumors, and bone marrow of tumor-bearing mice and cancer patients [136,137] 349 

have been considered as important targets for therapeutic intervention [138]. MDSCs secrete IL-350 

10 and TGF-β and enhance angiogenesis and metastasis by inducing Treg production [23,139]. 351 

Increasing evidence suggests that the M2 macrophages promote tumor growth and metastasis, 352 

and strategies to target these cells are also being developed [140]. Type II NK cells are also 353 

known to contribute to tumor development via their secretion of characteristic cytokines. About 354 

60% of murine NK cells express Ly49 and CD94/NKGA inhibitory receptors, the blockade of 355 

which augments antitumor activity [3,141,142]. In addition, regulatory DCs (expressing CD25, 356 

PD-1, PD-L1, IL-10, TGF-β, kynurenine, IDO, cyclooxygenase (Cox)-2, and arginase (Arg)-1) 357 

play a significant role in tumor development [143] and therapies directed against these cells have 358 

also been investigated [144]. 359 

6.2. Molecular targets  360 

In addition to cellular targets, several molecular targets including cytotoxic T-lymphocyte-361 

associated protein 4 (CTLA)-4 [145], 4-1BB [146], PD1/PD-L1 [147], and activation-inducible 362 

TNFR (AITR), T cell immunoglobulin mucin (TIM)-3, Lymphocyte-activation gene (LAG)-3, 363 

OX40, CD40, CD39, CD73, A2A [148] and cancer antigens of different types, such as 364 

melanoma-associated antigen (MAGE) family members and NY-ESO-1, human telomerase 365 

reverse transcriptase (hTERT) and Wilm’s tumor (WT)1 have been considered as important 366 

antitumor targets [149]. In melanoma, MAGE, B melanoma antigen (BAGE), and G antigen 367 

(GAGE) family antigens have been targeted for therapeutic vaccination [150,151]. The L antigen 368 
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family member (LAGE)-1 gene closely related to NY-ESO-1 may also be an appropriate target 369 

[152]. The preferentially expressed antigen in melanoma (PRAME) is also a melanoma-370 

associated antigen recognized by CTL [153]. Human telomerase activity and hTERT expression 371 

are detected in a majority (>90%) of human cancer cells [154]. To increase potential efficacy, 372 

hTERT promoters have been utilized for cancer gene therapy [155,156]. Wilms’ tumor gene 373 

WT1 is expressed in several different cancers and illustrates the general principle that tumor 374 

escape from immunity as a result of downregulation of target antigen expression is unlikely to 375 

occur when the gene product has an essential role in tumorigenesis [157]. A number of studies 376 

suggest that the WT1 protein is a promising target for cancer immunotherapy [158,159].  377 

Targeting cell surface molecules other than tumor antigen targets for antibody-based therapeutic 378 

intervention of cancer is becoming an important available option for the clinician. Of these, so 379 

far only anti-CTLA-4 (ipilimumab) has been approved for clinical use in the USA, Canada, 380 

United Kingdom, and European Union [160,161], but PD1 and PD-L1-specific antibodies will 381 

surely be licensed very soon. Ipilimumab is currently in phase III clinical trials for the treatment 382 

of prostate cancer [162] and for cancers of the lung [163] and kidney [164] as well as melanoma. 383 

In one recent trial, administration of the anti-PD-1 antibody nivolumab showed unprecedented 384 

therapeutic objective responses in 18-28% of patients with advanced non-small-cell lung 385 

carcinoma, melanoma, and renal cell carcinoma [165]. While CTLA-4 and PD-1/PD-L1 blocking 386 

Abs have shown efficacy by blocking inhibitory signals to responding T cells, agonist Ab to 387 

OX40 and 4-1BB propel T-cell immunity by sending stimulatory signals. Several clinical trials 388 

are underway investigating their therapeutic properties [166]. Targeting Tregs by anti-CD25 389 

antibodies showed inhibition of neuroblastoma tumors in mice [167]. There are also data 390 

demonstrating that activation of the signal transducer and activator of transcription (STAT)3 391 
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signaling pathway supports tumor development by inducing accumulations of MDSCs and 392 

inhibition of DC differentiation [168]; hence its inactivation leads to inhibition of cancer 393 

development by a DC- and Treg-dependent mechanism [169].  394 

Targeting immunosuppression by soluble mediators is another attractive approach for cancer 395 

immunotherapy. A plethora of immunosuppressive factors has been associated with 396 

tumorigenesis, including TGF-β, IDO, arginase, prostaglandin-E2 (PGE2) and extracellular 397 

adenosine. Recent studies have shown that extracellular adenosine, essentially produced by the 398 

ecto-nucleotidase CD73, plays an important role in tumor development and metastasis [170-399 

