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Abstract
Optimal Bayesian experimental design typically involves maximising the expectation, with
respect to the joint distribution of parameters and responses, of some appropriately cho-
sen utility function. This objective function is usually not available in closed form and
the design space can be of high dimensionality. The approximate coordinate exchange
algorithm is proposed for this maximisation problem where a Gaussian process emulator
is used to approximate the objective function. The algorithm can be used for arbitrary
utility functions meaning we can consider fully Bayesian optimal design. It can also be
used for those utility functions that result in pseudo-Bayesian designs such as the popular
Bayesian D-optimality. The algorithm is demonstrated on a range of examples.
Keywords
Bayesian; coordinate exchange; Gaussian process emulator; optimal experimental design

1 Introduction

1.1 Bayesian optimal design

Optimal experimental design refers to the “best” allocation of the resources for an ex-
periment where there is some degree of uncertainty in the responses. By “best” we mean
that the design maximises a specified utility of the experiment. This utility typically
depends on the assumed data-generating process, i.e. a statistical model. For Bayesian
optimal experimental design, the data-generating process includes a prior distribution
for the unknown model parameters. This distribution quantifies our knowledge of the
model parameters prior to conducting the experiment and allows us to explicitly use this
knowledge to help find an optimal design.

Suppose the experiment consists of n runs where each run consists of a treatment of k
factors and the observation of a response. Let D denote the n × k design matrix where
the ith row, di, for i = 1, . . . , n, specifies the settings of the k factors. Furthermore, let
δ = vec (D) ∈ D denote the nk × 1 vector found by stacking the columns of D into a
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vector and where we let D denote the q-dimensional design space with q = nk. An optimal
design is found by maximising the objective function, U(δ), given by the expectation of a
utility function with respect to the joint distribution of model parameters and unobserved
responses. Mathematically,

U(δ) = Eψ,y [u(ψ,y, δ)] =

∫

u(ψ,y, δ) dPψ,y,

where u(ψ,y, δ) denotes the utility function depending on the unknown model param-
eters, ψ ∈ Ψ; the unobserved responses, y ∈ Y ; and the design. In this case, Ψ is the
P -dimensional parameter space, and Y is the n-dimensional sample space. Each element
of the n×1 vector y represents the response from each run of the experiment. We discuss
some common choices of utility function in Section 1.3.

The joint distribution of model parameters and unobserved responses, π(ψ,y|δ), can be
factorised as

π(ψ,y|δ) = π(y|ψ, δ)π(ψ), (1)

where π(ψ) is the probability density of the prior distribution of ψ and π(y|ψ, δ) rep-
resents the joint distribution of the responses conditional on the parameters. Once the
responses have been observed, and when considered as a function of ψ, π(y|ψ, δ) is called
the likelihood function. Note from (1) that the prior distribution for ψ is assumed to not
depend on the design, δ, although the methodology proposed in this paper does not rely
on this assumption.

1.2 Challenges and existing approaches

In practice, obtaining the optimal design by maximising the expected utility function is
associated with two problems.

1. The design space, D, can be of high dimensionality making the optimisation chal-
lenging.

2. In all but the most trivial cases, the integration required in the evaluation of U(δ)
will be analytically intractable.

Simulation-based methods provide a obvious approach to these problems. Muller (1999)
considered the function

h(ψ,y, δ) ∝ u(ψ,y, δ)π(ψ,y|δ), (2)

as the density of a joint distribution where the marginal mode of δ is equivalent to
the optimal design. Muller (1999) proposed using simulation methods (e.g. Markov
chain Monte Carlo) to generate a sample from increasingly tempered versions of the joint
distribution given by (2). The optimal design can be approximated by the sample mean
of δ. The problem of the high dimensionality of D still plagues the method of Muller
(1999) in terms of specifying an efficient simulation method. Ryan et al. (2014) use this
method for designs of one factor (k = 1) but where n may be large. To counter the high
dimensionality, Ryan et al. (2014) employ a dimension reduction scheme to, essentially,
change the problem to determining the first design point and a spacing parameter to
find the subsequent design points. The Muller (1999) simulation method is applied to
maximising the expected utility over the two-dimensional modified design space where
Monte Carlo integration is used to approximate U(δ). See Muller et al. (2004) and Amzal
et al. (2006) for further examples of this simulation-based approach.
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When U(δ) is analytically tractable, an approach to the problem of a high dimensional
design space is the coordinate exchange algorithm (Meyer and Nachtsheim, 1995) which
is an example of a cyclic ascent (or Gauss-Seidel) optimisation method (see, for example,
Bazaraa et al., 2006, pages 365-368). Here the objective function U(δ) is maximised over
each element (or coordinate) of D sequentially. Thus, for each element i = 1, . . . , q, we
cycle through the following steps:

1. Let δC =
(

δC1 , . . . , δ
C
q

)

be the current design.

2. Define Ui(δ) = U
(

δC1 , . . . , δ
C
i−1, δ, δ

C
i+1, . . . , δ

C
q

)

.

3. Let δCi = arg maxδ∈Di
Ui(δ), where Di corresponds to the ith dimension of D (which

may depend on δC\i).

Another approach is the point exchange algorithm. This relies on the specification of a
candidate set of design points. At each iteration, the candidate point which results in the
greatest improvement in U(δ) is added to the current design, and then the design point,
in the augmented current design, which, when removed, results in the smallest reduction
in U(δ), is removed. See, for example, Morris (2011, pages 310-311) for a more detailed
description of the point exchange algorithm.

Chaloner and Verdinelli (1995) describe how a normal approximation to the posterior
distribution of ψ can lead to approximations to U(δ) in which the expectation is only
with respect to the marginal distribution of ψ (i.e. the prior distribution). Whilst,
typically, still analytically intractable, an appealing feature of these approximations is
their relationship to classical optimal experimental design (see Section 1.3). Gotwalt
et al. (2009) applied a deterministic quadrature rule to approximate the objective function
which is the prior expectation of a particular loss function. They applied their method,
in conjunction with the coordinate exchange algorithm, to compartmental and logistic
regression models.

In this paper, we extend the idea of Gotwalt et al. (2009) by considering the approxi-
mate coordinate exchange algorithm for arbitary data-generating processes and/or utility
functions. This is simply application of the coordinate exchange algorithm but where
evaluation of the intractable Ui(δ) is replaced by evaluation of an approximation.

