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Abstract. We study a Bose-Fermi mixture within the framework of the mean-

field theory, including three possible regimes for the fermionic species: fully

polarized, BCS, and unitarity. Starting from the 3D description and using the

variational approximation (VA), we derive 1D and 2D systems of equations, under

the corresponding confining potentials. This method produces a pair of nonlinear

Schrödinger (NLS) equations coupled to algebraic equations for the transverse widths

of the confined state. The equations incorporate interactions between atoms of the

same species and between the species, assuming that the latter can be manipulated

by means of the Feshbach resonance (FR). As an application, we explore spatial

density correlations in the ground state (GS) between the species, concluding that

they strongly depend on the sign and strength of the inter-species interaction. Also

studied are the dynamics of the mixture in a vicinity of the GS and the corresponding

spatiotemporal inter-species correlation. The correlations are strongly affected by the

fermionic component, featuring the greatest variation in the unitary regime. Results

produced by the VA are verified by comparison with full numerical solutions.
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1. Introduction

Cold atom gases trapped in magneto-optical potentials have tremendously extended

the range of experimental possibilities in condensed-matter physics. The possibility of

controlling the intensity of the interactions, the depth of the trapping potential lattices,

and their geometry enables emulating a broad variety of solid-state settings and the

creation of novel states of the quantum matter [1]-[8].

In this context, a great variety of experimental and theoretical studies were

stimulated by the possibility of mixing degenerate bosonic and fermionic gases. The

first experimental works on Bose-Fermi mixtures (BFMs) were conducted with lithium

isotopes [9, 10], which was a precursor to the study of new combinations, such as
174Yb-6Li [11] and 87Rb-40K [12]. Particular attention has been paid to heavy-atom

mixtures, e.g., 87Sr-84Sr [13] isotopes with a large nuclear spin, that have been proposed

as prototypes for handling the quantum information. One of important points of the

work in this direction is the use of Feshbach resonances (FRs) in the mixtures, as

they make it possible to control the two-body interactions between the species. The

FR has been observed for the 87Rb-40K mixture [14, 15], and a giant FR has been

reported for 85Rb-6Li [16]. Further, five FRs were observed in 6Li-133Cs [17], and over

30 resonances are known to occur in the 23Na-40K mixture [18]. In Ref. [19], a multiple

heteronuclear FRs was reported in a triply quantum-degenerate mixture of bosonic 41K

and two fermionic species, 40K and 6Li. In the latter context, a wide s-wave resonance

for combination 41K-40K transforming the system into a strongly interacting isotopic

BFM immersed into a Fermi sea.

Parallel to the experiment, several theoretical works addressed the dynamics of

BFMs [20]-[26]. An approach that has proven to be very useful for describing the

ground state (GS) of the mixtures is provided by the mean field theory [27]-[31]. In this

context, the FRs for mixtures of 23Na-6Li, 87Rb-40K, 87Rb-6Li, 3He-4He, 173Yb-174Yb,

and 87Sr-84Sr have been studied [32, 33].

The possibility of holding ultracold gases in magneto-optical traps makes it possible

to create effectively one- or two-dimensional (1D or 2D) situations. A great number of

works addressed such 1D settings [34]-[41]. In particular, the variational approximation

makes it possible to reduce the 3D description to 1D or 2D [42, 43]. In many cases,

these approximations do not take into regard the fact that the transverse confinement

width(s) may vary with the particle density in the unconfined direction. The variational

approximation that does take this fact into account was developed for bosons in Ref.

[44] and for fermions in Ref. [45], demonstrating the high accuracy of the 1D and 2D

approximations in comparison with the full the 3D description.

In this paper we analyze the BFM at zero temperature confined to 1D or 2D

by external potentials. First, we consider the cigar-shaped configuration produced by

the strong confinement with the cylindrical symmetry acting in the transverse plane,

while a generic weak potential may act in the axial direction. Second, we consider

the disc-shaped BFM corresponding to the strong confinement applied in one direction,
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and a weak 2D potential acting in the perpendicular plane. We use the variational

method developed in Refs. [44, 45] to derive effective 1D and 2D nonlinear Schrödinger

(NLS) equations for the cigar-shaped and disc-shaped configurations, respectively. In

particular, our results apply to the 7Li-6Li BFM. In both cases (1D and 2D), we

analyze the influence of the density of both species on the width of the mixture in

the confined dimensions, the main control parameter being the inter-species scattering

length, aBF. The analysis is performed for three different regimes of the fermionic

component: polarized, BCS, and unitarity. Using the dimensionally-reduced system, we

consider spatial correlations between densities of particles of both species. Considering

perturbations around the GS, we study the spatiotemporal correlation between the

species too.

The paper is organized as follows: In Sec. 2, we derive 1D and 2D variational

equations from the full 3D description. In Sec. 3, we apply our equations to the numerical

analysis of the GS in the BFM, and consideration of the spatial correlation between the

species. For the 1D setting, we calculate spatiotemporal correlation in the form of the

so-called Pearson coefficient, considering perturbations around the GS. Conclusions are

presented in Sec. 4.

2. The variational approximation

We consider a diluted superfluid mixture formed by NB bosonic atoms of mass

mB, and NF fermionic atoms of mass mF and spin sF. The atoms interact

through the pseudopotential, δ(r) [1]. We assume that bosons form a Bose-Einstein

condensate (BEC), described by the Gross-Pitaevskii equation [1], while the local

density approximation [1] applies to the description of the weakly interacting fermionic

component. Accordingly, the dynamical equations for the BFM can be derived from

action S,

S =

∫

dtdr (LB + LF + LBF), (1)

where LB and LF are the Lagrangian densities of the Bose and Fermi components, while

LBF accounts for the interaction between the them:

LB =
i~

2

(

Ψ∗

B

∂ΨB

∂t
−ΨB

∂Ψ∗

B

∂t

)

− ~
2

2mB

|∇ΨB|2 − UB|ΨB|2 −
1

2
gB|ΨB|4,(2)

LF =
i~

2λ1

(

Ψ∗

F

∂ΨF

∂t
−ΨF

∂Ψ∗

F

∂t

)

− ~
2

2λ2mF

|∇ΨF|2 − UF|ΨF|2 −
1

2
gF|ΨF|4

− 3

5
ξ

~
2

2mF

CF|ΨF|10/3, (3)

LBF = −1

2
gBF|ΨB|2|ΨF|2. (4)

Here CF ≡ [6π2/ (2sF + 1)]
2/3

is a constant that depends on spin sF; gB ≡ 4π~2aB/mB,

gF ≡ 4π~2(aF/mF)[2SF/(2SF + 1)], and gBF ≡ 4π~2aBF/mBF are the three interaction
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Table 1. λ1, λ2, ξ, and sF for three different regimes of the Fermi gas.

