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Abstract 31	
  

Monoclonal antibodies (MAbs) form a central part of chronic lymphocytic leukaemia (CLL) treatment. 32	
  

We therefore evaluated whether complement defects in CLL patients reduced the induction of 33	
  

complement-dependent cytoxicity (CDC), using anti-CD20 MAbs rituximab (RTX) and ofatumumab 34	
  

(OFA). OFA elicited higher CDC levels than RTX in all CLL samples examined, particularly the poor 35	
  

prognosis cohorts (11q- and 17p-). Serum sample analyses revealed 38.1% of patients were deficient 36	
  

in one or more complement components, correlating with reduced CDC responses. While a proportion 37	
  

of patients with deficient complement levels initially induced high levels of CDC, on secondary 38	
  

challenge CDC activity in sera was significantly reduced, compared with normal human serum (NHS; 39	
  

p<0.01; n=52). Additionally, high CLL cell number contributed to rapid complement exhaustion. 40	
  

Supplementing CLL serum with NHS or individual complement components, particularly C2, restored 41	
  

CDC on secondary challenge to NHS levels (p<0.0001; n=9). In vivo studies revealed that 42	
  

complement components were exhausted in CLL patient sera post-RTX treatment, correlating with an 43	
  

inability to elicit CDC. Supplementing MAb treatment with fresh frozen plasma may therefore maintain 44	
  

CDC levels in CLL patients with a complement deficiency or high white blood cell count. This study 45	
  

has important implications for CLL patients receiving anti-CD20 MAb therapy. 46	
  

 47	
  

Keywords: chronic lymphocytic leukemia, complement deficiencies, C2, complement-dependent 48	
  

cytotoxicity, monoclonal antibody, CD20. 49	
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Introduction 51	
  

Monoclonal antibody (MAb) therapies form an integral part of the treatment regime for chronic 52	
  

lymphocytic leukaemia (CLL) patients. Current first line therapy involves administration of the purine 53	
  

analogue fludarabine (F) and the DNA alkylating agent cyclophosphamide (C), in combination with 54	
  

rituximab (RTX) a chimeric anti-CD20 MAb (FCR).1, 2 The biological activity of CD20, a B-cell marker, 55	
  

is not fully elucidated, however it is thought to act as an ion channel and a store operated Ca2+ 56	
  

channel.3, 4 As CD20 expression is restricted to the B-cell lineage, with no expression on stem cells or 57	
  

mature plasma cells, it makes an ideal therapeutic target for B cell malignancies. The inclusion of 58	
  

RTX to FC generated a radical improvement in progression free survival and response rates for CLL 59	
  

patients.5 However despite these improvements relapse due to the re-emergence of minimal residual 60	
  

disease still poses a problem for CLL patients,2, 6 especially those with adverse cytogenetics. Disease 61	
  

progression through acquisition of chromosomal deletions/mutations in 17p/p53 is associated with 62	
  

patients becoming refractory to fludarabine-based therapies, leaving few therapeutic options. These 63	
  

patients can be treated with alemtuzumab an anti-CD52 MAb, with variable levels of response, 64	
  

indicating that the clinical needs of this sub-set of CLL patients are still unmet by standard treatments. 65	
  

A new generation type I, human immunoglobulin (Ig) G1k anti-CD20 MAb, ofatumumab (OFA), which 66	
  

binds to a novel epitope of CD20,7 has been given FDA and EMEA approval for the treatment of 67	
  

double refractory patients, refractory to both F and alemtuzumab. OFA has shown promising results 68	
  

with >50% of CLL patients responding to treatment.7-9 69	
  

MAbs exert anti-tumour activity by harnessing the body’s own natural immune response especially 70	
  

antibody-dependent cellular cytotoxicity (ADCC) involving the recruitment of natural killer cells to 71	
  

cause phagocytosis and complement-dependent cytotoxicity (CDC) requiring the activation of the 72	
  

classical complement pathway, and/or apoptosis.10 Type 1 MAbs, such as RTX and OFA, localise 73	
  