Monte Carlo integration provides a straightforward mechanism for approximating the
expected utility and has been applied by, for example, Muller and Parmigiani (1996),
Hamada et al. (2001) and Hainy et al. (2013) to find Bayesian optimal designs. How-
ever, the applicability of these approaches when D is of high dimensionality has yet to
be demonstrated. Muller and Parmigiani (1996) formed an approximation to U(δ) by
fitting a statistical model to Monte Carlo integration evaluations of U(δ). That is, they
essentially smoothed the evaluations to give a predictive equation for U(δ) which is then
maximised (not using the coordinate exchange algorithm). We follow this approach for
approximating Ui(δ) and, in particular, use a Gaussian process emulator as the smooth-
ing statistical model. At each iteration of the coordinate exchange algorithm, we refit the
emulator so that it adapts to the shape of the expected utility as we get closer to the
maximum. Gaussian process emulators are a very flexible class of model and their use
for approaching optimisation problems can be traced back to, for example, Jones et al.
(1998).
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1.3 Utility functions

In this section we discuss the utility function, the choice of which should be driven by the
ultimate goal of the experiment. For example, the choice of utility function should reflect
the fact that we may be interested in prediction or estimating some function of parameters.
See Chaloner and Verdinelli (1995) for examples of utility functions. However, for the
purpose of demonstrating the methodology in this paper, in the examples of Section
4, we focus on two commonly used utility functions for parameter estimation; Shannon
information gain (Lindley 1956) and negative squared error loss.

Suppose that the model parameters can be decomposed as φ = (θ,γ), where θ denotes
the p×1 vector of parameters of interest and γ denotes the (P −p)×1 vector of nuisance
parameters.

1.3.1 Shannon information gain (SIG)

The SIG utility is given by

uS(θ,y, δ) = log π(θ|y, δ)− log π(θ).

The expectation of SIG with respect to the posterior distribution of θ is the Kullback-
Liebler distance (KLD) between the marginal posterior and prior distributions of θ.
Therefore maximising US(δ) = Eψ,y

(

uS(θ,y, δ)
)

is equivalent to maximising the ex-
pectation (with respect to the marginal distribution of y) of this KLD. Also note that
this is equivalent to minimising the expected entropy of the posterior distribution.

Consider the linear model with conjugate normal-inverse-gamma prior distribution

y|β, σ2 ∼ N
(

Xβ, σ2In
)

,

β|σ2 ∼ N
(

µ0, σ
2V0

)

,

σ2 ∼ IG

(

a

2
,
b

2

)

,

where In denotes the n × n identity matrix. The design, δ, specifies the elements of the
n× p model matrix, X. Let β be the p× 1 vector of parameters of interest and σ2 be a
nusiance parameter. The expected SIG is

US(δ) =
1

2
log |V0|+

1

2
log |V−1

0 +XTX|.

Chaloner and Verdinelli (1995) point out that, in some cases, U(δ) is a strictly mono-
tonic function of a simpler function, φ(δ). Therefore maximising U(δ) is equivalent to
maximising the function φ(δ). Since US(δ) is a strictly monotonic function of

φS(δ) = log |V−1
0 +XTX|, (3)

maximising φS(δ) is equivalent to maximising US(δ). It can also be shown that if interest
lies in both β and σ2, then the expected utility is also a strictly monotonic function of
(3).

Additionally, under a non-informative prior distribution for β (where V−1
0 = 0) and with

n ≥ p, φS(δ) = log |XTX|, meaning the optimal design under expected SIG is equivalent
to the classical D-optimal design (Atkinson et al., 2007, Chapter 10).
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1.3.2 Negative squared error loss (NSEL)

The NSEL utility is given by

uV (θ,y, δ) = −
p
∑

i=1

[θi − E(θi|y, δ)]2 , (4)

= − [θ − E(θ|y, δ)]T [θ − E(θ|y, δ)] .
The expectation of NSEL with respect to the marginal posterior distribution of θ is the
negative trace of the posterior variance matrix. Therefore maximising UV (δ) is equiva-
lent to minimising the expected (with respect to the marginal distribution of y) average
variance of the parameters of interest. For the linear model with parameters of interest
β, it can be shown that

UV (δ) = − b

a− 2
tr
{

(

V−1
0 +XTX

)−1
}

,

so that
φV (δ) = −tr

{

(

V−1
0 +XTX

)−1
}

.

Under the non-informative prior,

φV (δ) = −tr
{

(

XTX
)−1
}

,

which means, under a linear model with a non-informative prior, the optimal design under
NSEL is equivalent to the classical A-optimal design (Atkinson et al., 2007, Chapter 10).

For non-linear models, the expected utility under SIG and NSEL will, typically, be in-
tractable. Chaloner and Verdinelli (1995) and Muller and Parmigiani (1996) use a normal
approximation to the posterior distribution of ψ to justify the following approximations

φ̂S(δ) = Eψ (log |I(ψ; δ)|) =
∫

Θ

log |I(ψ; δ)|π(ψ)dψ,

φ̂V (δ) = −Eψ
(

tr {I(ψ; δ)}−1) = −
∫

Θ

tr
{

I(ψ; δ)−1
}

π(ψ)dψ,

where I(ψ; δ) denotes the Fisher information. Designs that maximise φ̂S and φ̂V are
used under the classical approach to statistics and are called Bayesian D- and A-optimal
designs, respectively, or, collectively, pseudo-Bayesian designs.

Although φ̂S and φ̂V are certainly simpler expressions than the original expected utilities,
they are still, typically, intractable. Lastly, note that φ̂S and φ̂V still fit into the general
framework, from Section 1.1, by specifying the following utility functions

uD(ψ,y, δ) = log |I(ψ; δ)|,
uA(ψ,y, δ) = −tr {I(ψ; δ)}−1 ,

respectively, which do not depend on y. We denote the resulting expected utilities as UD

and UA, respectively.

1.4 Layout of paper

The layout of the remainder of the paper is as follows. In Section 2 we outline the ap-
proximate coordinate exchange (ACE) algorithm. In Section 3 we describe how Monte
Carlo integration and Gaussian process emulators can be used to approximate the ex-
pected utility in the ACE algorithm. The ACE algorithm is then applied to a range of
challenging examples in Section 4.
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2 Approximate Coordinate Exchange Algorithm

In this section we provide the basic framework of the approximate coordinate exchange
algorithm (ACE) algorithm, which is modified from the algorithm used by Gotwalt et al.
(2009).

It has two phases. Phase I uses the coordinate exchange algorithm where evaluation of
U(δ) is replaced by evaluation of an approximation, denoted by Ũ(δ). Gotwalt et al.
(2009) noted that Phase I tends to produce clusters of design points. Phase II allows
these clusters to be consolidated into a single design point, which is then repeated. This
is achieved using the point exchange algorithm where the candidate set is the design found
by Phase I and where evaluation of U(δ) is, again, replaced by evaluation of Ũ(δ).

Strictly speaking, Phases I and II form an approximate coordinate and point exchange
algorithm but we retain the name “approximate coordinate exchange” for brevity.

Specifically, the algorithm is as follows.