175]. These findings are corroborated by studies using mice deficient in CD73 or the high 400 

affinity A2A adenosine receptor [174-177]. These animals exhibit increased CTL-mediated 401 

antitumor immunity [178]. Inhibition of pH regulatory molecules and certain heat shock proteins 402 

limit cancer cell-mediated immune suppression. Targeting these molecules could simultaneously 403 

counteract the metastatic potential of cancer cells and restore antitumor immune surveillance. 404 

The above-mentioned cancer therapeutic targets and their beneficial effects are briefly outlined 405 

in Figure 4. 406 

6.3. Vaccination therapy (Peptide, DNA, and DC)  407 

Several studies demonstrated the efficacy of therapeutic viral vaccines [179]. Peptide vaccines 408 

derived from tumor-associated antigens (TAA) may significantly contribute to immune 409 

enhancement or tumor regression. Many TAAs have been identified and molecularly 410 

characterized. However, so far only a limited number of TAA peptides, mostly recognized by 411 

CD8+ T cells in melanoma patients, have been clinically tested. In some clinical trials, partial or 412 

complete tumor regression was observed in 10-30% of patients [180]. Peptides such as melan-413 

A/MART-127-35 and gp100, which readily activate specific T cells in vitro [181] and in vivo 414 
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[182,183], show limited immunogenicity when used as vaccines for cancer patients [184,185]. 415 

Alternatively, DNA cancer vaccines may also represent an effective approach [186]. Such 416 

vaccines, although having many variants, utilize the same basic principle involving the isolation 417 

of DNA from cancer cells and subsequent transfer, most commonly via the intramuscular route, 418 

into tumor-bearing individuals. It has been shown that the administration of DNA vaccines via 419 

the intramuscular route effectively primes both the adaptive as well as innate arms of the 420 

immune system [187]. While naked DNA is quite sturdy and stable at different temperatures, and 421 

retains immune activating abilities, plasmid DNA vaccines are less immunogenic [188]. 422 

Refinements to the existing DNA vaccination strategies are showing promising results. Among 423 

these, the use of an electrical pulse, commonly called electropermeabilization, electroporation or 424 

electrotransfer [189] is currently used in preclinical protocols and has been shown to have strong 425 

immune activating abilities [190]. Recent therapeutic studies involving DNA vaccines have 426 

shown promise, for example, for the treatment of glioma. Incorporation of cancer cell DNA into 427 

healthy immune competent cells and subsequent transfer into tumor-bearing mice showed 428 

decreased tumor burden and increased survival of both spontaneous as well as established 429 

tumors. Further analysis revealed that DNA vaccine-mediated antitumor activity in the above 430 

case involved over-production of IFN-γ and participation of T and NK/lymphokine activated 431 

killer (LAK) cells [191,192]. Adoptive transfer of peptide-pulsed DC [193] is also an option. In 432 

all cases, it takes a long time to develop such therapies and the newest results now being 433 

published suggest that peptide vaccinations with selected multi-peptide vaccines, combined with 434 

immunomodulatory agents, may indeed achieve impressive results. Thus, a phase II multi-center 435 

granulocyte macrophage colony stimulating factor (GM-CSF)-adjuvanted multipeptide vaccine 436 

for refractory late-stage renal cancer patients has yielded unprecedented 3-year survival benefits 437 
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especially in those patients able to respond to more than one peptide, provided they had received 438 

a pulse of low-dose cyclophosphamide prior to vaccination. It was proposed that the 439 

cyclophosphamide reduced the Tregs in the patients, for which some evidence was presented 440 

[194,195]. The United States FDA has approved the use of sipuleucel-T, a cellular product made 441 

of blood APCs cultured with a fusion protein of prostatic acid phosphatase (PAP) and GM-CSF 442 