Regime λ1 λ2 ξ sF

Polarized 1 1 1 0

BCS 2 4 1 1/2

Unitarity 2 4 0.44 1/2

parameters of the mixture, with aB, aF and aBF being the respective scattering lengths;

mBF ≡ mBmF/(mB +mF) is the reduced mass; and UB/F are external potentials acting

on bosons/fermions. Complex wave functions ΨB/F (r, t) are normalized to the numbers

of particles, NB/F. Parameters λ1, λ2, and ξ in the fermionic Lagrangian density (3),

along with sF, determine three different regimes [46]-[49] listed in the Table 1.

We apply the formalism developed below to the 7Li-6Li mixture, with the same

scattering parameter for both species, aB/F = 5nm. The use of isotopes of the same

alkali element is suggested by the similarity of their electric polarizability, thus implying

similar external potentials induced by an optical trap. Unless specified otherwise, in

what follows below we consider configurations with fully polarized fermions. Values of

parameters for all fermionic regimes are collected in Table 1. The BCS and unitarity

regimes involve more than one spin state of fermions, hence the magnetic trap will split

the respective spin energy levels. For this reason, we assume the presence of the optical

trap, which supports equal energy levels for all the spin states, making it possible to

discriminate different regimes of the interaction in the Bose-Fermi mixture. In the BCS

and unitarity regimes, we assume balanced populations of the two spin components.

Finally, varying action S with respect to Ψ∗

B and to Ψ∗

F, we derive the following

system of nonlinear Schrödinger equations for bosons and fermions:

i~∂tΨB =

[

− ~
2

2mB
∇2 + gB|ΨB|2 + gBF|ΨF|2 + UB

]

ΨB, (5)

i~

λ1

∂tΨF =

[

− ~
2

2λ2mF

∇2 + gF|ΨF|2 + gBF|ΨB|2 + UF

+
~
2

2mj
ξCF|ΨF|4/3

]

ΨF. (6)

As is known from previous works, the mean-field description of the fermionic

component, based on the effective NLS equation (6) is valid in the hydrodynamic

approximation, which implies that the Fermi component forms a correlated superfluid.

In static situations, this approximation is relevant for sufficiently smooth configurations,

whose characteristic spatial scale is much greater than the de Broglie wavelength at the

Fermi surface [50, 51]. In various dynamical settings, both pure fermionic and mixed

Bose-Fermi ones, the hydrodynamic approach remains relevant for slow quasi-adiabatic

evolution [42]-[49]; [52, 53].

While numerical integration of this system in the 3D form system is very heavy

computationally, the effective dimension may be reduced to 1D or 2D when the system
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is tightly confined by a trapping potential. To this end, the variational method is

employed, making use of the factorization of the 3D wave function, which includes a

Gaussian ansatz in the tightly confined transverse directions. The factorization has been

widely used for Bose and Fermi system separately, as it shown in Refs. [44] and [45],

respectively. In next two sections we apply the variational technique to a Bose-Fermi

mixture, obtaining results that agree well with full 3D simulations. On the other hand,

the applicability of the Gaussian ansatz for approximating of the transverse part of the

3D wave function is determined by a relation of the transverse-confinement strength, and

the effective strength of the bosonic or fermionic nonlinearity. In case the latter factor

is stronger, the transverse wave function may be used in the form of the Thomas-Fermi

(TF) approximation [53].

2.1. The one-dimensional variational system

The common form of the confinement is provided by the tight harmonic-oscillator

potential acting in the trapping dimensions. Thus, the confinement to 1D (the cigar-

shaped configuration along the z-axis) corresponds to the following potentials, which

include weak axial components, V1D,B/F:

VB/F (r, t) =
1

2
mB/Fω

2
t,B/F

(

x2 + y2
)

+ V1D,B/F (z, t) . (7)

Assuming that the transverse trapping potential is strong enough, the dimensional

reduction is carried out by means of the usual factorized ansatz for the wave

functions, ΨB/F (r, t) = vB/F

(

x, y; σB/F (z, t)
)

fB/F (z, t), where the transverse ground-

state Gaussians, vB/F,with widths σB/F, and the axial functions, fB/F, are normalized

to 1 and NB/F respectively:

vB/F

(

x, y; σB/F (z, t)
)

=
1

π1/2σB/F (z, t)
exp

(

− x2 + y2

2σ2
B/F(z, t)

)

. (8)

For both species, we define the axial density as n1D,B/F ≡
∣

∣fB/F

∣

∣

2
. The relevance of

the use of the Gaussian form in the confined directions for bosons and fermions was

demonstrated in in Refs. [44] and [45], respectively, by showing that the respective

factorization produces GSs close to their exact 3D counterparts. As demonstrated below,

the Pauli principle makes the transverse width of the Fermi gas larger, in comparison

with the Bose gas in the presence of a similar external potential.

Replacing ΨB/F by the factorized density in the Lagrangian density and integrating

in the transverse plane of (x, y), the expression for action (1) is cast into takes the

following form:

S =

∫

dtdz (L1D,B + L1D,F + L1D,BF), (9)

where the effective 1D densities are

L1D,B = i
~

2
(f ∗

B∂tfB − fB∂tf
∗

B)− V 1D,Bn1D,B − e1D,B, (10)
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L1D,F = i
~

2λ1

(f ∗

F∂tfF − fF∂tf
∗

F)− V1D,Fn1d,F − e1D,F, (11)