1. Choose an initial design δ0 and set the current design to be δC = δ0.

Phase I (coordinate exchange)

2. For i = 1, . . . , q,

(a) Let Ũi(δ) = Ũ(δC1 , . . . , δ
C
i−1, δ, δ

C
i+1, . . . , δ

C
q ) be the approximation to Ui(δ).

(b) Let δ∗i = arg maxδ∈Di
Ũi(δ).

(c) Set δC = (δC1 , . . . , δ
C
i−1, δ

∗
i , δ

C
i+1, . . . , δ

C
q ).

3. Repeat step 2 NI times until convergence.

Phase II (point exchange)

4. Let D be the design found by Phase I and let DC = D be the current design.

5. (a) For i = 1, . . . , n, calculate

ri = Ũ(δ
(1)
i ),

where δ
(1)
i = vec(D

(1)
i ) and

D
(1)
i =

(

DC

dC
i

)

.

(b) Let j = {1, . . . , n|rj = max {r1, . . . , rn}} and set D(2) = D
(1)
j .

(c) For i = 1, . . . , n+ 1, calculate

ri = Ũ(δ
(3)
i ),

where δ
(3)
i = vec(D

(3)
i ) and

D
(3)
i =





















d
(2)
1
...

d
(2)
i−1

d
(2)
i+1
...

d
(2)
n+1





















.
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(d) Let j = {1, . . . , n+ 1|rj = max {r1, . . . , rn+1}}.
(e) Set DC = D

(3)
j .

6. Repeat step 5 NII times until convergence.

The above algorithm is very general. In Section 3 we describe how it can be implemented
by using Monte Carlo integration and Gaussian process emulation.

3 Methodology

3.1 Monte Carlo Integration

In this section we describe how Monte Carlo integration can be used to approximate U(δ).

Suppose {ψi,yi}Bi=1 is a sample generated from the joint distribution of ψ and y, given
by π(ψ,y|δ), then the Monte Carlo integration approximation to U(δ) is

ÛB(δ) =
1

B

B
∑

i=1

u(ψi,yi, δ).

The value of ÛB(δ) is an unbiased estimator of U(δ) and converges to U(δ) by the law of

large numbers. If |Eψ,y (u(ψ,y, δ)
2) | < ∞, the variance of ÛB(δ) is given by

var
(

ÛB(δ)
)

=
1

B

∫

Y

∫

Ψ

(u(ψ,y, δ)− U(δ))2 π(ψ,y|δ)dψdy. (5)

Note from (5), that by increasing B we increase precision through a smaller variance.
However the increased accuracy comes with higher computational expense.

Consider the application of ÛB(δ) in the ACE algorithm presented in Section 2. In

steps 5a and 5c we set Ũ(δ) = ÛB(δ). However, as discussed by Robert and Casella

(2004, pages 203-204), ÛB(δ) is not immediately suitable for optimisation, such as the
maximisation carried out in step 2. As the joint distribution of ψ and y depends on δ,
a new sample from this distribution will have to be generated at every new value of δ in
an optimisation algorithm. Also since a new sample will be generated each time, ÛB(δ)
will not be a smooth function. Geyer (1996) suggested the use of importance sampling.

A sample, {ψi,yi}Bi=1, is generated from a distribution, G, with density g(ψ,y), which
does not depend on δ. The expected utility is then approximated by

ŬB(δ) =
1

B

B
∑

i=1

u(ψi,yi, δ)π(ψi,yi|δ)
g(ψi,yi)

.

Now the same sample can be used throughout and ŬB(δ) will be a smooth function.
However, specifying an efficient G, appropriate for the whole design space, will be difficult.
Additionally using a single sample will introduce bias. For these reasons we do not pursue
this idea here.

Instead the approach taken here is to construct a Gaussian process emulator for Ui(δ)

using a “small” number of evaluations of the Monte Carlo integration, Ûi,B(δ), i.e. we
create a smooth approximation to Ui(δ). We describe the Gaussian process emulator in
Section 3.2.
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We spend the remainder of this section describing how we specifically approximate the
expectation of the utility functions discussed in Section 1.3. In all cases, suppose, as
above, that {ψi,yi}Bi=1 is a sample generated from the joint distribution of ψ and y.

The SIG utility function can be rewritten as

uS(θ,y, δ) = log π(y|θ, δ)− log π(y|δ),

where

π(y|θ, δ) =

∫

Γ

π(y|θ,γ, δ)π(γ|θ)dγ, (6)

π(y|δ) =

∫

Ψ

π(y|θ,γ, δ)π(γ,θ)dψ, (7)

where π(y|θ,γ, δ) = π(y|ψ, δ) and Γ is the parameter space for γ. Typically, if there
exists nuisance parameters, both of these terms will be analytically intractable. If there
are no nuisance parameters, then (6) is π(y|θ, δ) = π(y|ψ, δ) which is usually available in
closed form. However we can approximate both (6) and (7) using Monte Carlo integration
by

π̂B̃(y|θ, δ) =
1

B̃

B̃
∑

i=1

π(y|θ, γ̃i, δ),

π̂B̃(y|δ) =
1

B̃

B̃
∑

i=1

π(y|θ̃i, γ̃i, δ),

where
{

θ̃i, γ̃i

}B̃

i=1
is a sample generated from the prior distribution of ψ = (θ,γ). The

tilde symbol (∼) distinguishes this sample from {ψi,yi}Bi=1. We plug-in this approxima-
tion to the Monte Carlo integration approximation to US(δ) to yield the following nested
Monte Carlo integration approximation to the expected SIG utility:

ÛB(δ) =
1

B

B
∑

i=1

(log π̂B̃(yi|θi, δ)− log π̂B̃(yi|δ)) .

Note that log π̂B̃(y|θ, δ) and log π̂B̃(y|δ) are not unbiased estimators of log π(y|θ, δ) and
log π(y|δ), respectively, so ÛB(δ) is no longer an unbiased estimator of US(δ). However
(under certain conditions) the bias is of order B̃−1 (Oehlert, 1992) so will be negligible
for large B̃.

Now consider the NSEL utility function given by (4). The expectation E(θj|y, δ) will,
typically, not be analytically tractable. Its value can be approximated via importance
sampling

ÊB̃(θj|y, δ) =
∑B̃

i=1 θ̃ijπ(y|θ̃i, γ̃i, δ)
∑B̃

i=1 π(y|θ̃i, γ̃i, δ)
,

where
{

θ̃i, γ̃i

}B̃

i=1
is a sample generated from the prior distribution of ψ, and θ̃ij is the jth

element of θ̃i. This yields the following nested Monte Carlo integration approximation

ÛV
B (δ) = − 1

B

B
∑

i=1

p
∑

j=1

(

θij − ÊB̃(θj|yi, δ)
)2

,
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where θij is the jth element of θi. Similar to the approximation to the expected SIG, this
will not be unbiased since

Ey

(

ÊB̃(θj|y, δ)2
)

6= E(θj|y, δ)2,

but again, we assume that this bias is negligible for large B̃.