CD20 into lipid rafts enhancing C1q recruitment and activation of CDC.11 CDC induction is critically 74	
  

dependent on the distance between MAb binding site and the plasma membrane, with closer binding 75	
  

associated with more efficient coating of active complement components onto the target cell. Previous 76	
  

studies have demonstrated that C1q binds more readily to OFA than RTX, with OFA also resulting in 77	
  

more effective deposition of C3b onto the surface of the membrane, due to the novel epitope binding 78	
  

site of OFA bringing the complex closer to the surface of the cell, thus increasing the amount of 79	
  

CDC.11-14 This is of particular importance in CLL, as CD20 expression levels, which are relatively low 80	
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compared to B-cell lymphomas, linearly correlate with the lytic response of RTX.15, 16 In addition, 81	
  

recent studies demonstrate that CLL cells can evade RTX, through sequestration of CD20-RTX 82	
  

complexes by phagocytic cells, resulting in trogocytosis. This enables CD20 depleted lymphocytes to 83	
  

remain in circulation, no longer responsive to RTX treatment.17-19 These findings highlight the 84	
  

importance of generating a MAb capable of effectively inducing CDC.  85	
  

To maximise the clinical effect of MAbs, it is important to consider whether the patient will be able to 86	
  

elicit CDC and ADCC responses to the drug.  Early reports indicated that CLL patients harbour 87	
  

deficiencies in classical complement components C1 and C4 resulting in defective immune complex 88	
  

clearance. Deficiencies in classical complement components have also been linked to CLL patients 89	
  

being more susceptible to infections with organisms such as Streptococcus pneumonia, and 90	
  

exhibiting a propensity to develop autoimmune syndromes.20-22 These findings raise two important 91	
  

questions, first how frequently do complement deficiencies occur in CLL and second how does this 92	
  

impact on the efficiency of MAb treatments? Here we demonstrate that 38.1% of our CLL patient 93	
  

cohort harbour deficiencies or reduced levels in one or more complement components, significantly 94	
  

impacting on their ability to elicit CDC response to OFA and RTX. Moreover, some patients that 95	
  

initially induced a high level of CDC, display a significantly reduced CDC activity upon secondary 96	
  

challenge in vitro and in vivo, indicating that rapid exhaustion of complement components occurs in 97	
  

CLL patient serum, compared to normal donors. A high circulating CLL cell burden also contributes to 98	
  

rapid complement exhaustion, in agreement with previously published work.23 Importantly we 99	
  

establish that the reduction in CDC activity observed in CLL patient sera in vitro is overcome by 100	
  

supplementing CLL serum with individual complement components or normal healthy serum (NHS) as 101	
  

a source of complement. Collectively, our studies demonstrate that the majority of CLL patients have 102	
  

sub-optimal levels of complement proteins/activity, a finding that has important implications for CLL 103	
  

patients receiving MAb-based therapies.   104	
  

 105	
  

Materials and methods 106	
  

Patient samples, CLL cell isolation and serum collection 107	
  

Peripheral blood samples were obtained after informed consent, from patients with confirmed CLL 108	
  

(Supplementary Table 1). Ethical approval for this study was obtained from the West of Scotland 109	
  

Research Ethics Committee, NHS Greater Glasgow and Clyde (United Kingdom). CLL cells were 110	
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isolated using RosetteSepTM human B cell enrichment cocktail (StemCell Technologies, Vancouver, 111	
  

Canada) following the manufacturer’s instructions. CLL cell purity was >95%, determined by flow 112	
  

cytometry (CLL: mean age 67.9 ± 6.78 years; range 48–88 years; percentage male 57.9%). 113	
  

Peripheral blood samples were also collected from healthy volunteers to isolate normal healthy serum 114	
  

(NHS; age range 25–50 years old) and age matched serum (AMS: mean age 64.8 ± 12.91 years; 115	
  

range 47–84 years; percentage male 41.7%; Supplementary Table 2). Serum was separated from 116	
  

freshly isolated blood collected using serum clot activator, by centrifugation at 3000g for 10 min. Sera 117	
  

was immediately frozen on dry ice and stored at -80oC. Pooled NHS was prepared by mixing sera 118	
  

from 10 different healthy volunteers, prior to freezing. 119	
  

Cell culture and cell line conditions 120	
  

CLL primary cells and the CLL cell line HG3 were cultured in RPMI-1640 containing 10% FBS, 50 121	
  

