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DIFFERENT SIZE FRACTIONS OF THE CARBONATE COMPONENT OF NE IRISH SEA 
SEDIMENT
Graham K P Muir1 • Gordon T Cook • Brian G Tripney • Angus B MacKenzie • Helena Stewart • 
Kieran M Tierney

Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, 
G75 0QF, Scotland.

ABSTRACT. From 1994 onwards, radiocarbon discharges from the Sellafield nuclear fuel reprocessing plant have been 
made largely to the northeast Irish Sea. They represent the largest contributor to UK and European populations of the 
collective dose commitment derived from the entire nuclear industry discharges. Consequently, it is important to understand 
the long-term fate of 14C in the marine environment. Research undertaken in 2000 suggested that the carbonate component 
of northeast Irish Sea sediments would increase in 14C activity as mollusk shells, which have become enriched in Sellafield-
derived 14C, are broken down by physical processes including wave action and incorporated into intertidal and subtidal 
sediments. The current study, undertaken in 2011, tested this hypothesis. The results demonstrate significant increases in 
14C enrichments found in whole mussel shells compared to those measured in 2000. Additionally, in 2000, there was an 
enrichment above ambient background within only the largest size fraction (>500 μm) of the intertidal inorganic sediment 
at Nethertown and Flimby (north of Sellafield). In comparison, the present study has demonstrated 14C enrichments above 
ambient background in most size fractions at sites up to 40 km north of Sellafield, confirming the hypothesis set out more 
than a decade ago.

INTRODUCTION

The Sellafield nuclear complex, located on the Cumbrian coast of northwest England (Figure 1), 
has been in operation since the early 1950s. Current operations include reactor decommissioning, 
fuel reprocessing, and storage of nuclear materials, including radioactive wastes. During opera-
tions, effluent is discharged to the Irish Sea and the atmosphere, or disposed of as solid waste to 
the low-level waste repository at Drigg, situated south of Sellafield (Nuclear Decommissioning 
Authority 2011). The discharges of liquid radioactive waste are via twin pipelines extending 2.1 km 
into the eastern Irish Sea. Peak liquid discharges of transuranic radionuclides, including 241Am and 
241Pu (Figure 2), and fission and activation products including 137Cs (Figure 3) occurred during the 
early  to mid-1970s (Gray et al. 1995), with annual discharges during this period being 2 to 3 orders 
of magnitude greater than contemporary values (RIFE 1996–2012; MacKenzie et al. 1999). The 
environmental fate of transuranic radionuclides and fission/activation products has been the focus of 
extensive research, primarily as a consequence of their contribution to critical group exposure (e.g. 
MacKenzie et al. 2004). This research has demonstrated that an area of fine sediment, offshore from 
Sellafield and known as the Sellafield mud-patch, has acted as a sink for the discharges. Particle 
reactive transuranic species, with high distribution coefficients (Kd), e.g. 241Am3+, were almost to-
tally retained (Aston and Stanners 1982; Pentreath et al. 1984), in contrast to 137Cs (single oxidation 
state of +1, and low Kd) for which there was approximately 10% retention and approximately 90% 
distribution in solution beyond the Irish Sea (MacKenzie et al. 1994; McCartney et al. 1994). Rather 
than the current discharges, the mud-patch sediment is now the major source term for radionuclide 
distribution to the wider environment (including intertidal areas) in a general northwards direction, 
either through redissolution or redistribution of the fine sediment (Aston et al. 1981; Aston and Stan-
ners 1982; Pentreath et al. 1984; Hunt 1985; MacKenzie et al. 1987, 1994, 1999, 2004; McDonald 
et al. 1990; Cook et al. 1995, 1997). 

In comparison, relatively few investigations have been undertaken into the environmental fate of 
Sellafield-derived aqueous 14C discharges. Over the lifetime of the Sellafield site, total aqueous 14C 
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discharges have been small in comparison with other radionuclides, but in contrast to the pattern of 
most others, they have increased by about an order of magnitude since the early 1990s (Cook et al. 
2004a). They ranged between approximately 1 and 3 TBq per annum until 1994, when, partly due to 
a change in discharge policy that diverted the majority of the atmospheric discharges to the aqueous 
stream, discharges increased significantly, with  a maximum of 17.0 TBq occurring in 2003 (Fig-
ure 3). The total 14C discharged to the marine environment between 1994 and 2011 was 153 TBq, 
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Figure 1. Map of the UK and the Sellafield area (insert) 
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Figure 1  Map of the UK and the Sellafield 
area (inset)
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 Figure 2  241Am and 241Pu discharges from Sellafield and associated 241Am ingrowth from 
241Pu (1952–2012).