[196]. Efficacy studies revealed a 4-month extended median survival in patients with prostate 443 

cancer [197]. 444 

6.4. Cross Validation 445 

A cross-validation team conducted a peer-reviewed literature review of the targets and 446 

approaches listed in Tables 1 and 2, and these evidences of cross- hallmark activity are 447 

referenced accordingly. This process led to the creation of two unique matrices, whereby a series 448 

of candidate compounds and molecular/cellular targets were identified for having immune 449 

system evasion mechanistic relevance. The complete mapping of these candidate targets and 450 

actions was screened for known complementary, contrary or combinations of actions across all 451 

cancer hallmarks described in Hanahan and Weinberg [1].  For example, inhibiting or 452 

stimulating an immune evasion target may or may not have been examined in other hallmark 453 

mechanism.  Each potential target-hallmark or approach-hallmark interaction was considered to 454 

have either a pro- or anti-chemotherapeutic effect. There were also mixed indications or many 455 

instances where no known relationship existed. In summary, the findings gathered in this effort 456 

varied considerably by each hallmark. These tables provide information that can serve as a 457 

starting point for future basic and translational research on phytochemical combinations for 458 

immune evasion targets and for chemotherapeutic applications.  459 

 460 

6.5. Phytochemicals 461 
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Besides these conventional immunotherapeutic approaches, several phytochemicals have been 462 

shown to facilitate tumor regression. Prominent among these are isothiocyanate, curcumin, 463 

genistein, epigallocatechin gallate, lycopene, resveratrol, and glucosinolates. Some have entered 464 

clinical trials and are beginning to yield encouraging results [198]. There are other natural, plant-465 

derived or nutrient substances, including flavonoids, omega-3 fatty acids, zinc, and vitamin C, 466 

that are purported to strengthen the immune system [199-202], yet their roles as nutrients to 467 

resolve inflammation or assist in suppressing tumorigenesis are not clear from human studies. 468 

Too often, these alternative or complementary agents are not evaluated with standard sets of 469 

clinical outcomes that are needed to advance our understanding of how nutritional components 470 

and phytochemicals may enhance tumoricidal immunity or inhibit tumor immune evasion 471 

mechanisms described above. While some dietary supplements have been shown to enhance the 472 

ability of NK cells to identify and destroy dysfunctional cells, such as infected or cancerous cells 473 

[203,204], these studies have not comprehensively assessed increased T cell production of 474 

cytokines such as IFN and TNF, or reduced secretion of immune suppressive factors from 475 

tumors. The emerging evidence for dietary supplement doses that far exceed physiological 476 

nutrient exposures suggests that some bioactive food components can even be hazardous [205], 477 

and are now largely discouraged for consumption during cancer treatment [206]. Table 2 478 

summarizes potential targets and approaches that may enhance anticancer immune responses. 479 

 480 

[Tables 1 and 2 about here] 481 

 482 

6.6. Adoptive T cell therapy 483 

Autoreactive T cells are potentially tolerant to self-tissues, due to diverse mechanisms in the 484 
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periphery [295]. Adoptive T cell therapy involves the isolation and expansion of autologous T 485 

cells specific for tumor antigen and their subsequent re-infusion into the patient. Tumor-reactive 486 

T cells such as tumor-infiltrating lymphocytes (TIL) combined with IL-2 showed potentially 487 

interesting results already in the 1980´s, but objective response rate was low in metastatic 488 

melanoma patients [296,297]. In 2002, Rosenberg and colleagues [298,299] introduced a 489 

lymphodepletion regimen before administering adoptive T cell therapy, resulting in elimination 490 

of the immune-suppressive cells, increase of key cytokines for T cells such as IL-7 and IL-15, 491 

and creation of a space for T-cell proliferation. When lymphopenia is induced, remaining 492 

peripheral T cells initiate homeostatic proliferation to reconstitute the lost T cells, and the 493 

tolerant autoreactive CD8+ T cells acquire an opportunity to proliferate and become functional 494 

[300,301]. This may be one mechanism by which self-tumor Ag-specific T cells are increased in 495 

cancer patients after chemo- or radio-therapy [302,303].  This lymphodepletion treatment 496 

markedly improved the clinical efficacy of adoptive cell therapy using TILs, with an objective 497 

response in ~70% of melanoma patients and complete durable regressions were found in ~50% 498 

[304]. Rosenberg et al [305] have demonstrated objective cancer regression in patients with 499 

metstatic melanoma. Though good clinical outcome has been observed by Rosenberg et al [305], 500 

generating T cells for adoptive T cell therapy is a cumbersome process.  There have been many 501 

efforts to develop a practical protocol to produce autologous self-tumor Ag-specific T cells, but 502 

most of them are still complicated and time-consuming because self-tumor Ag-reactive T cells 503 

exist as a minor population. Recently, however, an efficient method has been developed to 504 

produce tumor-specific CD8+ T cells from ~50 mls of peripheral blood mononuclear cells based 505 

upon the unique property of 4-1BB (CD137) to be selectively expressed on antigen-engaged T 506 

cells [306]. Clinical trials with various solid tumors are underway to test the safety and efficacy 507 