U/mL penicillin, 50 mg/mL streptomycin and 2 mM L-glutamine (complete medium; Invitrogen Ltd., 122	
  

Paisley, UK).  123	
  

MAb treatment and assessment of cell death 124	
  

Unless otherwise stated 2.5 x 106 cells/ml were pelleted by centrifuging for 5 min, 300g at room 125	
  

temperature (RT), and then resuspended in CDC buffer - Hanks Buffered Saline Solution (HBSS; 126	
  

PAA Laboratories, Austria), 10 mM Hepes, 1 mM sodium pyruvate and 10 µg/ml Gentamicin 127	
  

(Invitrogen Ltd.). 20 mg/ml OFA (GlaxoSmithKline, UK) and 10 mg/ml RTX (Roche, UK) were diluted 128	
  

in CDC buffer and added to cells at 20 µg/ml, for 30 min at RT. Untreated control cells were treated 129	
  

equivalently except no MAb was added to the CDC buffer. CLL cells were then pelleted and the 130	
  

supernatant removed. Thawed human serum was diluted in CDC buffer (1:1) and added to cells and 131	
  

mixed gently. CLL cells were then incubated with sera for 2 hr at 37oC. Following MAb treatment, CLL 132	
  

cells were washed in CDC buffer, harvested and stained with 1 µg/ml propidium iodide (PI) (BD 133	
  

Biosciences, Oxford, UK). Following PI staining the percentage of CDC was determined by acquiring 134	
  

flow cytometry data using a FACSCantoII flow cytometer (BD Biosciences). PI- cells were considered 135	
  

viable. When patient sera were supplemented, purified human complement components C2 and/or 136	
  

C4 (Complement Technology, Inc, Texas, USA) or NHS were added at the concentrations indicated. 137	
  

Quantification of complement concentration and activity in sera 138	
  

C1 and C2 levels in sera were determined by radial immunodiffusion (RID) (The Binding Site Group 139	
  

Ltd., Birmingham, UK) following the manufacturer’s protocol. C3c and C4 were determined by 140	
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immunonephelometry in the clinical diagnostic immunology laboratory (Gartnavel General Hospital, 141	
  

NHS Greater Glasgow and Clyde). The activity of the classical complement cascade in serum was 142	
  

determined using total haemolytic complement kit, CH100 assay (The Binding Site Group Ltd.) 143	
  

following the manufacturer’s instructions. 144	
  

Statistical analysis and Software 145	
  

All statistical analysis was performed using GraphPad Prism 4 software (GraphPad Software Inc., 146	
  

CA), P values were determined by students paired or unpaired t-test or mixed model Anova as 147	
  

indicated. Mean ± standard error of mean (SEM) is shown. Flow cytometry data were acquired using 148	
  

FACSDiva software (BD Biosciences) and analysed using FlowJo (Tree Star Inc., Ashland, OR) 149	
  

software. 150	
  

 151	
  

Results 152	
  

CLL patient sera display multiple deficiencies in components of the classical complement cascade. 153	
  

Classical complement component levels (C1, C2, C3 and C4) were assessed in CLL patient sera and 154	
  

sera from AMS controls. Patients displaying single deficiencies/reduced levels were noted in all 155	
  

complement components screened (Figure 1A). In the AMS samples (n=12), complement deficiencies 156	
  

slightly below normal range for C1, C2 and C3/C4 were observed in a minority of donors. Of the CLL 157	
  

patients screened, 15.4% exhibited levels lower than the normal range of C1q in their sera (n=52) and 158	
  

approximately 20% of patients displayed deficiencies in the levels of C2 and C4 (17.9%, n=56 and 159	
  

20.6% n=63 respectively). Analysis of C3 levels revealed that 11.1% of patient sera (n=63) were 160	
  

deficient in this component. Double deficiencies of C1/C4, C2/C4 and C3/C4 also occurred, at a 161	
  

frequency of 3.2%, 3.2% and 4.8% respectively. Triple deficiency of C2/C3/C4 was seen in 3.2% of 162	
  

CLL patients, and deficiency of C1q/C2/C3/C4 was observed in one patient within our cohort. In total 163	
  