L1D,BF = −1

π

gBF

σ2
B
+ σ2

F

n1D,Bn1D,F, (12)

and e1D,B and e1D,F are the 1D energy densities of the boson and fermion species,

respectively:

e1D,B =
~
2

2mB

|∂zfB|2 +
[

gB
4πσ2

B

n1D,B +
~
2

2mBσ2
B

+
1

2
mBω

2
t,Bσ

2
B

]

n1D,B, (13)

e1D,F =
~
2

2λ2mF

|∂zfF|2 +
[

gF
4πσ2

F

n1D,F +
~
2

2λ2mFσ2
F

+
1

2
mFω

2
t,Fσ

2
F

]

n1D,F

+
~
2

2mF

3ξ

5σ
4/3
F

C1D,Fn
5/3
1D,F, (14)

with C1D,F ≡ (3/5)(6π(2sF + 1))2/3 in Eq. (14). Next, varying action S given by

Eq. (9) with respect to f ∗

B and f ∗

F yields the respective Euler-Lagrange equations, i.e.,

the motion equations for the BFM in the 1D approximation:

i~∂tfB =

[

− ~
2

2mB

∂2
Z + V 1D,B +

1

π

gBF

σ2
B
+ σ2

F

|fF|2 +
gB

2πσ2
B

|fB|2

+
~
2

2mBσ2
B

+
1

2
mBω

2
t,Bσ

2
B

]

fB, (15)

i
~

λ1

∂tfF =

[

− ~
2

2λ2mF

∂2
Z + V1d,F +

1

π

gBF

σ2
B
+ σ2

F

|fB|2 +
gF

2πσ2
F

|fF|2

+
~
2ξ

2mF

CF,1D

σ
4/3
F

|fF|4/3 +
~
2

2mFλ2σ
2
F

+
1

2
mFω

2
t,Fσ

2
F

]

fF. (16)

Relationships between σB/F and fB/F are obtained by varying the 1D action (9) with

respect to σB/F:

χI,Bσ
4
B − ~

2

mB

− gB
2π

n1D,B = 0, (17)

χI,Fσ
4
B − 2

5

~
2

mF

ξCF,1Dn
2/3
1D,Fσ

2/3
F

− ~
2

λ2mF

− gF
2π

n1D,F = 0, (18)

where χI,B/F ≡ mB/Fω
2
t,B/F − 2gBFn1D,F/B/[π(σ

2
B + σ2

F)
2].

Thus, Eqs. (15)-( 18) constitute a system of four 1D coupled equations produced by

the reduction of the underlying 3D system (5), (6). A numerical solution of Eqs. (17)

and (18) by means of the Newton’s method produces the dependences of the transverse

widths σB and σF on the 1D densities, n1D,B and n1D,F, which are shown, respectively,

in the left and right columns of Fig. 1, for the BFM with the attractive and repulsive

interactions (the top and bottom rows, respectively). In all the cases, the Fermi species

has, generally, a greater transverse width than its Bose counterpart.
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Figure 1. (Color online) Color-coded charts for the transverse widths of the bosonic

and fermionic species, σB and σF (measured in units of µm), as functions of the bosonic

and fermionic 1D densities, n1D,B/F. (a) σB and (b) σF for aBF = −25 nm. (c) σB and

(d) σF for aBF = 25 nm. The other parameters are aB/F = 5 nm and ωt,B/F = 1000

Hz. Only fully polarized fermions are considered here.

We consider for the bosonic density a range greater than for its fermionic

counterpart because our calculations correspond to BFMs in which the number of bosons

exceeds the number of fermions. For the attractive mixture (aBF = −25 nm), it is

observed that, for the bosons (see Fig. 1(a)) the width, σB, slightly increases with n1D,B

and n1D,F. For the fermions (see Fig. 1(b)), the width, σF, strongly increases with

n1D,F, due to the Pauli principle, and decreases with n1D,B, because of the attractive

boson-fermion interaction. In the repulsive mixture (aBF = 25 nm), the situation for

bosons is almost the same as in the case of the attraction, with the difference that σB

slightly decreases with the fermionic density, n1D,F. For the fermions (see Fig. 1(d))

the increase in the boson density (n1D,B) generates a significant increase in σF when

the fermionic density (n1D,F) is low. These four diagrams demonstrate the significant

dependence of the widths of both species on the densities, thus showing the importance

of treating σB and σF as the variational variables.

The above results can be explained by the dependence of the interaction between

the species on their densities. To do this, we define a single scattering parameter,

ge,B = gB



1 + 2
gBF

gB

n1D,F

n1D,B

(

1 +

(

σF

σB

)2
)−1



 , (19)
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and its counterpart for the fermions, obtained by replacing subscript B with F. Making

use of the so defined interaction parameter 19, in Eqs. 15 and 16, these equations assume

the form given by

i~∂tfB =

[

− ~
2

2mB

∂2
Z + V1D,B +

ge,B
2πσ2

B

|fB|2 +
~
2

2mBσ2
B

+
1

2
mBω

2
t,Bσ

2
B

]

fB,(20)

and

i
~

λ1

∂tfF =

[

− ~
2

2λ2mF

∂2
Z + V1D,F +

ge,F
2πσ2

F

|fF|2 +
~
2

2mFλ2σ
2
F

+
1

2
mFω

2
t,Fσ

2
F

+
~
2ξ

2mF

CF,1D

σ
4/3
F

|fF|4/3
]

fF. (21)

where the Eqs. 20 and 21 represented the motion equations for bosons and fermions

separately, with effective scattering parameter ge,B and ge,F respectively. Figure 2 shows

the variation of the effective scattering parameters, ge,B and ge,F, with the inter-species

scattering length, aBF. Figure 2(a) shows that the interaction between the bosons is

suppressed when the interaction is attractive, and increases when it is repulsive. When

the fermionic density is much lower that the bosonic density (circles), the influence of

the variation of the interaction between the species on the effective interaction strength

is minimal. Figure 2(b) shows the variation of the effective scattering parameter of the

fermions (ge,F) under the same conditions as in Fig. 2(a), demonstrating the strong

influence of the inter-species interaction on the fermions, due to the higher bosonic

density. It is worthy to note that, for the range of aBF presented in Fig. 2(b), ge,F is

about three orders of magnitude higher than gF. The inset in Fig. 2(b) additionally

shows the dependence of ge,F on the fermionic density n1D,F (keeping n1D,B fixed). A

much larger number of bosons than that of fermions (the situation that that we address

in this work), in the case of an attractive mixture, implies that the fermionic profile will

be close to that of the bosonic gas. Accordingly, the Gaussian ansatz is appropriate for

in both species, which is confirmed below by the comparison between 3D numerical and

variational solutions.