For both the expected SIG and NSEL utility functions, we set B̃ = B for all examples,
although this does not necessarily have to be the case.

Unbiased Monte Carlo integration approximations to the pseudo-Bayesian expected utility
functions are given by

ÛD
B (δ) =

1

B

B
∑

i=1

log |I(ψi; δ)|,

and

ÛA
B (δ) = − 1

B

B
∑

i=1

tr
(

I(ψi; δ)
−1
)

,

respectively, which only require a sample to be generated from the prior distribution.

3.2 Gaussian Process Emulators

In this section we describe how to construct the Gaussian process emulator approximation
to Ui(δ) to use in step 2a of the ACE algorithm.

At the ith iteration of step 2 of the ACE algorithm, let ζ = {δ1, . . . , δQ} ∈ Di and set

ūj = Ûi,B(δj), for j = 1, . . . , Q. Let m̄ and s̄ be the sample mean and standard deviation
of (ū1, . . . , ūQ) and

zj =
ūj − m̄

s̄
,

for j = 1, . . . , Q. If z = (z1, . . . , zQ), the Gaussian process assumes that

z|η, ρ ∼ N(0,A) ,

where A is a Q×Q positive-definite matrix with jlth element

Ajl = exp
(

−ρ (δj − δl)
2)+ ηI(j = l),

I(E) is the indicator function for the event E, and, η > 0 and ρ > 0 are unknown

parameters. Let ū0 = Ûi,B(δ), for δ ∈ Di, be the value of the Monte Carlo approximation
we wish to predict. It can be shown that

ū0|η, ρ ∼ N(m0(δ), v0(δ)) ,

where

m0(δ) = m̄+ s̄aTA−1z,

v0(δ) = s̄2
(

1 + η − aTA−1a
)

,

and a is a Q × 1 vector with jth element aj = exp
(

−ρ (δ − δj)
2). We use m0(δ) as a

point prediction of Ui(δ), i.e. in step 2b we set Ũi(δ) = m0(δ).
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The parameters η and ρ are unknown. A fully Bayesian approach can be taken but we
use the plug-in approach (Kennedy and O ‘Hagan, 2001) and replace them with fixed
estimates. For convenience, we estimate their values using maximum likelihood and the
Fisher scoring method (see, for example, Millar, 2011, page 104).

An important decision is the choice of ζ. We could actually find the optimal design which
minimises the predictive variance v0(δ), however implementing this at every step of the
coordinate exchange algorithm would be infeasible and would require knowledge about η
and ρ. Instead we let ζ be a one-dimensional Latin hypercube design (see, for example,
Fang et al., 2006, Chapter 2). These types of design are commonly used in the computer
experiments literature to approximate computationally expensive functions. A new ζ is
randomly generated at every iteration of the ACE algorithm.

We must also specify Q, the number of Monte Carlo integration evaluations to use each
time. As Q increases, we must obviously use more Monte Carlo integration evaluations
which will be computationally expensive. Also to fit a Gaussian process emulator via
maximum likelihood requires multiple inversions of A, a Q × Q matrix. As Q becomes
large this can also become computationally expensive since it requires O (Q3) operations.
In all examples, unless otherwise stated, we use Q = 20. This satisfies the rule of thumb
for Gaussian process emulators, advocated by Loeppky et al. (2009), that Q should be at
least ten times the number of dimensions of the input space (which in this case is one)

3.3 Further Implementation Details

3.3.1 Initial design

In step 1 an initial design, δ0, is required. Unless otherwise stated, in all implementations
of the ACE algorithm, a Latin hypercube design of appropriate dimensions is used.

3.3.2 Maximisation method

In step 2b we maximise Ũi(δ) = m0(δ) for δ ∈ Di. In the corresponding step of the
algorithm used by Gotwalt et al. (2009), the so-called “Brent” method (Brent, 1973) is
used. We found that this method is susceptible to converging to a local maximum, not
the global maximum. Since this is a one-dimensional maximisation, we evaluate m0(δ)
over a very fine grid, of size M , of uniformly generated points of Di. Throughout, we use
M = 10000, and, despite this large value, found that m0(δ) could be evaluated for every
value in the grid in fractions of a second.

3.3.3 Adequacy of Gaussian process emulator

AGaussian process emulator, similar to all statistical models, can fit inadequately with the
result that δ∗i is a poor approximation to arg maxδ∈Di

Ui(δ) and the algorithm moving
to an inferior design. Bastos and O’Hagan (2009) developed diagnostic procedures to
assess the adequacy of Gaussian process emulators based on additional test evaluations
of Ûi,B(δ). However the interpretation of these procedures is subjective which will be
difficult to implement automatically within the ACE algorithm. Instead, we propose to
include a comparison procedure. Replace step 2c by the following two steps

(c) Let δ∗ =
(

δC1 , . . . , δ
C
i−1, δ

∗
i , δ

C
i+1, . . . , δ

C
q

)

.
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(d) Compare the current design δC and the candidate design δ∗. If accepted, set δC = δ∗;
otherwise δC remains unchanged.

Consider the comparison procedure. A simple check of whether ÛB(δ
∗) > ÛB(δ

C) will
not suffice due to the stochastic nature of Monte Carlo integration.

Instead, note that we are assessing whether

E (u(ψ,y, δ∗)) > E
(

u(ψ,y, δC)
)

, (8)

where we can generate a sample from u(ψ,y, δ∗) and from u(ψ,y, δC). To answer this
question, we perform a Bayesian hypothesis test of (8) using the two samples and accept
the candidate design, δ∗, with the associated posterior probability, p∗, of this hypothesis.
Specifically, let

uC
i = u(ψi,yi, δ

C),

u∗
i = u(ψ∗

i ,y
∗
i , δ

∗),

where {ψi,yi}Bi=1 and {ψ∗
i ,y

∗
i }Bi=1 are two samples generated from the joint distribution

of ψ and y. We assume that, independently,

uC
i ∼ N(b1, v) ,

u∗
i ∼ N(b1 + b2, v) ,

for i = 1, . . . , B. The hypothesis of (8) is now equivalent to b2 > 0, and under non-
informative priors, the posterior probability of this hypothesis being true is

p∗ = 1− F

(

−
∑B

i=1 u
∗
i −

∑B

i=1 u
C
i√

2Bv̂

)

,

where F (·) is the distribution function of the t-distribution with 2B−2 degrees of freedom,

v̂ =

∑B

i=1(u
C
i − ūC)2 +

∑B

i=1(u
∗
i − ū∗)2

2B − 2
,

and ūC and ū∗ are the sample means of the uC
i ’s and u∗

i ’s, respectively.