38.1% of CLL sera tested were deficient in at least one complement component (n=63). To determine 164	
  

how this impacted on the sequential activation of the classical complement cascade in the CLL sera 165	
  

we performed a CH100 assay. Surprisingly only 19.4% of CLL sera exhibited reduced complement 166	
  

activity levels (Figure 1B), despite the high proportion displaying at least one component deficiency. 167	
  

Complement deficiencies showed no correlation to prognostic markers, occurring at a similar 168	
  

frequency in the different Binet stage, cytogenetic and ZAP-70 status groups for our CLL patient 169	
  

cohort (Supplementary Figures 1-3).  170	
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OFA induces higher levels of CDC than RTX. 171	
  

CDC optimisation experiments were carried out on CLL cell lines to determine the optimal 172	
  

concentration of RTX and OFA. Maximal cell kill occurred with 20 µg/ml OFA/RIT, and 50% sera (data 173	
  

not shown). Using these conditions we determined whether levels of CDC varied between poor 174	
  

prognosis patient cohorts. CDC was carried out on 15 patients, selected from three distinct 175	
  

cytogenetic subgroups; 11q-, 17p- and normal/13q. As previously reported OFA demonstrated much 176	
  

greater cell kill by CDC than RTX,12, 13 with 20 µg/mL eliciting high levels of cell death in all 177	
  

cytogenetic groups (Figure 2A). Statistical analysis revealed that when compared to RTX, OFA 178	
  

induced significantly more CDC-mediated cell death in 11q- and 17p- cohorts, with borderline 179	
  

significant effect in normal/13q group (Figure 2B). As OFA induced high levels of cell kill it was 180	
  

therefore used in all subsequent in vitro experiments. 181	
  

CLL sera readily exhaust of complement activity following MAb therapy. 182	
  

Our findings indicated that low levels of individual complement components observed in CLL patient 183	
  

sera did not always directly impact on CH100 complement activity. We therefore hypothesised that 184	
  

CLL patient serum might exhaust the available complement components more readily after eliciting a 185	
  

CDC response. This is an important consideration given the repeated scheduling of MAbs in CLL. To 186	
  

validate complement exhaustion OFA-mediated CDC was performed on the CLL cell line HG3 using 187	
  

50% CLL patient sera, to approximate physiological conditions, with a NHS control included for 188	
  

comparison. Following 2 hr incubation, cells were pelleted and CDC levels measured by PI staining. 189	
  

The sera removed from this experiment was then re-used to promote a second CDC response on 190	
  

OFA bound HG3 cells. Serum exhaustion was performed on 52 CLL patient sera and the difference in 191	
  

CDC cell kill from the first to the second round of serum use was then plotted (Figure 3A and 192	
  

Supplementary Figure 4), with representative data from three individual patient samples with poor 193	
  

(CLL08), medium (CLL32) and good (CLL85) CDC activity shown (Figure 3B). Our results clearly 194	
  

demonstrate that CLL patient sera show significantly more complement exhaustion compared to NHS 195	
  

controls, with 42.3% of CLL patient sera showing more than 30% reduction in CDC activity from 196	
  

primary to secondary use.  197	
  

To determine whether CDC was affected by high tumour load, we carried out exhaustion assays 198	
  

using NHS exposed to increasing numbers of primary CLL cells. The efficiency of CDC in primary 199	
  

CLL cells did not decline significantly until 10000 cells/µl were present, at which point CDC activity 200	
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dropped by 48.1% in the NHS from the primary use (Figure 3C). Given that CLL sera is more readily 201	
  

depleted of complement activity than NHS, the CLL sera exhaustion assays carried out in Figure 3A & 202	
  

B and in subsequent experiments were performed using 2500 cells/µl. These findings indicate that 203	
  

tumour load will also have a significant negative impact on CDC activity.  204	
  

CLL sera exhaustion can be reduced by the addition of a complement source. 205	
  

To determine whether CDC could be improved in patients deficient in one or more complement 206	
  

component, individual components were added back to CLL patient sera. Similar to a report by 207	
  