2.2. The two-dimensional variational system

To derive 2D equations for the disc-shaped gas, the shape of the confinement potential

is taken as (cf. Eq. (7) for the cigar-shaped configuration):

VB/F (r) = V2D,B/F (x, y) +
1

2
mB/Fω

2
z,B/Fz

2, (22)

where the second term corresponds to the strong harmonic trap acting along

the z direction. The corresponding factorized ansatz is adopted as ΨB/F =

φB/F (x, y) uB/F

(

z; ξB/F (x, y, t)
)

, where uB/F and φB/F are normalized to 1 and NB/F,

respectively, and uB/F is represented by the Gaussian wave function,

uB/F

(

z; ξB/F

)

=
1

π1/4ξ
1/2
B/F

exp

(

− z2

2ξ2
B/F

)

, (23)
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Figure 2. (Color online) The variation of the effective scattering parameters: (a)

ge,B/gB and (b) ge,F/gF as a function of the interspecies scattering length aBF/aB for

three values of n1D,F/n1D,B. The parameters are ωt,B/F = 1000 Hz, aB/F = 5 nm and

n1D,B = 100. The inset of the figure corresponds to gBF/gB/F = 1 for two values of

n1D,B.

ξB/F (x, y, t) being the widths of the gas in the confined direction. Substituting the

factorized ansatz (23) into action (1) and integrating over z, we arrive at the following

expression for the effective 2D action:

S =

∫

dtdxdy (L2D,B + L2D,F + L2D,BF), (24)

L2D,B = i
~

2
(φ∗

B∂tφBB − φB∂tφ
∗

B)− V2D,Bn2D,B − e2D,B, (25)

L2D,F = i
~

2λ1

(φ∗

F∂tφF − φF∂tφ
∗

F)− V2D,Fn2D,F − e2D,F, (26)

L2D,BF = − 1

π1/2

gBF
√

ξ2
B
+ ξ2

F

n2D,Bn2D,F, (27)

where n2D,B/F ≡
∣

∣φB/F (x, y)
∣

∣

2
are the 2D particle densities of the boson and fermion

species, and e2D,B and e2D,F are their energy densities:

e2D,B =
~
2

2mB

|∇⊥φB|2+
[

gB√
8πξB

n2D,B +
~
2

4mBξ2B
+

1

4
mBω

2
z,Bξ

2
B

]

n2D,B, (28)

e2D,F =
~
2

2λ2mF

|∇⊥φF|2 +
[

gF√
8πξF

n2D,F +
~
2

4λ2mFξ
2
F

+
1

4
mFω

2
z,Fξ

2
F

+
~
2

2mF

ξ
3

5ξ
2/3
F

C2D,Fn
2/3
2D,F

]

n2D,F, (29)

with C2D,F ≡ (3/5)1/2(6/(2sF + 1))2/3π in Eq. (29).

The motion equations of the 2D system are obtained by the variation of the action

S given by Eq. (24) with respect to variables φB and φF:
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i~∂tφB =

[

− ~
2

2mB
∇2

⊥
+ V2D,B +

1

π1/2

gBF
√

ξ2
B
+ ξ2

F

n2D,F +
gB√
2πξB

|φB|2

+
~
2

4mBξ2B
+

1

4
mBBω

2
z,Bξ

2
B

]

φB, (30)

i
~

λ1

∂tφF =

[

− ~
2

2λ2mF

∇2
⊥
+ V2D,F +

1

π1/2

gBF
√

ξ2
B
+ ξ2

F

n2D,B +
gF√
2πξF

|φF|2

+
~
2

2mF

ξ
1

ξ
2/3
F

C2D,F|φF|4/3 +
~
2

4λ2mFξ
2
F

+
1

4
mFω

2
z,Fξ

2
F

]

φF. (31)

Relations between ξB/F and φB/F are produced by the Euler-Lagrange equations

associated to ξB/F:

κI,Bξ
4
B − gB√

2π
n2D,BξB − ~

2

mB

= 0, (32)

κI,Fξ
4
F − 2~2

5mF

ξC2D,Fn
2/3
2D,Fξ

4/3
F

− gF√
2π

n2D,FξF − ~
2

λ2mF

= 0 (33)

where κI,F ≡ mFω
2
z,F + 2gBFn2D,B/[π

1/2(ξ2B + ξ2F)
3/2

]. Equations (32) and (33) for ξB/F

were solved numerically. The four graphs in Fig. 3 show the dependence of ξB and ξF
(in the left and right columns, respectively) on n2D,B/F, for the attractive and repulsive

mixtures (top and bottom panels, respectively). The analysis for the attractive case

can be divided into two parts: when the boson density is high, the fermions gas tends

to compress, so that at low densities its width is found to be even less than that of

the boson gas, a situation that tends to reverse for high fermionic densities; for low

bosonic densities, the width of the boson gas rapidly decreases with the increase of the

fermionic density, until becoming nearly constant, while, on the contrary, the width of

the fermion gas increases progressively when its density is higher. Conversely, when the

mixture is repulsive, the situation is similar to that outlined above for the 1D setting:

low densities of the mixtures cause the gas to compress, while high densities cause the

mixture to expand, this trend being much stronger for the fermion component.

To determine the influence that one species exerts on the other in 2D, we define

the effective scattering parameters, cf. a similar definition (19) adopted in the 1D case:

ge,B = gB



1 +
√
2
gBF

gB

n2D,F

n2D,B

(

1 +

(

ξF
ξB

)2
)−1/2



 , (34)

ge,F being produced by replacing subscript B with F. As shown in detail below, our

calculations were performed assuming the same order of magnitude for the number of

particles for both 1D and 2D cases (for this reason that the effective 1D density is

about 10 times the magnitude of its 2D counterpart). With regard to this, conclusions

concerning the effective interaction strength, which follow in the 1D setting from Fig.

2, apply to 2D case as well.
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Figure 3. (Color online) Color-coded charts for the transverse widths of the bosonic

and fermionic species, ξB and ξF (measured in units of µm), as functions of the bosonic

and fermionic 2D densities, n2D,B/F. (a) ξB and (b) ξF for aBF = −25 nm. (c) ξB and

(d) ξF for aBF = 25 nm. The other parameters are aB/F = 5 nm and ωz,B/F = 1000

Hz. Only fully polarized fermions are considered here.