This procedure relies on the assumption of normality of the uC
i and u∗

i for i = 1, . . . , B.
This may not be a reasonable assumption for all cases. However we believe that this test
procedure will be more robust than merely relying on the Gaussian process emulator and
the assumption of normality allows analytic calculation of p∗. The idea of using hypothesis
tests in the optimisation of stochastic functions is not a new one. For an example of using
a classical hypothesis test in conjunction with simulated annealing, see Wang and Zhang
(2006).

Additionally we also employ this comparison procedure in step 5 by replacing step 5e by

(e) Compare the candidate design δ
(3)
j = vec

(

D
(3)
j

)

to the current design δC = vec
(

DC
)

.

If accepted, set δC = δ
(3)
j ; otherwise leave δC unchanged.

3.3.4 Convergence

The steps of Phases I and II are repeated NI and NII times, respectively. We found that,
for all examples in Section 4, that NI = 20 and NII = 100 was sufficient for approximate
convergence. We assessed approximate convergence by using a trace plot of the evaluation
of ÛB(δ) for the current design at each iteration of the ACE algorithm. See Section 3.4.2
for examples of such trace plots.
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3.3.5 Monte Carlo sample size

Consider the choice of Monte Carlo sample size, B. There is no requirement that the
sample size, B, generated from the joint distribution of ψ and y, used in the evaluation
of ÛB(δ), be the same at every iteration of the ACE algorithm. For all implementations,

unless specified otherwise, B = 1000 for evaluation of ÛB(δ) in step 2(a) and B = 20000

for all other evaluations of ÛB(δ), i.e. those used in the comparison procedures.

3.3.6 Repeating ACE

As noted by, for example, Goos and Jones (2011, pg 36), the coordinate exchange algo-
rithm may converge to a local maximum. Therefore we repeat the algorithm N times from
N different initial designs. Note that N repetitions is trivial to implement using parallel
processing computing where the repetitions will run in parallel on N different processors.
Each repetition will produce a design. We evaluate ÛB(δ), for each of these designs, C
times, and choose the design which has the highest mean over these C evaluations. Unless
otherwise stated, we use N = C = 20 for all of the examples in this paper.

3.3.7 Code

The algorithm outlined and proposed in Sections 2 and 3 is implemented in the R package
acebayes. R code to reproduce the examples in Section 4 using acebayes is available from
the authors on request. Additionally, the designs found for all examples in Section 4 are
available in acebayes to allow fast comparison with designs found using new methodology.

3.4 Toy Examples

3.4.1 Single Poisson observation

To demonstrate the main ideas behind the algorithm presented in Sections 2 and 3,
consider the following toy example. We are to make one observation, y, which is assumed
to have the following distribution

y|β ∼ Poisson(eβx),

where δ = x ∈ [−1, 1] is the design variable. We assume that β has a N(β0, 1) prior
distribution. Consider Bayesian D-optimality with the following utility function

u(β, y, x) = log I(β; x),
= 2 log |x|+ βx,

which leads to the expected utility of

U(x) = 2 log |x|+ β0x.

It is easy to see that the optimal design, x̃, is given by

x̃ =

{

1, if β0 > 0,
−1, if β0 < 0,

and if β0 = 0, then equally optimal designs are given by x∗ = ±1.
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Figure 1: Plots for the toy example in Section 3.4. Figure (a) shows a plot of the Monte Carlo evaluations,

ÛB(xj), against xj ∈ ζ. Also shown are U(x) and m0(x) against x. Figure (b) shows the a plot of the median

probability of accepting the candidate point against the current point, x. Figures (c) and (d) show the

same as Figures (a) and (b) but for a different design, ζ.
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Let β0 = 0.5 so that the optimal design is given by x∗ = 1. We generate a design
ζ = {x1, . . . , xQ} of size Q = 10 and, for each xj, evaluate

zj = ÛB(xj) = 2 log |xj|+
xj

B

B
∑

i=1

βi,

where {βi}Bi=1, with B = 2, is a sample generated from N (β0, 1). Figure 1(a) shows a
plot of U(x) against x with the points (xj, uj), for j = 1, . . . , Q, along with the Gaussian
process emulator prediction,m0(x), as a dashed line. Clearlym0(x) is maximised at x = 1,
so this becomes the candidate point to be compared to the current point. Figure 1(b)

shows the median (over repeated sampling from the integrand of ÛB) posterior probability
of accepting this candidate point plotted against current point x. This probability of
acceptance is very close to one for nearly all values of x except for when x becomes close
to the optimal design x̃ where the the probability reduces to 1/2. Now suppose we had

generated a different design ζ at which to evaluate ÛB(x). This situation is depicted
in Figure 1(c). The Gaussian process emulator could be considered to be inadequate.
The estimate of the parameter η is too small resulting in m0(x) practically interpolating
the Monte Carlo integration evaluations. Here m0(x) is maximised at x = −1 and this
becomes the candidate point. Again Figure 1(d) shows the median posterior probability
of acceptance plotted against current point x. Now we are only likely to accept this
candidate if the current point is in areas of low expected utility (i.e. between -0.5 and
0.5). Crucially, we are likely to reject the candidate if the current point is close to the
optimal design of x̃ = 1 where the probability drops to zero.
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Figure 2: Trace plots of ÛD
B (δC) at each iteration of the ACE algorithm for each value of n. The dotted

horizontal line indicates the optimal value of UD(δ) as found by Box and Draper (1971).
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3.4.2 Second-order response surface in two factors

The first example we consider is a second-order response surface model. Specifically, for
i = 1, . . . , n, where n is the number of runs, we assume that

yi ∼ N
(

µi, σ
2
)

,

where

µi = β0 + β1x1i + β2x2i + β3x
2
1i + β4x

2
2i + β5x1ix2i,

= xT
i β,

and β = (β0, . . . , β5). We consider the SIG utility function under non-informative priors.
In this case, the expected SIG utility is analytically tractable and the corresponding
optimal design is equivalent to the classical D-optimal design. This is found by maximising
the following function

UD(δ) = log |XTX|,
where X is the n× 6 matrix with ith row given by xi and δ is the n× 2 matrix with ith
row given by (x1i, x2i). The design space for each element of δ is the interval [−1, 1].

Box and Draper (1971) found D-optimal designs for this problem, analytically, for n =
6, 7, 8 and 9. To assess the efficacy of the ACE algorithm we attempt to recover these
D-optimal designs. To do this we use the ACE algorithm with the following stochastic
approximation to UD(δ),

ÛD
B (δ) =

1

B

B
∑

i=1

ui,

where ui = log |XTX|+ ǫi, with ǫi
iid∼ N(0, 1) and B = 1000.
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Table 1: Minimum, median and maximum for the N = 20 D-efficiencies (%) for each number of runs, n.