Page 23 of 64

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

23 
 

of the CTLs thus generated. To overcome major hurdles in the preparation of autologous self-508 

tumor Ag-specific T cells, gene-modified T cells like TCR or chimeric Ag receptor (CAR)-509 

modified T cells were developed [307]. Currently, these gene-modified T cells are being tested 510 

for safety and efficacy in the clinic and clinical results will tell us whether adoptive T cell 511 

therapy could provide a new opportunity for cancer patients who failed to respond to standard 512 

therapies. However, the many mechanisms of tumor escape discussed above (tumor suppression, 513 

downregulation of target antigens etc.) need to be considered and counteracted in combination 514 

with these modalities.   515 

 516 

7. Conclusions 517 

Here we wish to emphasize that immunotherapeutic approaches may advance via the inclusion of 518 

holistic or integrative therapy of cancer. Especially, we want to emphasize that dual approaches 519 

which seek to 1) eliminate immune suppressing factors, and 2) enhance tumor-killing activities 520 

will be necessary to achieve successful cancer therapy. In view of the immune suppressive 521 

factors present in the tumor microenvironment from the very earliest stages of tumor formation, 522 

nontoxic agents that control or eliminate the immunosuppressive factors can be used for therapy 523 

of cancer or also utilized as cancer control and chemopreventive agents. A tumor-killing agent 524 

requires us to aim at cross-clonal common targets, which overcome the intra- and inter-tumoral 525 

heterogeneity.  526 

An in-depth understanding of how tumors evade immune surveillance will help develop effective 527 

therapeutic strategies that can be used for the benefit of cancer patients. 528 

 529 
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Tables 1321 

Table 1. Cross-Validation of potential targets that may enhance anticancer immune responses to 1322 
other cancer hallmarks 1323 

POTENTIAL 
TARGETS for 
IMMUNE-
MODULATION 
 
 
Other Cancer 
Hallmarks  

(Promote/ 
Enhance) 
Th1 
responses 
via 
increase 
number of 
NK cells   

(Promote/ 
Enhance)  
γδ T cell 
activities 

(Promote/ 
Activate) 
macrophages 

(Inhibit) Treg 
lymphocytes  

(Promote/ 
Enhance)  
NK cell 
activity 

(Promote/ 
Induce)  
IL-12 

Genomic 
Instability 

0 0 0 0 0 0 

Sustained 
Proliferative 
Signaling 

0 0 - 
 [207] 

0 0 0 

Tumor- 
Promoting 
Inflammation 

- 
 [208,209] 

- 
 [210] 

+ 
 [211] 

+/- 
 [212-214] 

+ 
 [215,216] 

+ 
 [217,218] 

Evasion of  
Anti-growth 
Signaling 

0 + 
 [219] 

0 + 
 [220] 

+ 
 [221] 

0 

Resistance to 
Apoptosis 

0 0 + 
 [222] 

+ 
 [223] 

0 - 
 [224] 

Replicative 
Immortality 

+ 
 [225] 

0 0 0 + 
 [225] 

0 

Deregulated 
Metabolism 

0 0 0 0 0 0 

 Angiogenesis + 
 [226-229] 

- 
 [230-233] 

+/- 
 

[234] 

+ 
 [235] 

+ 
 [236] 

+ 
 [237] 

Tissue 
Invasion and 
Metastasis  

+ 
 [238] 

+ 
 [239] 

- 
 [240] 

+ 
 [241] 

+ 
 [242] 

+ 
 [243] 

Tumor 
Microenviron
ment 

+ 
 [244] 

+ 
 [245] 

+/- 
 [246-248] 

+ 
 [249] 

+ 
 [250] 

+ 
 [251] 

The symbols presented above represent as follows: +, complementary; -, contrary; +/-, 1324 
controversial; 0, no known relationship.  1325 
 1326 
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Table 2. Cross-Validation of phytochemicals that may enhance anticancer immune responses to 1327 
other cancer hallmarks  1328 

Approach  
 
 
 
 
 
Other Cancer 
Hallmarks 

Ganoderma 
lucidum 
(polysaccha
ride 
fraction) 

Trametes 
versicolor 
(protein-
bound 
polysaccha-
ride-k) 

Astragalus 
membranaceus 
(polysaccha-
ride fraction) 

Lentinus 
edodes 
(polysaccha-    
ride L-II, 
lentinan) 

Astaxan-
thin 

polyphenol-
resveratrol 
analogue 
HS-1793 

Genomic 
Instability 

0 0 0 0 0 0 

Sustained 
Proliferative 
Signaling 

+ 
 [,252] 