3. Numerical Results

Our analysis was developed for the GS and dynamics of perturbations around it in the

presence of the 3D harmonic-oscillator trap of the following form:

VB/F (r) =
1

2
mB/F

(

ω2
x,B/Fx

2 + ω2
y,B/Fy

2 + ω2
z,B/Fz

2
)

, (35)

In particular, for the GS of the 1D and 2D settings we focused on determining the

spatial correlation Cs between the spatial particle densities in both species, defined as

Cs (n̄B, n̄F) =
〈n̄Bn̄F〉

√

〈n̄2
B〉 〈n̄2

F
〉
, (36)

where n̄B/F = nB/F −
〈

nB/F

〉

, 〈〉 standing for the spatial average. For dynamical

perturbations around the GS, a spatiotemporal correlation, which is defined by replacing

the spatial average with the spatiotemporal average, is known as the Pearson coefficient

Cs−t [54]. The GSs in the 1D and 2D cases were found by means of the imaginary-time

integrations of Eqs. (15), (16) and (30), (31), respectively.

3.1. Results in one dimension.
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Figure 4. (Color online) Profiles of the particle density (as produced by the VA and

3D calculations, see inset in panel (b)), and the width in the confined direction, for the

bosonic and fermionic components, for five values of aBF, as defined in the panels. (a)

n1D,B, (b) n1D,F, (c) σB, and (d) σF. The parameters are NB = 5×104, NF = 2.5×103,

aB/F = 5 nm, ωz,B/F = 30 Hz and ωt,B/F = 1000 Hz. The inset in (a) shows the

difference between both methods, VA and 3D, by means of ∆n1D,B = ρ1D,B − n1D,B.
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Figure 5. (Color online) One-dimension overall percentage error for both species (see

the definition in the text). The parameters are the same as in Fig. 4



Correlations and synchronization in a Bose-Fermi mixture 13

3.1.1. Accuracy of the variational method as a function of scattering parameter aBF for

the ground states. As a starting point in the 1D case with free coordinate z, we analyze

the effect of the magnitude and sign of the interaction parameter on the spatial profile

of both species, and the accuracy of the variational method (see Eqs. 15 - 18) compared

to the 3D solution, by varying the scattering length aD,B. The plots in Fig. 4 shows this

situation, with panels 4(a) and 4(b) corresponding to the profiles of n1D,B and n1D,F,

respectively, where the inset in panel 4(b) specifies whether the profile was produced by

the VA or by means of the 3D solution, while 4(c) and 4(d) correspond to the profiles

of σB and σF. The mixture with many more bosons than fermions is considered here:

NB = 5 × 104, NF = 2.5 × 103. Because of this condition, the bosonic profile is mainly

determined by its self-interaction and the external potential. First, we deal with the

influence of the interspecies interaction (gBF) on the density profile, and then address

an error resulting from the variational approach. Figure 4(a) shows that variations of

the bosonic density profile are very small in comparison to the significant changes of the

inter-species scattering length. The situation is opposite for the fermionic species. As the

repulsive scattering length increases, the fermions tend to be pushed to the periphery of

the bosonic-gas density profile. This phenomenon is known as demixing [27, 32, 35, 52].

On the other hand, for the attractive case, fermions are, naturally, concentrated in

the same region where the bosons are located. Figures Fig. 4(c) and 4(d) show that

the width of the bosonic profile (Fig. 4(c)) slightly increases as going from the inter-

species attraction to repulsion. A similar trend is observed for fermions, see Fig. 4(d),

but amplified in the spatial zone of the interaction with the bosons, where the gas is

compressed in the case of the attraction and expands in the case of the repulsion. It is

noted that the fermionic component expands in the confined direction much more than

its bosonic counterpart, and that the fermionic width fluctuates markedly with changes

in density. Now, to analyze the accuracy of the method we solved Eqs. 5 and 6 and

obtained the 1D density associated through of ρ1D,B/F =
∫ ∫

∣

∣ΨB/F

∣

∣

2
dxdy. The inset

in panel 4(a) shows that the difference between the bosonic profiles obtained by both

methods (VA or 3D) is ∼ 2% of the maximum density for all cases (the fact that the

error changes very little with variations in aBF is a consequence of the greater number of

bosons). Figure 4(b) shows that, for the case of the attractive mixture, the variational

profile is very close to the 3D result, in particular for the case of aBF = −6nm. For the

repulsive mixture, it is observed that the error increases, which is a consequence of the

lower fermionic density at the center of the 3D harmonic potential, dominated for the

bosons, hence a monotonously decreasing function in the transverse direction, such as

the Gaussian, is not a sufficiently good approximation. We define the global error for the

variational method as E%,1D =
∫

|ρ1D − n1D| dz (for both species). Figure 5 shows the

global error for both species as a function of the scattering parameter, aBF. This picture

demonstrates that the error for the bosonic species is around 2%, and it does not change

much (as already noted in the comment to Fig. 4(a)). For the fermions, the error attains

a minimum value ∼ 0.5% at aBF ≈ 4nm, thus corroborating that the Gaussian is a very

good approximation. This is a consequence of the fact that, for this value of aBF, the
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Figure 6. (Color online) The color-coded plot of the spatial correlation Cs, defined

as per Eq. (36), as a function of the fermionic number, NF, and the scattering length

of the inter-species interaction, aBF. Other parameters are NB = 5 × 104, aB/F = 5

nm, ωz,B/F = 30 Hz and ωt,B/F = 1000 Hz.

interspecies interaction term practically compensates the Pauli repulsion term, making

the dynamics of the fully polarized Fermi gas close to that giverned by the Schödinger

equation (recall that the Gaussian is the solution for the ground state). When the

mixture becomes more attractive, the fermionic dynamics is dominated by the bosons,

producing a similar error for both species, while for the repulsive mixture the Gaussian

approximation is not appropriate. Interestingly, for the non-interacting mixture, the

error for the fermions is smaller than for the bosons, because the fermionic density is

very low, making the self-interaction terms weak in comparison to the external potential,

therefore it is appropriate to use the Gaussian ansatz for describing the 1D dynamics.

Using the TF profile may produce, in principle, better results, but the respective analysis

would be cumbersome.