Number of runs, n

6 7 8 9

Minimum 96.5 99.2 99.4 99.6
Median 98.6 99.9 99.9 99.9
Maximum 99.7 100.0 100.0 99.9

To compare the true and approximate optimal designs we use D-efficiency (see, for ex-
ample, Atkinson et al. 2007, pg 151). Recall from Section 3.3, that we repeat the ACE
algorithm N = 20 times from different initial designs. Table 1 shows the minimum, me-
dian and maximum D-efficiencies over the N replications for each of the four values for
n. For each n, all designs obtained are more than 96% efficient and the “best” designs
are all more than 99.5% efficient. For each value of n and each repetition, Figure 2 shows
a trace plot of the approximate expected SIG utility at each iteration. From these plots,
we can identify how the algorithm has approximately converged.

4 Examples

4.1 Compartmental model

Compartmental models are used in Pharmokinetics to study how materials flow through
an organism. They have been used extensively to demonstrate optimal design methodol-
ogy (see, for example, Atkinson et al., 1993; Gotwalt et al., 2009; Ryan et al., 2014). A
drug is administered to an individual or animal and then the amount present at a certain
body location is measured at a set of n pre-determined sampling times (in hours). There
is one design variable: sampling time. Therefore δ is an n × 1 matrix containing the
sampling times: t1, . . . , tn.

The general statistical model is as follows. Let yi denote the amount of drug measured
at time ti and we assume that, independently,

yi ∼ N
(

c(θ)µ(θ; ti), σ
2v(θ; ti)

)

,

where θ = (θ1, θ2, θ3) are parameters and of interest, σ2 > 0 is a nuisance parameter, c
and v are specified functions depending on the application, and

µ(θ; ti) = exp (−θ1ti)− exp (−θ2ti) .

4.1.1 Bayesian D-optimality

Atkinson et al. (1993) and Gotwalt et al. (2009) studied generating Bayesian D-optimal
designs for this problem, where n = 18,

c(θ) = θ3,

v(θ; ti) = 1.

The prior distribution for θ is such that the elements are independent, with

θ1 ∼ U[0.01884, 0.09884],

θ2 ∼ U[0.298, 8.298],
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and where θ3 has a prior point mass at 21.8. The log-determinant of the Fisher information
only depends on σ2 linearly, so its prior does not affect the Bayesian D-optimal design.
The design space for t1 is [0, 24] hours and for tj is [tj−1, 24]. However this constraint does
not alter the operation of the ACE algorithm.

Relative to the optimal design found by Atkinson et al. (1993), the mean relative D-
efficiencies (over the twenty Monte Carlo integration approximations) of the ACE and
Gotwalt et al. (2009) designs are 99.9 and 99.6 (to 1 decimal place), respectively. This
shows that the utility of the ACE, Atkinson et al. (1993) and Gotwalt et al. (2009) designs
are very similar.

4.1.2 Shannon information gain

We now move onto a slightly more challenging problem involving the compartmental
model studied by Ryan et al. (2014). In this case,

c(θ) =
D

θ3

θ2
θ2 − θ1

,

v(θ; ti) =

(

1 +
τ 2

σ2
c(θ)2µ(θ; ti)

2

)

,

where D = 400, σ2 = 0.1, and τ 2 = 0.01. The prior distribution for θ is such that
the elements are independent. Each element of the parameters of interest, θj, has a log-
normal prior distribution where the mean and variance, on the log scale, are Mj and 0.05,
respectively, where

M1 = log(0.1),

M2 = log(1),

M3 = log(20).

There is a further constraint on the times, t1, . . . , tn, where

max
i,j=1,...,n

|ti − tj| ≤ 0.25,

i.e., the sampling times have to be at least fifteen minutes apart. This is easy to incor-
porate into the ACE algorithm. In Step 2, we maximise m0(δ) over the points in Di that
satisfy the constraint. Phase II of the ACE algorithm is then omitted since we do not
want to replicate sampling times.

Ryan et al. (2014) used their dimension-reduction schemes (DRS), in conjunction with the
Muller (1999) simulation approach, to find an optimal design, with n = 15 times, under
the SIG utility function (among other utility functions). They found that the Beta DRS
yielded the optimal design. The Beta DRS involves setting the sampling times, t1, . . . , tn,
to be the scaled percentiles of a Beta(α, β) distribution. This means the dimensionality
of the design problem has been reduced from n to 2, i.e., specifying α and β. We use the
ACE algorithm to find three designs with which to compare to the design of Ryan et al.
(2014):

1. SIG - the design found using the ACE algorithm under the SIG utility function;

2. Bayes D-opt - the design found using the ACE algorithm under the Bayesian D-
optimality utility function;
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Figure 3: (a) Boxplots of twenty evaluations of ÛS
B for the designs found using the ACE algorithm under

SIG (unrestricted and using the Beta DRS) and under Bayesian D-optimality, and the Ryan et al. (2014)

design which maximises expected SIG using the Beta DRS. (b) Plots of the Beta shape parameters where

the shade of the plotting character indicates the value of ÛS
B of the corresponding design. Also shown are

the values of the shape parameters for the Ryan et al. (2014) design and the DRS design found using the

ACE algorithm.
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3. SIG (DRS) - the design found using the ACE algorithm under the SIG utility func-
tion, where the Beta DRS has been used.

Figure 3(a) shows boxplots of twenty evaluations of ÛS
B for each of the three designs

listed above and the Ryan et al. (2014) design. Figure 3(a) confirms what me might
expect: that by not using a DRS we obtain higher values of the expected SIG. The
Bayesian D-optimal design, for this example, provides a reasonable approximation to the
optimal design under SIG. Now consider the DRS designs. The ACE algorithm finds a
design with higher expected utility than the Ryan et al. (2014) design. To investigate
this further we generated 40000 pairs of Beta shape parameters, (α, β), from [0, 5]2. For

each pair we found the corresponding design and evaluated ÛS
B. Figure 3(b) shows a plot

of β against α, where the shade of the plotting character indicates the value of ÛS
B. A

black plotting character indicates an expected SIG of zero, whereas lighter shades indicate
higher expected SIG. Points that do not satisfy the constraint that the sampling times
need to be fifteen minutes apart are plotted in black. Also plotted are the Beta shape
parameters corresponding to the Ryan et al. (2014) design and the ACE design. Clearly
both designs are located in a region of high expected utility but the location of the ACE
design confirms the conclusion from Figure 3(b): that it has higher expected utility.