Kennedy A.D., et al., we identified C2 as being the limiting factor.18 Upon addition of C2 to patient 208	
  

sera we were able to abrogate complement exhaustion in three individual patients (Figure 4A). In a 209	
  

larger patient cohort, supplementing the sera with C2 restored CDC cell kill from primary to secondary 210	
  

sera use to levels observed for the NHS control (Figure 4B). In addition, the C2 concentration 211	
  

displayed a significant negative correlation with sera exhaustion levels in CLL patients (Figure 4C; r2= 212	
  

0.5260, p <0.0001). The levels of C4 also displayed a significant negative correlation with sera 213	
  

exhaustion in CLL patients (Supplementary Figure 5), however only C2 alone or in combination with 214	
  

C4 was able to augment CDC in deficient sera, supporting previous findings that C2 is the limiting 215	
  

factor (Supplementary Figure 6). To determine whether we could protect against complement 216	
  

consumption in a clinically-relevant manner, we added back 10% and 20% NHS (equivalent to fresh 217	
  

frozen plasma (FFP) an available source of complement to CLL sera), prior to the first round of CDC. 218	
  

Our results clearly demonstrate that adding back 20% NHS not only gave significant improvement to 219	
  

the initial level of CDC but also decreased the amount of complement exhaustion on secondary use 220	
  

(Figure 4D).  221	
  

CLL sera exhaustion is observed in vivo. 222	
  

Next we screened the sera of CLL patients undergoing RTX immunotherapy to establish whether 223	
  

complement levels were severely diminished following RTX treatment in vivo. In addition in vitro CDC 224	
  

assays were carried out using OFA treated HG3 cells, using the RTX treated patient sera. OFA was 225	
  

chosen due to its ability to elicit higher levels of CDC in vitro than RTX, enabling a better range of 226	
  

CDC response to be measured. Analysis 24 hr following RTX infusion revealed that only one CLL 227	
  

patient serum sample (CLL108) demonstrated good CDC on OFA treated HG3 cells and no 228	
  

complement exhaustion following RTX treatment, with additional patients displaying complement 229	
  

levels falling below the expected normal range (Figure 5A), correlating with an inability to elicit a CDC 230	
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response (Figure 5B). For the majority of patients 28 days was sufficient for complement levels to be 231	
  

replenished following treatment, however this was not true for the patient already deficient in C2 232	
  

(CLL106). Individual complement component levels also reflected how readily patient sera exhausted 233	
  

following subsequent CDC challenge on OFA treated HG3 cells, with CLL106 displaying a marked 234	
  

reduction in CDC cell kill in vitro prior to RTX infusion (Figure 5-Ci). This was more apparent post RTX 235	
  

infusion with the majority of patients showing complete ablation of complement activity in vivo (Figure 236	
  

5-Cii). These findings have important implications for the future management of CLL patients 237	
  

receiving MAb therapy.  238	
  

 239	
  

Discussion 240	
  

MAbs are now firmly established in the treatment of CLL, both first-line and in the relapse setting. 241	
  

Type 1 anti-CD20 MAbs mediate their toxicity effects against CLL cells by using the patient’s natural 242	
  

immune responses to induce cell death through ADCC and CDC. Previous reports have shown that 243	
  

CDC is a finite process with complement becoming exhausted following MAb induced cell lysis.23 244	
  

Earlier research indicated that around 50% of CLL patients are deficient in C1 and C4, key 245	
  

components of the classical complement cascade, and this low complement activity is associated with 246	
  

advanced disease and shorter survival time.20, 21, 24, 25 Despite these early reports there has been little 247	
  

follow up to determine how these complement deficiencies influence the efficacy of MAb treatment, 248	
  

with drugs such as OFA and RTX that are potent inducers of CDC.   249	
  

CLL patients have lower classical complement levels 250	
  

Our comprehensive assessment of the levels of all complement components involved in the first stage 251	
  

of the classical cascade in CLL patient sera revealed that a high proportion of CLL patients harbour 252	
  

deficiencies, with 38.1% displaying a reduced level of either in C1, C2, C3 or C4. Patients exhibited a 253	
  

range of deficiencies from one to multiple complement components, with one individual demonstrating 254	
  

a deficiency in all classical complement components examined. Levels of C1 and C3 were often 255	
  