349Temporal Trend in the Transfer of Sellafield-Derived 14C

103 TBq of which were discharged between 2001 and 2011 (MAFF 1994, 1995; RIFE 1996–2012). 
The latter value is particularly relevant as it represents the timeframe of this study. 

Sellafield 14C is discharged into an existing “background” pool of 14C derived from both natural 
production and atmospheric testing of nuclear weapons. Cook et al. (1998) investigated 14C activ-
ities in marine dissolved inorganic carbon (DIC) and biota at sites remote from 14C inputs around 
the UK and Ireland and subsequently defined the background activity as 247.6 ± 1.0 Bq kg–1. This 
value was proposed as a best estimate of natural production/nuclear weapons testing “background” 
for 1995. We subsequently redefined the background in 2014 and obtained an almost identical value 
(248.6 ± 0.8 Bq kg–1). Therefore, a value of 248 Bq kg–1, which represents what we consider to be a 
good estimate of the background 14C activity, is indicated in the figures in order to demonstrate the 
Sellafield 14C inputs more clearly. 

The dispersion and sediment uptake processes affecting 14C are significantly different from those 
of other radionuclides. Sellafield-derived 14C is discharged into the Irish Sea primarily as inorganic 
carbon (Begg et al. 1992; Cook et al. 1995), which is highly soluble in seawater and rapidly becomes 
part of the DIC reservoir. While most is distributed beyond the Irish Sea in solution via the North 
Channel (Wolstenholme et al. 1998; Gulliver et al. 2001), a small proportion is retained by the fol-
lowing mechanisms: (1) The DIC is readily utilized by primary producing organisms (phytoplank-
ton and macroalgae) through fixation of CO3

2– and HCO3
– during photosynthesis (Lalli and Parsons 

1993). The 14C is then transferred through the food chain from plants to animals. (2) The DIC is 
also taken up directly in the formation of the carbonate shells of marine mollusks (McConnaughey 
et al. 1997; Gillikin et al. 2006); therefore, 14C is also transferred into the inorganic components of 
the marine biota. Thus, its behavior cannot be described by a sorption coefficient (Kd). Ultimately, a 
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Figure 2. 241Am and 241Pu discharges from Sellafield and associated 241Am ingrowth from 241Pu 
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Figure 3  137Cs and 14C aquatic discharges from Sellafield (1952–2012)
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proportion of the 14C is deposited either directly or indirectly, as organic carbon or carbonates, into 
a mixed-age sediment pool (Begg et al. 1992; Cook et al. 1995, 2004b; Wolstenholme et al. 1998; 
Gulliver et al. 2001; MacKenzie et al. 2004). 14C contributes only 4.2% to the current total dose rate 
received by critical consumer groups of marine fish and shellfish from the Cumbrian coast; never-
theless, due to its long half-life (5730 yr), ready entry into the food chain, and high environmental 
mobility, the aqueous 14C discharges from Sellafield are the major contributor to the collective 
dose commitment to UK and European populations from the entire nuclear industry (BNFL 2002). 
Also, according to the United Nations Scientific Committee on the Effects of Atomic Radiation  
(UNSCEAR 2008), the largest collective total dose estimates remain associated with effluent release 
of 14C. Thus, an improved understanding of the behavior of Sellafield 14C discharges over decadal 
periods is required to improve our understanding of its long-term (century to millennium) fate. The 
specific objective of the present study was to collect samples from the original sampling locations 
visited in 2000 to test the hypothesis that mollusk shells, which were demonstrated to be enriched 
in 14C, are being broken down in the environment, leading to retention and a gradual increase in the 
14C activity of the inorganic component of NE Irish Sea sediments. 

EXPERIMENTAL

Samples were collected during June 2011 from the four sites previously sampled in May 2000 
(Nethertown, Parton, Flimby, and Allonby) (Figure 1). Approximately 5 kg of surface sediment, 
including whole shells from a range of species (mussels, winkles, and limpets) and shell fragments, 
were collected randomly from several intertidal locations at each of the four sites. Whole shells and 
large shell fragments (>2 mm) were separated from the sediment, which was mixed, oven-dried, and 
dry-sieved into three size fractions (<63 μm, 63–500 μm, and >500 μm–2 mm). 