4.2 Logistic regression in four factors

Consider a first-order logistic regression model in four factors where the responses will be
observed in G groups of m runs, i.e. n = Gm. Specifically let yij be the jth response
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from the ith group (j = 1, . . . ,m and i = 1, . . . , G), where

yij ∼ Bernoulli(ρij),

with

log

(

ρij
1− ρij

)

= β0 + ωi0 + (β1 + ωi1)x1i + (β2 + ωi2)x2i + (β3 + ωi3)x3i + (β4 + ωi4)x4i,

= xT
ij (β + ωi) . (9)

In (9), β ∈ R
5 are the parameters of interest and ωi ∈ R

5 (for i = 1, . . . , G) are the
group-specific (or “random effects“) nuisance parameters. Let X be the n × 5 matrix
given by

X =





X1
...

XG



 ,

where Xi is the m×5 matrix with jth row given by xij, for i = 1, . . . , G. Finally, D is the
n × 4 matrix given by the last four columns of X and the design space for each element
is the interval [−1, 1].

The prior distribution for β is such that the elements are independent and distributed as
follows

β0 ∼ U[−3, 3], β1 ∼ U[4, 10],
β2 ∼ U[5, 11], β3 ∼ U[−6, 0],
β4 ∼ U[−2.5, 3.5].

We consider two different prior distributions for ω = (ω1, . . . ,ωG). Firstly, a prior point
mass at ω = 0, thus resulting in a standard logistic regression model where we assume that
the G groups are homogeneous. Secondly, a hierarchical prior distribution in which the
ωi are independent and identically distributed with the rth element having the following
distribution

ωir ∼ U[−sr, sr],

for r = 1, . . . , 5, with sr > 0 also unknown. The prior distribution for each sr is assumed
to have density

π(sr) =
2(Lr − sr)

L2
r

,

i.e. a triangular distribution, where (L1, . . . , L5) = (3, 3, 3, 1, 1).

4.2.1 Standard Logistic Regression

Generating Bayesian D-optimal designs for the standard logistic regression model (with
the same prior distribution for β) for n = 16 and n = 48 runs was considered by Woods
et al. (2006) and Gotwalt et al. (2009). We begin by comparing the ACE design under
Bayesian D-optimality to those of Woods et al. (2006) and Gotwalt et al. (2009).

Gotwalt et al. (2009) published their 16-run optimal design but we also coded their method
to find an alternative design. Thus, there are four designs to compare for n = 16. The
designs are compared by computing the average (over twenty evaluations of ÛB(δ)) relative
D-efficiency, relative to the ACE design. These are shown in Table 2. For both values of
n, the ACE and Gotwalt et al. (2009) designs (coded by ourselves) perform very similarly,
and these are about 10% more efficient than the design of Woods et al. (2006).
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Table 2: Average relative D-efficiencies (relative to the ACE design) of the designs of Woods et al. (2006)

and Gotwalt et al. (2009) for logistic regression for n = 16 and n = 48 runs. For n = 16 runs, we use the

design published in Gotwalt et al. (2009) and a design found by coding their method ourselves.

Design n = 16 n = 48

ACE 100.0 100.0
Gotwalt et al. (2009) 82.0 -
(published)
Gotwalt et al. (2009) 99.9 101.3
(coded ourselves)
Woods et al. (2006) 93.3 91.0

Now consider generating optimal designs for the logistic regression model under expected
SIG. We generate these designs under a range of different numbers of runs, n, from 6 to
48. For each n, the initial design is the final design found from a previous implementation
of the ACE algorithm but under an approximation to the Bayesian D-optimality objective
function. We now compare the optimal designs under expected SIG to the Bayesian D-
optimal designs. Figure 4(a) shows boxplots of C = 20 evaluations of ÛS

B for the optimal
designs under SIG and Bayesian D-optimality. As n increases, the difference between the
two different optimal designs, in terms of expected Shannon information gain, decreases.
This follows from the result (see, e.g. Gelman et al., 2014, pages 585-588) that, as n
increases, under certain regularity conditions, the posterior distribution will converge
to a normal distribution and, therefore, the approximation described by Chaloner and
Verdinelli (1995) will become more accurate.

Now consider generating optimal designs under expected NSEL. Under this utility func-
tion we repeat the analysis from the preceding section but compare against Bayesian
A-optimal designs. Figure 4(b) shows boxplots of twenty evaluations of −ÛV

B (i.e. Monte
Carlo approximation to the expectation of the trace of the posterior variance) for the
optimal designs under NSEL and Bayesian A-optimality. Similar to designs under SIG,
the difference between the two designs decreases as n increases.

4.2.2 Hierarchical Logistic Regression

For hierarchical logistic regression, we repeat the above exercise using the ACE algorithm
to find optimal designs under the same four utility functions as for standard logistic
regression. For the SIG utility, due to the computational expense of evaluating ÛS

B, we
reduce B to 1000 for the comparison procedure in the ACE algorithm.

Figures 4(c) and (d) shows boxplots of twenty evaluations of US
B(δ) and −UV

B (δ) for
the optimal designs found under the SIG and Bayesian D-optimal utility functions, and
the NSEL and Bayesian A-optimal utility functions, respectively. Note from comparing
Figures 4(a) and (c) how we expect to gain less Shannon information in the presence of
group-specific parameters under the hierarchical logistic regression model due to the extra
uncertainty involved. A similar conclusion can be drawn from Figures 4(b) and (d) where
the expected prior variance is higher under the hierarchical logistic regression model.
Similar to the previous section, the difference between the pseudo-Bayesian designs and
the fully Bayesian designs decreases as n increases.
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Figure 4: Plots (a) and (b) refer to standard logistic regression and (c) and (d) to hierarchical logistic

regression. (a) and (c) show boxplots of twenty evaluations of ÛS
B for the optimal designs under SIG and

Bayesian D-optimality, and (b) and (d) show boxplots of twenty evaluations of −ÛV
B for the optimal designs

under NSEL and Bayesian A-optimality.
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4.3 Binomial Regression under Model Uncertainty

Table 3: Beetle mortality data of Bliss (1935).