within the normal range, whereas subnormal levels of C2 (17.9% deficient) and C4 (20.6% deficient) 256	
  

were more prevalent in the CLL patient cohort examined. We were unable to define any significant 257	
  

differences in complement concentration within CLL patient clinical stage, poor prognostic 258	
  

cytogenetics or ZAP-70 status (Supplementary Figure 1-3). C2 and C4 are both cleaved into two 259	
  

fragments during classical complement activation, with C4b and C2a then forming a complex termed 260	
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C3-convertase. C3-convertase is essential for cleaving C3, which enables the C3b fragment to 261	
  

opsonise the target cell and act as a scaffold for the membrane attack complex to assemble so that 262	
  

the target cell can be lysed. C3b also functions to opsonise bacteria strains, for clearance by the 263	
  

classical pathway.10 CLL patients are frequently unable to effectively coat bacterial pathogens with 264	
  

C3b, making them more susceptible to infection.22 Therefore these deficiencies could increase the 265	
  

risk of life threatening infection, already a major concern in CLL patients.  266	
  

CLL patient sera more readily exhaust complement, abrogating CDC activity 267	
  

Although the high frequency of defects in complement levels did not correlate closely to overall 268	
  

classical complement activity in vitro, analysis of patient sera revealed that significantly more CLL 269	
  

patient sera samples underwent complement exhaustion on secondary challenge with bound MAb, 270	
  

compared to the NHS controls (42.3%; n=52). In addition tumour burden impacted on CDC efficiency, 271	
  

with high levels of sera exhaustion observed at medium-low tumour burden levels typically observed 272	
  

for CLL, 1 x 104 CLL cells/µl. These findings are corroborated by Beurskens F.J. et al., who also 273	
  

observed an elevated complement consumption with high cell counts. Moreover they demonstrated 274	
  

that administering high concentrations of OFA did not substantially augment initial CDC induction, but 275	
  

did affect the ability to induce a second round of CDC due to exaggerated complement activation and 276	
  

consumption.23 Therefore any MAb treatments requiring CDC for potency will be limited by tumour 277	
  

burden, and low complement component levels within CLL patient sera.  278	
  

CDC activity can be restored in CLL patient sera with limited complement levels  279	
  

Complement exhaustion has important implications for the dosing schedule of MAb treatment within 280	
  

CLL as frequent dosing, which in addition to limiting the efficacy of the drug, will lead to sustained 281	
  

complement exhaustion making patients more susceptible to infections. Having confirmed that C2 282	
  

was depleted at a high frequency in CLL,18 we established that impaired CDC could be restored to a 283	
  

normal NHS level by supplementing patient sera with C2. In addition, supplementing patient sera with 284	
  

10 and 20% NHS was also sufficient to substantially improve OFA mediated CDC and enable 285	
  

protection against complement exhaustion. Other studies suggest that RTX is not as effective at 286	
  

depositing C3b onto the surface of cancer cells and is not as effective as OFA as a single agent in 287	
  

CLL, yet it still showed significant improvement when administered together with FFP in a clinical trial 288	
  

of fludarabine-refractory CLL patients, with minimal toxicity.2, 11, 26, 27 OFA is currently licensed for the 289	
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treatment of double refractory patients and shows significant activity as a single agent, effectively 290	
  

targeting CLL cells previously treated with RTX.7, 9 The improvement reported for the small cohort of 291	
  

patients treated with RTX in combination with FFP, lend support for further investigation of MAb 292	
  

therapy in combination with FFP infusions in clinical trials in the context of enhancing classical 293	
  

complement pathway activity. This would be of particular importance for MAbs like OFA, which are 294	
  

highly effective at using the complement system to induce cell death. Moreover, enhancement of CDC 295	
  

by supplementing MAb therapy with FFP may also reduce the level of trogocytosis thus preventing 296	
  

immune evasion of CLL cells. Indeed, our data highlight the importance of considering tumour burden 297	
  

and patient complement levels prior to MAb therapy, as these factors could negatively impact on the 298	
  

ability of the patient’s natural immune system to clear the malignant cells, thus reducing clinical 299	
  

efficiency of the administered MAbs. Significantly, we demonstrate that complement exhaustion can 300	
  

occur following RTX therapy in vivo, reducing both complement activity as shown previously,18 and 301	
  

the serum concentrations of complement components, particularly C2 and C4. Analysis of sera from 302	
  