3.1.2. Spatial correlations in the ground state. As the first application, we calculate the

spatial correlation between densities of the two species (Cs), as defined by Eq. (36) for

a wide range of parameters, ranging from very attractive to to very repulsive mixtures.

We keep in mind that the variational calculation produces a minor error for attractive

mixtures, therefore the values obtained for the repulsive case will be considered as help to

asses the validity of our analysis. The eventual objective is to produce a parameter which

determines the mutual influence of both species. In the Fig. 6, the spatial correlation Cs

is shown versus NF and aBF , which shows that, for an attractive interaction, Cs reaches

values greater than 0.8 (in the mixed state), whereas for the repulsive interaction Cs

decreases until reaching values around Cs = 0.3 (in the demixed state). It is also

noted that the number of fermions strongly affects the dependence of the correlation

on the inter-species scattering length. When NF increases, the difference between the

maximum and the minimum value of Cs decreases, as aBF varies from −25 nm to +25
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Figure 7. (Color online) Space-time diagrams for the conservative dynamics of bosons

(above) and fermions (bottom), for three different values of the interspecies scattering

parameter: (a)−(b) aBF = −6nm, (c)−(d) aBF = −12nm, and (e)−(f) aBF = −14nm.

The initial conditions are the same in all cases and are described in the text. Other

parameters are the same as in Fig. 4

nm, tending to reach values close to Cs = 0.8, which is the value attained in the absence

of the interaction, depending only on the presence of the same trap acting on both

components.

3.1.3. Dynamics near the ground state We begin the study of conservative dynamics,

considering a mixture with arbitrary initial conditions for the 1D fields: we assume

a Gaussian shape along the z-axes with widths (standard deviation) of 100µm and

200µm for bosons and fermions, respectively. Figure 7 shows three cases of the

temporal evolution with these initial conditions for aBF = −6nm, aBF = −12nm,

and aBF = −14nm. In the first case (panels 7(a) and 7(b)), it is observed that

the densities converge towards the center of the potential in an expected pattern of

oscillations around the potential minimum; in addition, the fermions are affected by

bosons, as can be seen for the mark left by the bosons in the fermionic density. For the

second case (panels 7(c) and 7(d)), it is observed that the increase in the magnitude

of the attractive interaction generates dark solitons in the fermionic density, some of

which shows oscillatory dynamics very similar to that observed, experimentally and

theoretically, in Refs. [55]-[60]. Finally, the last case (panels 7(e) and 7(f)) shows

that further increase in the magnitude of the interspecies interaction generates a larger

number of dark solitons. In other words, we show that the attractive interaction of

fermions with bosons in a state different from the ground state eventually generates a

gas of dark solitons.
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Figure 8. (Color online) (a) and (b) Spatiotemporal evolution of the bosonic and

fermionic densities, respectively, in the case of suddenly switching the inter-species

interaction in the 1D ground state which corresponded to aBF = 0. (c) and (d) Bosonic

and fermionic density profiles at the end of the simulations (the blue lines) compared

to the ground state (red line), at the same values of physical parameters, which are

NB = 5 × 104, NF = 2.5 × 103, aB/F = 5 nm, aBF = −15 nm, ωz,B/F = 30 Hz, and

ωt,B/F = 1000 Hz.

Now we aim to address the system’s dynamics in the vicinity of the GS. We start

with the GS found in the absence of the inter-species interaction (aBF = 0). Then, at

t = 0, we switch the interaction on, which may imply the application of the magnetic

field, that gives rise to aBF 6= 0 via the FR. Figure 8 shows an example of the ensuing

evolution in the attractive mixture with aBF = −15 nm, the fermionic component being

fully polarized. Panels 8(a) and (b) display space-time diagrams of oscillations of the

bosonic and fermionic densities in the dynamical state. Panels 8(c) and (d) compare the

density profiles at the end of the simulations with the GS of the interacting mixture. It

is seen that the dynamics amount to rapid fluctuations around the GS. Figure 7 makes

it clear that the spatiotemporal dynamics of fermions in panel 8(b) does not reduce to

noise around the ground state. It rather corresponds to a gas of dark solitons oscillating

in the harmonic potential. Moreover, the fact that the spatiotemporal diagram has

been produces for the time when the system is in the stationary regime suggests that

the dark solitons are fully stable. Note that the noise observed in the bosonic component

is clearly caused by the fermionic dark solitons.

Now, we measure how correlated the densities remain in time. Similar to what is
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Figure 9. (Color online) The evolution of spatial correlation Cs in the dynamical

states near the ground state for five values of aBF, as indicated in the figure. The

parameters are the same as in Fig. 8.

observed in Fig. 6, Fig. 9 shows that the spatial-correlation parameter Cs, defined as

per given Eq. (36) rapidly decreases following the transition from negative to positive

values of aBF (the mixing-demixing transition). When the inter-species interaction is

more attractive, it increases the correlations, imposing spatiotemporal synchronization

of density fluctuations. In the case of strong repulsion, aBF = 50 nm, correlation

fluctuations are suppressed because the system falls into a demixed state.

Figure 10 presents the analysis of the spatiotemporal synchronization of the

mixture, where three possible regimes are considered for the fermions: fully polarized,

BCS, and unitarity. Parameters of the the Lagrangian density for each fermionic regime

are given in Table 1. The synchronization was calculated through the Person coefficient

Cs−t defined above. For each of the three cases, the spatial correlation, Cs, was

calculated too. When the interaction is attractive, there is no discrepancy between

the synchronization and correlation curves. On the other hand, in all the three regimes

it is observed that, as the interaction becomes more repulsive, the synchronization of

the mixture decreases in comparison to the spatial correlation. This trend enhances as

the system approaches the demixing transition. Another generic feature is that stronger

correlations between the species near the GS imply a stronger synchronization on the

spatiotemporal dynamics too.

The correlation properties are different for the distinct fermionic regimes. Cs−t is

always positive for the system with fully polarized fermions and in the BCS regime,

decreasing as the interaction gets more repulsive. On the other hand, the unitarity

regime features significant differences: at first, Cs−t grows to a maximum value at

aBF = −10 nm; then it decreases, reaching negative values of Cs−t/Cs in the demixed

state. In all the cases, no significant difference are observed between Cst and Cs in the

case of the attractive Bose-Fermi interaction, i.e., a highly correlated GS supports the

dynamical synchronization too.
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Figure 10. (Color online) Spatiotemporal correlation Cs−t versus aBF for the

ground state (GS) and in the dynamics near the ground state (“DNGS”) for three

fermions regimes: polarized, BCS, and unitarity. The parameters are NB = 5 × 104,

NF = 2.5×103, aB/F = 5 nm, ωz,B/F = 30 Hz and ωt,B/F = 1000 Hz. Table 1 provides

parameters that correspond to the different regimens in the Lagrangian density.