Dose, xi Number exposed, mi Number killed, yi
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 52
1.8610 62 61
1.8839 60 60

In this section we consider optimal experimental design under model uncertainty. Consider
the beetle mortality data of Bliss (1935) given in Table 3. Here 481 beetles were split
into eight groups. For i = 1, . . . , n = 8, the ith group of mi beetles is administered
a dose, xi, of poison and the number of beetles killed, yi, is recorded. We follow the
case study analysis of O’Hagan and Forster (2004, pages 423-433) where interest lies in
producing a model-averaged posterior distribution of the quantity called lethal dose 50
(LD50). LD50 is the dose of poison required to kill 50% of the beetles. We conduct
a Bayesian analysis of the beetle mortality data under model uncertainty to evaluate a
model-averaged posterior distribution of LD50. We then optimally design a follow-up
experiment to refine our current knowledge of LD50.
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For i = 1, . . . , n, with n = 8, let yi ∼ Binomial(mi, ρi), where ρi is the probability of death
for dose xi. Let g(ρi) = ηi, where g() is the link function and ηi is the linear predictor.
We consider six models formed by the Cartesian product of three link functions and two
linear predictors. The three link functions are the logit (g(ρi) = log (ρi/(1− ρi))), the
c-log-log (g(ρi) = log (− log (1− ρi))), or the probit (g(ρi) = Φ−1(ρi), where Φ() is the
distribution function of the standard normal distribution). The two linear predictors are
either 1st order (ηi = β1+β2xi) or 2nd order (ηi = β1+β2xi+β3x

2
i ). Note that O’Hagan

and Forster (2004) did not consider the probit link function. Let m ∈ M = {1, . . . , 6}
denote the model indicator and let βm denote the vector of regression parameters under
model m. LD50 is given by

z(βm) =

{

a−βm1

βm2

, for m corresponding to the 1st order linear predictor,
−βm2+

√
β2

m2
−4βm3(βm1−a)

2βm3

, otherwise,

where

a =

{

log
(

− log
(

1
2

))

, for the c-log-log link function,
0, otherwise,

and βmj is the jth element of βm. Following O’Hagan and Forster (2004), we use unit
information prior distributions (Ntzoufras et al., 2003) for βm|m under each model. Addi-
tionally we use a uniform prior over the model space, i.e. the prior model probabilities are
π(m) = 1/6, for m ∈ M. The posterior model probabilities for each model are approxi-
mated by using importance sampling to evaluate the marginal likelihood of each model.
The approximate posterior model probabilities, π(m|y), are shown in Table 4. MCMC
samples are generated under each of the six models by using the Metropolis-Hastings
algorithm. We can then use the samples to produce a sample from the joint distribution
βm,m|y of regression parameters and model indicator. From this we can derive a sample
from the model-averaged posterior distribution of LD50.

Table 4: Approximate posterior model probabilities, π(m|y), for the beetle mortality data.

Link Function Linear Predictor π(m|y)
Logit 1st order 0.0216
Logit 2nd order 0.0686
C-log-log 1st order 0.7580
C-log-log 2nd order 0.0612
Probit 1st order 0.0304
Probit 2nd order 0.0602

We consider the optimal design of a follow-up experiment with n0 (potentially) new doses
of poison. We administer each dose of poison to m0i beetles and in each group record
the number, y0i, of beetles that are killed. Let y0 be the n0 × 1 vector of the numbers
of beetles killed in the follow-up experiment. We assume that the m0i is unknown and
has a Poisson(λ) distribution, hence y0i ∼ Poisson(λρi). We choose λ = 60 (which is
consistent with the values of mi in Table 3) and consider ten different values for n0:
1, . . . , 10. Interest lies in the value of LD50, z. We use the negative squared error loss
utility function for z, so the optimal design will minimise the expected posterior variance
of z, i.e.

UV (δ) = −
∫

Y

∫

M

∫

Bm

(z(βm)− E (z(βm)|y0,y, δ))
2 dPy0,m,βm|y,δ,
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Figure 5: (a) shows the values of the optimal doses for each n0, the original experimental doses and the

posterior density for LD50. (b) shows boxplots of 20 evaluations of −ÛV
B (δ) for each n0. (c) shows −ÛV

B (δ)

plotted against dose. (d) shows the two doses plotted against each other where the plotting character shade

shows the value of −ÛB(δ).
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where δ is the n0× 1 vector of doses and Bm is the parameter space for model m. We can
approximate UV (δ) by

ÛV
B (δ) = − 1

B

B
∑

i=1

(

z(βmi)− Ê (z(βm)|y0i,y, δ)
)2

where {βmi,mi,y0i}Bi=1 is a sample generated from the joint distribution given by π(βm,m,y0|y),
and

Ê (z(βm)|y0,y, δ) =

∑B

i=1 z(β̃m̃i)π(y0|β̃m̃i, m̃i)
∑B

i=1 π(y0|β̃m̃i, m̃i)
,

with
{

β̃m̃i, m̃i

}B

i=1
denoting a sample generated from the joint distribution given by

π(βm,m|y).
We generate optimal designs under the NSEL utility function for each value of n0 using
the ACE algorithm. The plots in Figure 5 summarise the results. The points on the
horizontal lines in Figure 5(a) show the location of the optimal doses for each value of
n0. Also shown in Figure 5(a) are the doses from the original design and the density
of the model-averaged posterior distribution for LD50. Note that, for all values of n0,
the doses all lie in the lower tail of the posterior distribution of LD50. For the optimal
design of doses, Figure 5(b) shows boxplots of 20 evaluations of −ÛV

B (δ) (i.e. giving the
approximations to the expected posterior variance of LD50) for each value of n0. Therefore
we can see how the expected posterior variance decreases as n0 increases.

We investigate the tight clustering of the optimal doses seen in Figure 5(a) for n0 = 1
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and 2. For each value of n0, we generate 10000 designs uniformly in the design space. For
each design, we evaluate ÛV

B (δ).

For n0 = 1, Figure 5(c) shows the evaluations of−ÛV
B (δ) plotted against dose. The vertical

line shows the optimal dose (found using the ACE algorithm) which clearly corresponds
to the value that minimises the expected posterior variance of LD50. The variance of the
model-averaged posterior distribution for LD50 is 2.10× 10−5. Therefore we can see from
Figure 5(c) that if we had chosen a large dose (near the upper limit of the design space),
we would have expected a negligible reduction in the variance of LD50.

For n0 = 2, Figure 5(d) shows the two doses plotted against each other where the shade

of the plotting character shows the value of the evaluation of −ÛB(δ). Also plotted is the
optimal dose (found using the ACE algorithm) which appears very close to the value that
maximises UV (δ). Again, if the two doses are chosen to be near the upper limit of the
design space, we are again not expected to significantly reduce the variance of LD50.

5 Discussion

In this paper we have proposed the approximate coordinate exchange (ACE) algorithm
for maximising the expected utility function with respect to the unknown parameters
and responses. This algorithm can be used to find optimal experimental designs and is
applicable whenever it is possible to generate from the prior distribution of the model
parameters and responses from the statistical model.

The ACE algorithm is demonstrated for a series of examples. Although the statistical
models are relatively simple. nevertheless, finding optimal experimental designs under
such models is non-trivial. For example, consider the logistic regression model in Sections
4.2. Logistic regression is, now, a trivial model to fit under the Bayesian paradigm using
MCMC methods. However, optimal experimental design (classical or Bayesian) is partic-
ularly non-trivial. We feel that ours is the first attempt to find optimal designs on such
a large scale.

Future work will involve extending the algorithm to statistical models described by some
computationally expensive code. This includes statistical models described by the solution
to a system of non-linear differential equations.
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