CLL patients undergoing RTX immunotherapy, showed that 24 hr post RTX infusion, complement was 303	
  

rapidly consumed by OFA treated HG3 cells, leading to a substantial decrease in CDC activity. 304	
  

However in the majority of patients by day 28 CDC activity was restored, in line with complement 305	
  

levels. Interestingly the patient whose CDC activity remained low at day 28 was deficient in C2, which 306	
  

dropped even lower following RTX treatment and remained at low levels by day 28. We also observed 307	
  

that sera from this patient exhausted readily in vitro, as was observed in vivo. In contrast to RTX, OFA 308	
  

is typically administered as 8 weekly doses followed by 4 monthly treatments.7, 9 In a previous study, 309	
  

patient complement levels were also reduced considerably following OFA infusion, especially after the 310	
  

first infusion when CD20 levels were initially high.23 These findings have recently been confirmed by 311	
  

Baig et al., who demonstrate that there is a rapid decrease in serum complement levels following OFA 312	
  

treatment, which is sustained 24h post-treatment. In addition the CLL cells lose CD20 expression and 313	
  

become insensitive to in vitro OFA-mediated CDC, whilst retaining their ability to undergo 314	
  

alemtuzumab-mediated CDC when supplemented with 10% NHS.28  The greater dose-intensity, 315	
  

coupled with the greater induction of CDC with OFA, suggests that sustained complement depletion is 316	
  

more likely to occur during OFA treatment, in susceptible patients. In patients with complement 317	
  

deficiencies, ineffective CDC may also result in non-lethal complement deposition on CLL cells, CD20 318	
  

trogocytosis and subsequent resistance to OFA-mediated CDC. 319	
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Conclusion 320	
  

This study highlights that complement deficiencies are an important clinical issue in CLL and have 321	
  

implications for the scheduling of MAb therapy, with repeated administration of MAb during treatment 322	
  

likely to reduce clinical efficacy in CLL patients due to complement consumption and depletion leading 323	
  

to an inability to elicit CDC. Indeed, our findings establish that physiological complement levels are 324	
  

fundamental to maintaining clinical efficacy of current MAb regimes. Provision of FFP as a source of 325	
  

complement in parallel with MAb therapy may provide a relatively simple and effective way to restore 326	
  

complement levels to a normal range, enhance the clinical efficacy of the MAb therapy and possibly 327	
  

reduce the risk of infection. This could ultimately result in improved response rates and progression 328	
  

free survival. A clinical study to assess the impact of complement replenishment using FFP in CLL 329	
  

patients receiving MAb therapy is clearly warranted. 330	
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Figure legends 427	
  

Figure 1. CLL patient sera exhibit deficiencies in key components of the classical complement 428	
  

cascade and reduced complement activity. 429	
  

A. The concentrations of complement components of the classical cascade were assessed. Mean of 430	
  

individual patient samples and AMS controls is shown. NR: Normal Range. i. C1q levels were 431	
  

determined by RID. NR was established from the manufacturer's guidelines (AMS, n=12; CLL sera, 432	
  

n=52).  ii, C2 levels were determined by RID. NR was established from our AMS controls (AMS, 433	
  

n=12; CLL sera, n=56). iii & iv. C3 & C4 concentrations respectively were determined by 434	
  

immunonephelometry performed by the clinical diagnostic laboratory (AMS, n=12; CLL sera, n=63). 435	
  

B. Activity of the classical complement cascade was measured using the CH100 assay in CLL sera 436	
  

(n=62) and AMS control (n=12). CH100 units were determined against a standard curve following lytic 437	
  

ring measurement produced by serum measured against a calibrator of known activity levels. An 438	
  

unpaired t test revealed no significant difference in the mean complement levels and complement 439	
  

activity when comparing AMS controls with CLL patient sera. 440	
  

Figure 2. OFA induces greater cell kill through CDC than RTX.  441	
  

A. CLL patient cells were treated with 20 µg/ml OFA or RTX and then incubated with 50% NHS and 442	
  

the level of CDC cell death measured by flow cytometry (% PI+ cells). The percentage of dead cells is 443	
  