0 0 + 
 [253,254] 

+ 
 [255-257] 

0 

Tumor- 
Promoting 
Inflammation 

+ 
 [258,259] 

0 + 
 [260] 

+ 
 [261,262] 

+ 
 [263,264] 

0 

Evasion of 
Anti-growth 
Signaling 

+ 
 [265,266] 

+ 
 [267] 

+ 
 [268] 

+ 
 [269] 

+ 
 [270] 

0 

Resistance to 
Apoptosis 

+ 
 [271] 

0 + 
 [272] 

+ 
 [273] 

+ 
 [274] 

+ 
 [275] 

Replicative 
Immortality 

+ 
 [276] 

0 0 0 0 0 

Deregulated 
Metabolism 

0 0 0 0 0 0 

Angiogenesis + 
 [277,278] 

0 - 
 [279] 

+ 
 [280] 

0 + 
 [281] 

Tissue 
Invasion and 
Metastasis  

+ 
 [282] 

0 + 
 [283] 

+ 
 [284] 

+ 
 [285] 

+ 
 [286,287] 

Tumor 
Microenviron
ment 

+ 
 [288] 

+ 
 [289] 

+ 
 [290] 

+ 
 [291,292] 

+ 
 [293] 

+ 
 [294] 

The symbols presented above represent as follows: +, complementary; -, contrary; +/-, 1329 
controversial; 0, no known relationship.  1330 

1331 
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Figure legends 1332 

Figure 1. Tumor growth and immune response. An overview of the different key factors 1333 

governing tumor formation, progression, and immune evasion. The numbers in parentheses 1334 

represent the relevant references in support of the statements made. 1335 

 1336 

Figure 2. Tumor heterogeneity and immune response. Shown here are important sequential 1337 

events leading to tumor heterogeneity and its consequences for the various aspects of the 1338 

immune response. The numbers in parentheses are the relevant literature cited.  1339 

 1340 

Figure 3. Immune system and tumor metastasis. Depicted here are the key sequential events 1341 

based on the “Progression Model” leading to cancer cells exodus from the primary location and 1342 

subsequent establishment at a distant location and the possible role of various immune 1343 

modulators that aid this process. The numbers in parentheses are the relevant literature cited. 1344 

 1345 

Figure 4. Cancer therapy. A brief overview of the various available therapeutic options for 1346 

cancer. A few of these have entered clinical trials some of which have been approved for 1347 

treatment of specific types of cancers. The numbers in parentheses are the literature cited. 1348 

 1349 

 1350 

 1351 
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Interaction 

between tumor 

formation and 

immune responses 

Tumor progression 

and immunity 

Immune evasion by 

cancer 

 Infection, stress, 

inflammation            

Tumor growth ,   

Survival ,  

Angiogenesis   

    [3, 6-9] 

 

 Autoimmune 

diseases          

Tumor growth  

[6,10-12] 

 Immunoediting            

Tumor  [13-15] 

 Tregs [17-22] 

MDSCs [23,24, 26] 

 Cytokines 

[22,28,30,39-44] 

M2 macrophages 

[28-30] 

 Defective Ag 

presentation [32-38] 

 Immune 

suppressive 

mediators (VEGF, 

RCAS1, tumor 

gangliosides, IDO, 

arginase, IKK2 [31, 

45,47-58]) 

 Tolerance and 

immune deviation 

[59,60] 

 Apoptosis [66,67] 

 

Tumor growth and immune responses 

Figure 1 

Figure
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Morphological and epigenetic plasticity 

Tumor heterogeneity 

 Tumors-specific 

transplantation Ags 

 Tumor-associated 

Ags 

 Differentiation Ags 

 Histocompatibility 
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    [68,69] 

 Genotype 

 Gene expression 

 Cellular morphology 

Metabolic activity 

Motility 

 Behavior 

(proliferation rate, Ag 

presentation, drug 

response, and 
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Figure 3 

Key factors governing the tumor metastasis 
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 [84-88] 

Immune mediators 

(TGF-β , VEGF , HIF 

, iNOS , hypoxia ) 

by cancer cells  

Metastasis  [89-93] 
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 Radiation therapy 

 Immunotherapy 
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 Surgery 

    [125] 
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peptides and DCs 

[186-190] 

 Alloreactive effector 

cells [129] 

 Cellular targets 

(Tregs [136-138], 
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regulatory DCs [141]) 
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BAGE and GAGE 
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[153], PRAME [153], 
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[157], STAT3 

[168,169], bacteria 
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regulation 
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