Shell fragments and sieved sediments were well mixed, subsampled, and subsequently hydrolyzed 
with 1M HCl to liberate CO2, which was cryogenically purified under vacuum using liquid N2, in 
preparation for accelerator mass spectrometry (AMS) analysis. Subsamples (3 mL) of CO2 were 
converted to graphite according to the procedure described by Slota et al. (1987) and measured on 
a 250kV single-stage accelerator mass spectrometer (SSAMS) according to Freeman et al. (2008, 
2010) and with quality assurance standards as described in Naysmith et al. (2010). Results were cal-
culated relative to the international standard oxalic acid II. AMS results, reported as fraction modern 
values, were converted to specific activities (Bq kg–1 C) using the calculation regime for enhanced 
activity samples described by Mook and van der Plicht (1999). δ13C measurements were made off-
line by isotope ratio mass spectrometry using a VG Sira 10. 

In 2000, only Nethertown beach yielded sufficient fine (<63 μm) material for radiometric 14C anal-
ysis. Sediment fractions were analyzed and reported as 14C-specific activities in either <500-μm or 
>500-μm size fractions (Cook et al. 2004b). The introduction of AMS has facilitated the analysis 
of milligram quantities of fine sediment fractions. It was therefore possible to analyze three size 
fractions collected in 2011. The <500-μm fraction reported in Cook et al. (2004b) is analogous, and 
is reported as the 63–500-μm fraction in this study. 

RESULTS AND DISCUSSION
14C activities in sediments and biota collected during studies undertaken in 2000 and 2011 are pre-
sented in Table 1. Figure 4 compares 14C data for whole shells and shell fragments collected in 2011. 
The results demonstrate significant enhancements above the natural production/nuclear weapons 
testing background in all species present [common limpet (Patella vulgata), common winkle (Litto-
rina littorea), and common mussel (Mytilus edulis)] and at all sites. There is also a general decrease 
in activity with increasing distance from Sellafield. 
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Table 1  Gross 14C activities (Bq kg–1 C ± 1σ) in sediment size fractions and whole shell/shell 
fragments from four sampling sites situated north of Sellafield in 2000 and 2011.

Sampling site 

Sampling period
Nethertown 
(Bq kg–1 C)

Parton 
(Bq kg–1 C)

Flimby 
(Bq kg–1 C)

Allonby 
(Bq kg–1 C)

2000
Mussel shell/fragments 2001.7 ± 6.8 1092.5 ± 4.4   856.7 ± 3.6 768.9 ± 3.0
Sediment >500 µm–2 mm   360.4 ± 1.6   127.7 ± 0.8   259.9 ± 1.3 153.6 ± 0.9
Sediment 63–500 µm   148.6 ± 1.3     22.3 ± 2.7     68.9 ± 1.8   70.5 ± 0.8
Sediment <63 µm   188.3 ± 1.9 nd nd nd
2011
Mussel shell/fragments 2596.2 ± 7.4 1430.8 ± 4.3 1280.1 ± 3.7 972.2 ± 3.0
Winkle shell/fragments 1286.2 ± 3.8 1643.4 ± 4.8 1176.4 ± 3.1 355.2 ± 1.0
Limpet shell/fragments 2898.7 ± 9.0 1227.7 ± 3.8   598.3 ± 1.8 na
Sediment >500 µm–2 mm 2080.0 ± 6.5   429.0 ± 1.5   679.5 ± 2.4 337.8 ± 1.2
Sediment 63–500 µm   921.6 ± 3.3   162.7 ± 0.6   304.4 ± 0.9 127.3 ± 0.5
Sediment <63 µm   898.3 ± 3.2   463.2 ± 1.7   399.5 ± 1.4   89.0 ± 0.3
Notes: nd – no data; na – no species available.

Figures 5a and 5b demonstrate that mussel shells collected in 2011 are significantly enriched in 
14C at all sites compared to the same species collected in 2000, reflecting increased 14C discharg-
es post-2000. The gross mean activity for mussel shells was 1569 Bq kg–1 in 2011, compared to 
1179 Bq kg–1 in 2000, representing a mean overall increase of ~34%. Proportionally, mussel shell 
14C activities at Nethertown, Parton, Flimby, and Allonby were enhanced by 30%, 31%, 49%, and 
26%, respectively, compared to previous activities. 
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Figure 3. 137Cs and 14C aquatic discharges from Sellafield (1952-2012) 
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Figure 4. Mussel, limpet and winkle shell gross specific 14C activities from Nethertown, Parton, 

Flimby and Allonby, collected in May 2011. 

Figure 4  Mussel, limpet and winkle shell gross specific 14C activities from Nethertown, 
Parton, Flimby, and Allonby, collected in May 2011.
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All intertidal sediment fractions collected in 2011 are enhanced in 14C relative to comparable sam-
ples collected in 2000 (Figures 5a and 5b). At each of the four sites, there is an obvious trend of de-
creasing 14C activity with decreasing particle size with: [whole shells/shell fragments] > [>500-µm 
size fraction] > [63–500 µm size fraction]. Only the <63-µm size fraction does not follow this trend. 
There is also a general trend of decreasing 14C activity with increasing distance from Sellafield.