expressed relative to untreated control, graphs represent the mean ± S.D (n=5 for each patient 444	
  

cohort). B. Statistical analysis using mixed model Anova following covariate adjustment of non-drug 445	
  

control for OFA and RTX populations. 446	
  

Figure 3. CLL patient sera exhausts more readily than NHS.  447	
  

HG3 cells were treated with 20 µg/ml OFA and then incubated with 50% CLL patient sera or NHS and 448	
  

the level of CDC cell death measured by flow cytometry (% PI+ cells). The percentage of dead cells is 449	
  

expressed relative to untreated control. A. CLL serum that caused ≥40% CDC in OFA treated HG3 450	
  

cells in 1° use, was used again (2° use) and the percentage difference in CDC from 1° to 2° sera use 451	
  

enabled calculation of exhaustion levels (n=52 CLL patient sera vs. n=12 individual NHS. p values 452	
  

were determined by an unpaired t-test (** p<0.01). B. After induction of CDC from the first set of OFA-453	
  

treated HG3 cells (1° use) sera were removed from the cells and used for a second time to determine 454	
  

the CDC activity induced on fresh HG3 cells treated with 20 µg/ml OFA (2° use). Representative data 455	
  

are shown from the sera of 3 CLL patients and NHS control. C. CLL primary cells (n=4 ± SEM) of 456	
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different cell densities were treated with 20 µg/ml OFA. Sera were removed and re-challenged with 457	
  

fresh CLL cells of matching cell density treated with 20 µg/ml OFA. CDC was measured at both 458	
  

stages. p values were determined by a paired t-test (*, p<0.05). 459	
  

Figure 4. CDC activity in complement deficient serum can be restored with the addition of 460	
  

complement components.  461	
  

C2 protects CLL patient sera against exhaustion.  CLL sera (n=9) that exhibited high levels of serum 462	
  

exhaustion were supplemented with C2 (50 µg/ml), before being used to induce CDC in HG3 cells 463	
  

treated with 20 µg/ml OFA (1° use). After the incubation period sera was removed and re-challenged 464	
  

with HG3 cells treated with 20 µg/ml OFA (2° use). A. Representative results from 3 different CLL 465	
  

patients are shown. B. Analysis of the percentage change in CDC from the 1° to 2° use,  p value was 466	
  

obtained from a paired t-test (*** p<0.001) C. C2 levels in CLL patient sera were compared against 467	
  

CLL patient sera exhaustion (n=47). Linear regression was applied to obtain values for r2, 0.5260 and 468	
  

p value, <0.0001. D. 10 or 20% NHS was added to CLL sera (n=9 ± SEM) prior to CDC exhaustion, p 469	
  

value was obtained from paired t test. (* p<0.05; ** p<0.01; *** p<0.001). Percentage of dead cells is 470	
  

relative to untreated control.  471	
  

Figure 5. Complement levels are exhausted in vivo. 472	
  

Sera samples were collected from CLL patients undergoing RTX immunotherapy (concentration 473	
  

shown in Supplementary Table 1). Sera were collected prior to RTX therapy (pre – RTX dose 1), 24 474	
  

hr after treatment (post – RTX dose 1) and prior to the second dose of RTX, 28 days after dose 1 (pre 475	
  

– RTX dose 2). A. The concentration of complement levels in CLL sera (n=6). i. C2 levels were 476	
  

determined by RID. ii. & iii. C3 & C4 concentrations were determined by immunonophelometry. p 477	
  

value was obtained from paired t test (* p<0.05; ** p<0.01). B. CDC was measured on HG3 cells 478	
  

treated with 20 µg/ml OFA in 50% CLL sera (n=6). p value was obtained from paired t test (* p<0.05; 479	
  

** p<0.01). C. Exhaustion was measured in sera collected i, prior to RTX therapy and ii, post – RTX 480	
  

dose 1. After induction of CDC from the first set of OFA treated HG3 cells (1° use) sera were removed 481	
  

from the cells and re-challenged with HG3 cells treated with 20 µg/ml OFA and CDC measured (2° 482	
  

use). Percentage of dead cells is relative to untreated control. 483	
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