3.1.4. Accuracy of the variational method for the spatiotemporal dynamics In the

Sec. 3.1.3 some examples of spatio-temporal dynamics were presented without discussing

the accuracy of the results. In Fig. 11 the spatio-temporal dynamics of the 1D density

is displayed as produced by the solution of the 3D equations 5 and 6, using the same

procedure as in Section 3, for initial conditions similar to those used in Fig. 7 but with

aBF = −10nm. The initial conditions for the 3D dynamics are given by the ansatz in

Eq. 8, with the Gaussian profile along the z-axes, similar to those used in the Fig. 7.

Panels 11(a) and 11(b) show spatio-temporal diagrams of the bosonic and fermionic

density, respectively, making the emergence of dark solitons obvious, see also Fig. 7.

This result corroborates that the dark solitons will emerge too in the 3D dynamics,

which is approximated by the present 1D model. The other panels show a comparison

of the 1D spatial profiles, as obtained from 3D simulations and the 1D VA, for three

instants of time: t = 0ms (panels 11(c) and 11(d)), t = 25ms (panels 11(e) and 11(f)),

and t = 50ms (panels 11(g) and 11(h)). The results demonstrate that the VA profiles

are very similar to their counterparts produced by the 3D simulations, hence the present

approximation provides good accuracy and allows one to study dynamical features of

the Bose-Fermi mixture in a sufficiently simple form.

3.2. Results in two dimensions.

3.2.1. Accuracy of the variational method as a function of scattering parameter aBF for

the ground state. In the 2D setting, we studied the GS of the BFM, fixing the number

of bosons to NB = 5 × 104 (similar to the value used in the 1D case), which was and

much greater than the number of fermions. Fig. 12 shows the profile of the 2D bosonic

and fermionic densities, n2D,B/F (top), as obtained from the VA and 3D simulations, and
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Figure 11. (Color online) Comparison of the dynamics, as obtained from the 1D

variational approximation, and from the 3D simulations. Spatiotemporal diagrams for

bosons (a) and fermions (b) are obtained from the 3D simulations. The other panels

show spatial profiles for: (c)−(d) t = 0ms, (e)−(f) t = 25ms, and (e)−(f) t = 50ms.

Here aBF = −10nm, the initial conditions and other fixed parameters being the same

as in Fig. 7.

the widths of the mixture in the transverse direction, ξB/F (bottom), with respect to the

radial coordinate. To obtain the 2D profile from the 3D simulations (results of solving

Eqs. 5 and 6), we integrate the 3D density along the z so that ρ2D,B/F =
∫
∣

∣Ψ2D,B/F

∣

∣ dz.

The panels for the bosonic and fermionic components are displayed on the left and right,

respectively. The results are very similar to what was observed in the 1D case in Fig. 4,

for the same value of the physical parameters. Therefore, the following conclusions

are also similar to what inferred in the 1D setting: the repulsive mixture concentrates

the bosons at the center, while the attractive mixture concentrates both species at

the center. Panels 12(c) and 12(d) show that only the width of the fermionic density

profile varies significantly with the change of the scattering length of the inter-species

interaction, which is consequence of a greater number of bosons than fermions. It is

clearly seen that fermions are stronger confined when the interaction is attractive, and

their spatial distribution significantly expands when the interaction is repulsive. Similar

results have been observed in [27, 28, 32].

Now, to compare the results obtained from the VA with those produced by the 3D

simulations, we note that both profiles are practically identical, except for the repulsive

case in which a discrepancy is observed (smaller than in the 1D case). The inset in

panel 12(a) shows that the difference between the two results has a magnitude of nearly

three orders of magnitude lower than the density itself. The error is lower than in the

1D case because the 2D reduction is closer to the full 3D model.

Now, similar to the 1D case, we define the overall percentage error of the VA as

E%,2D =
∫ ∫

|ρ2D − n2D| dxdy (for both species). Figure 13 shows the error for both

species as a function of interspecies scattering parameter (aBF). For bosons it is around

of 0.2% (one order of magnitude lower than in the 1D case), and does not change much
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Figure 12. (Color online) The radial profile of the 2D particle density (for the VA and

3D simulations, see the inset in panel (b)), and the respective width in the transverse

direction (z) of the bosonic and fermionic profiles, for five values of aBF (see insets in

the panels): (a) n2D,B, (b) n2D,F, (c) ξB, and (d) ξF. The parameters are NB = 5×104,

NF = 2.5× 103, aB/F = 5 nm, ωz,B/F = 1000 Hz, and ωx,B/F = ωy,B/F = 30 Hz. The

inset in panel (a) shows the difference between both methods, VA and 3D, where

∆n2D ≡ ρ2D − n2D.

(as shown in the inset to Fig. 12(a)). For fermions the error is greater than for bosons

throughout the observed range, but it is quite small for the attractive mixture. Like

in the 1D case, the error increases for the repulsive mixture, but remains lower than

that calculated for bosons in the 1D case. In summary, the 2D approximation is very

accurate, implying, as shown below, that the description of the dynamics is also more

accurate in this case.

3.2.2. Spatial correlations of the two-dimensional density Here we again apply the

formalism to the calculation of the spatial correlation Cs. The Fig. 14 shows the

dependence of the spatial correlation Cs, defined as per Eq. (36), on the scattering

length aBF for three values of NF and fixed NB = 5 × 104, in the regime of the fully

polarized fermionic component. The case with a smaller number of fermions (N = 2500,

the same as in Fig. 12) gives rise to the greatest contrast in the values of the correlation:

from a value close to 1 for gBF = −25 nm to a value near zero for gBF = 25 nm. This

transition is more drastic than that observed for the same parameters in the 1D case.