In 2000, only two sediment fractions, Flimby >500 µm and Nethertown >500 µm, had activities 
enhanced above the ambient background level. In contrast, in 2011, all but three samples [Allonby 
(<63 µm and 63–500 µm) and Parton (63–500 µm)] have 14C activities above the ambient back-
ground level. Sites previously depleted in 14C, with activities comparable to subtidal carbonate sed-
iments (Begg 1992; Cook et al. 1995), now show 14C enrichments, consistent with increased 14C 
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Figure 5 (a) Gross 14C specific activities in different size fractions of the carbonate component of 

NE Irish Sea intertidal sediment measured at 4 sites in 2000 and (b) Gross 14C specific activities 

in different size fractions of the carbonate component of NE Irish Sea intertidal sediment 

measured at the same 4 sites in 2011. 

Figure 5  (a) Gross 14C-specific activities in different size fractions of the carbonate component 
of NE Irish Sea intertidal sediment measured at four sites in 2000. (b) Gross 14C-specific activ-
ities in different size fractions of the carbonate component of NE Irish Sea intertidal sediment 
measured at the same four sites in 2011.
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discharges from Sellafield and an increased period for breakdown of shells containing Sellafield- 
derived 14C. This again satisfies the hypothesis of cumulative 14C transfer to finer fractions, sug-
gested by Cook et al. (2004b). Average 14C activity increases in 2011 sediments were 710, 301, and 
656 Bq kg–1 for the <63 µm, 63–500 µm, and >500 µm–2 mm fractions, respectively, on comparable 
sediments measured in 2000. Fivefold increases in mean 14C activities compared to previous (2000) 
activities were measured in the <63-µm and 63–500 µm fractions, respectively, and 3.5 times in 
the >500-µm fraction. These increases are much greater than the increase in discharges post-2000 
compared to pre-2000 and are indicative of the cumulative effect of the breakdown process. The 
Nethertown (>500 µm) fraction has the highest 14C activity from any site (2080 ± 6.5 Bq kg–1), re-
flecting its close proximity to the discharge point from Sellafield and the fact that coarse material has 
been in the intertidal environment for a shorter period of time, most likely encompassing the period 
of high discharges. In 2000, only one <63-µm measurement was available (Nethertown). In 2011, 
this fraction is ~5 times the 2000 activity (188.3 ± 1.9 compared to 898.4 ± 3.2 Bq kg–1). The finest 
fraction (<63 µm) activities again show a trend of decreasing activity with distance from Sellafield, 
consistent with the northwards flowing currents and well-established northwards movement of sedi-
ment (Mackenzie et al. 1987, 1994, 1998, 1999; McDonald et al. 1990; Cook et al. 1997). However, 
at Parton and Flimby, the activities are very similar and are greater than those of the 63–500 µm 
fractions, which would seem to argue against the concept that the larger fractions should have the 
higher activities. This can potentially be explained by two mechanisms: There is (1) greater north-
wards movement of the <63-μm fraction compared to the coarser material or (2) there is more rapid 
breakdown of the shell material at these two sites.

CONCLUSIONS

Over the period from 2000 to 2011, mollusk shells and all size fractions of the carbonate component 
of sediment collected at four intertidal locations north of the Sellafield nuclear fuel reprocessing 
plant show significant increases in 14C activity, indicative of incorporation of 14C discharged from 
Sellafield into DIC, 14C transfer to shell material in living mollusks, subsequent death of these or-
ganisms, environmental breakdown of shell material, and finally, incorporation into sediment. The 
intertidal sediments provide clear temporal evidence of gradual enrichment and retention of 14C in 
all size fractions, particularly in the finer fractions, which were previously depleted relative to ambi-
ent background levels. Intertidal mollusks are highly efficient at assimilating and “fixing” 14C from 
the DIC component of seawater directly into shell carbonate and this process, over the short-to- 
medium term, will be a major factor in 14C accumulation in NE Irish Sea intertidal sediment. Pred-
icating a steady state concurrent with Sellafield 14C discharges is difficult, given the environmental 
mobility and rapid accumulation of 14C noted over the decadal period of this study. Nevertheless, the 
observed accretion of 14C in biota and sediment is of long-term radiological significance as this ma-
terial is subject to lateral offshore transport, mixing and resupply to coastal locations, with potential 
implications for near- and far-field accumulation. 
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