This is mainly due to different factors multiplying the interaction terms in the 2D
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Figure 13. (Color online) 2D overall percentage error for both species (the definition

is given in the text). Parameters are the same as in Fig. 12.
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Figure 14. (Color online) Spatial correlation Cs of the ground state of the 2D mixture

as a a function of aBF, for three values of the number of fermions. The other parameters

are: NB = 5 × 104, aB/F = 5 nm, ωx,B/F = ωy,B/F = 30 Hz and ωz,B/F = 1000 Hz.

Fermions are in the fully polarized state.

equations (31), ( 32), in comparison with their 1D counterparts (15), (16). The contrast

between the mixing and demixing decreases as the number of fermions increases, due to

the strengthening of the self-interaction of the fermions, hence the correlation gets less

sensitive to the inter-species scattering length, aBF.

The Fig. 15 shows the spatial correlation, defined as per Eq. (36), for the three

fermionic regimes: polarized, BCS and unitarity. The figure is a counterpart of Fig. 10

drawn for the 1D case, but only for the spatial correlation in the GS (Cs). One may

conclude that these fermionic regimes show the behavior similar ti that observed in

the 1D case, a difference being that the three curves demonstrate stronger demixing

when aBF changes from positive to negative values. In the unitarity regime it is again

observed that the correlation reaches a maximum close to 1 at aBF ≈ −10 nm, dropping
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Figure 15. (Color online) Spatial correlation Cs of the ground state of the 2D

mixture as a a function of aBF, for three fermionic regimes: polarized, BCS, and

unitarity. The fixed parameters are: NB = 5 × 104, NF = 2.5 × 103, aB/F = 5 nm,

ωx,B/F = ωy,B/F = 30 Hz and ωz,B/F = 1000 Hz.

to negative values when the mixture is strongly repulsive.

3.2.3. Accuracy of the variational method for the spatiotemporal dynamic Figure 16

shows, for the attractive mixture (gBF = −12nm), the comparison between the results

obtained by the t3D integration (Eqs. 5 and 6) with the results obtained by the 2D

integration of the variational equations (Eqs. 30 and 31). The approach is similar to

that developed in Sec. 3.1.4 for the 1D case. It starts from arbitrary initial conditions

in 2D, viz., 2S fields with Gaussian shapes in the radial direction, a standard deviation

of 50µm for bosons and 100µm for fermions being assumed. The initial conditions

for the 3D dynamics are obtained with the ansatz given by Eq. 23 and assuming a

Gaussian in the xy-plane. Panels 16(a) and 16(b) display two spatiotemporal diagrams,

obtained from the 3D integration, showing a cut along the x axis of the 2D density; since

the dynamics, for the time range observed, obeys the cylindrical symmetry, this cut is

representative. It is seen that the boson profile clearly affects the fermion profile. As

the initial conditions do not correspond to the ground state, the fermions are attracted

to the center by the bosonic pattern and are subject to the confinement imposed by the

harmonic potential, generating strong interaction with the boson core. A gray soliton

ring is generated (in panel 16(b) it is seen as a gray soliton). In panels 16(c) and 16(d),

the radial profile obtained by the 3D integration and by VA for three instants of time

are compared, showing that it is not possible to distinguish them. The inset in panel

16(c) shows that, in the observed range, the 2D overall error is less than 1% (at initial

time, it is zero because the 3D initial conditions are obtained from the 2D configuration

using the ansatz, Eq. 23). The approach delivers very good results. In addition, in

panel 16(d) it was observed that the rings are gray (the minimum value of the fermion

density is not zero). Panels 16(e) and 16(f) show diagrams of the 2D density in the
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Figure 16. (Color online) 2D dynamics, as produced by the 2D VA, and by the

3D simulations for the attractive mixture of bosons (above) and fermions (below).

Spatiotemporal diagrams (a) and (b), produced by the 3D simulations, show how the

profiles of the densities of particles in the x direction evolve in time (it is a cut of

the 2D density with cylindrical symmetry). The curves in panels (c) and (d) shows

the radial profiles for three different instants of time (see the inset in panel (d)), as

produced by both the VA and 3D simulations. Diagrams (e) and (f) show 2D densities

in the xy-plane for the last moments of time in panels (a) and (b). The inset in panel

(c) shows the evolution of 2D error (E%,2D) in time. Initial conditions are described

in the text, and parameters are the same as in Fig. 12 with aBF = −12nm.

xy-plane for the last moment of time, highlighting the gray ring soliton observed in the

fermionic component, which expands wherein the boson density is zero. We note that,

in this case, the approximation is very good and allows one to considerably reduce the

computing time needed to observe the 2D dynamics. The dynamics of the mixture thus

produces a vast variety of localized nonlinear structures.

4. Conclusions

The incorporation of the width of the confined species as a variational variable shows

that the term accounting for the interaction between the bosonic and fermionic species

in the lower-dimensional equations is inversely proportional to the width in the confined

direction(s). The derived systems of equations, which include the algebraic equations

for the widths as functions of the 1D or 2D bosonic and fermionic densities. These

approximations yield solutions which agree well with the full 3D theory. It is worthy

to note that the ensuing relation between the widths and densities significantly varies

with the strength of the inter-species interaction, which can be tuned by means of the

Feshbach resonance. For very low densities, our equations are similar to the simplest
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models which postulate constant confinement width in the transverse direction(s). As an

application of the variational method, we have studied the spatial correlation between

the species, in which a strong dependence on the interaction parameter was observed.

This sensitivity becomes stronger for the repulsive interaction, which causes demixing

of the species.

It was observed too that, in 1D and 2D alike, the spatial correlation between the

species is also strongly affected by the inter-species interaction strength. In addition,

it was concluded that the greatest contrasts in the correlation, changing from the large

correlation in the highly attractive mixtures to a weak correlation in the strongly

repulsive ones, occur in the unitarity fermionic regime. Further, in the 1D setting

the dynamics near the ground state demonstrates that the spatiotemporal correlation

follows the same trends as the spatial correlation, the largest (but still small) difference

being observed for strongly repulsive mixtures

Finally, it is relevant to mention that the mixture can also give rise to stable

dark solitons in the Fermi field, in both the 1D and in 2D cases. However, as the

hydrodynamic conditions was assumed, the solitons may occur in some form but are

unconfirmed and should not be believed in too strongly. A detailed characterization

of these states and the validity of the hydrodynamic approximation for them will be

presented elsewhere.
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