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Abstract

The I-V characteristic curve is very important for solar cells/modules being a

direct indicator of performance. But the reverse derivation of the diode model

parameters from the I-V curve is a big challenge due to the strong nonlinear

relationship between the model parameters. It seems impossible to solve such

a nonlinear problem accurately using linear identification methods, which is

proved wrong in this paper. By changing the viewpoint from conventional static

curve fitting to dynamic system identification, the integral-based linear least

square identification method is proposed to extract all diode model parameters

simultaneously from a single I-V curve. No iterative searching or approximation

is required in the proposed method. Examples illustrating the accuracy and

effectiveness of the proposed method, as compared to the existing approaches,

are presented in this paper. The possibility of real-time monitoring of model

parameters versus environmental factors (irradiance and/or temperatures) is

also discussed.
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1. Introduction

The current-voltage (I-V ) characteristics of solar cells/modules has the most

importance in the photovoltaic industry because it exactly reflects the cell/module

performance. However, it is not straightforward to get the model parameters

from the I-V curve for photovoltaic (PV) cells/modules [1]. For example, the

I-V relationship of the one-diode model as shown in Figure 1 is represented by

I = IL − Io

(
e

V +RsI
a − 1

)
− V + RsI

Rsh
, (1)

where IL is the photocurrent proportional to the irradiance, Io is the reverse

saturation current of the diode, a is the modified ideality factor [2], Rs and Rsh

are resistance in series and parallel, respectively. Only I and V are known from

the real measurement or datasheet.

Figure 1: Equivalent circuit of one-diode model

5

In order to extract all the five unknown model parameters (IL, Io, a, Rs

and Rsh) from the I-V curve simultaneously, at least five independent pieces

of information are required. To simplify the equation for easily solving, the

following extreme conditions are utilised:

• Short circuit (V = 0):

Isc = IL − Io

(
e

RsIsc
a − 1

)
− RsIsc

Rsh
. (2)

dI

dV

∣∣∣∣
sc

≈ − 1
Rsh

. (3)

• Open circuit (I = 0):

IL − Io

(
e

Voc
a − 1

)
− Voc

Rsh
= 0, (4)
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• Maximum power point (MPP):

Impp = IL − Io

(
e

Vmpp+RsImpp

a − 1
)
− Vmpp + RsImpp

Rsh
, (5)

dIV

dV

∣∣∣∣
mpp

= − Vmpp

Rs + 1

Io
a e

Vmpp+ImppRs
a + 1

Rsh

+ Impp = 0. (6)

Nevertheless, there are still no analytical solutions to (2)-(6) due to the highly10

nonlinearity inertially existed. Numerical solutions based on iterative searching

algorithms with nonlinear least square have to be found, but it heavily depends

on the initial values and is easy to be trapped by the local optimums [3, 4].

Moreover, for different initial value guess, such an approach can result in widely

different parameter solutions, all leading to satisfactory curve fitting [5, 6].15

An alternative way to solving such a problem is to estimate the unknown

parameters separately, which have been presented in several publications. Pelan-

chon et al. studies the influence of the structure parameters of a silicon solar

cell on photocurrent, where IL can be estimated [7]. Ravindra and Prasad re-

veals that Io is material independent and can be explicitly related to a solid20

state parameter, the 0K Debye temperature of the semiconductor [8]. Singh et

al. presents the use of properties of special trans function theory (STFT) for

determining the ideality factor of real solar cell [9]. Priyanka and Singh pro-

posed a new method to determine Rsh based on the single exponential model

and utilizing the steady state illuminated I-V characteristics in third and fourth25

quadrants and the Voc-Isc characteristics of the cell [10]. Last but not the least,

estimation methods for Rs are well summarised in [11]. More recent methods

in extracting Rs are presented in [1, 6]. All these methods have to assume some

simplification, in order to achieve a balance between accuracy and calculation

burden. Usually, more than one I-V curves are required because the biased30

I-V characteristics are utilised in the estimation. They may work well for their

respective single parameter estimation, but if the estimated parameters are put

together into (1), the error becomes unacceptable [5].

Nowadays, the prevailing modelling methods for PV cells/modules are more

or less based on(2)-(6), where only the three remarkable points (SC, OC, MPP)35
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are utilized. This is insufficient to get accurate, unique and reliable model

parameters. It is well known that the more information we know, the more ac-

curate model parameters we can get. However, the PV manufacturers/institutes

who have the facilities to obtain the full information of the entire I-V curves

often lack of an approach to utilize it, which is the method proposed in this40

paper.

This paper presents an all-new viewpoint of dynamic systems to solve the

static equation (2)-(6). Note that for a first-order linear system described by

the differential equation

T
dy(t)
dt

+ y(t) = u(t),

where T is the time constant, its unit ramp response is governed by

y(t) = t + T
(
e−

t
T − 1

)
,

which has the same format (summation of exponentials and polynomials) as

(1). This motivates us that the I-V curve represented by (1) can be viewed as

the output of some linear system, and the parameters of one-diode model can

be linked to the parameters of a linear differential equation, which can then be45

well obtained by linear system identification methods [12, 13].

This whole paper is organised as follows. Section 2 describes the way to

transform the static I-V curve to the dynamic linear system output. Integral-

based system identification methods and linear least square algorithm are then

applied in Section 3 to get all the parameters of one-diode model simultaneously.50

Examples are given in Section 4 to illustrate the accuracy and effectiveness of

the proposed method. A comparison with the nonlinear least square methods is

demonstrated in Section 5. Outdoor module testing results are shown in Section

6 to demonstrate the reliability of the proposed method. Conclusions are given

in Section 7.55
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2. Dynamic system formulation

Recall the I-V curve represented by (1), let y = I and x = V + RsI, (1)

then becomes,

y = (IL + Io)− Ioe
x
a − x

Rsh
. (7)

Taking differential once on both sides of (7) results in

dy

dx
= −I0

a
e

x
a − 1

Rsh
. (8)

Taking a second differential for (8) then results in

d2y

dx2
= − Io

a2
e

x
a . (9)

By deleting ex/a from (8) and (9),

a
d2y

dx2
− dy

dx
=

1
Rsh

. (10)

Let t = x and u(t) ≡ 1, (10) is equivalent to

a
d2y(t)
dt2

− dy(t)
dt

=
u(t)
Rsh

, (11)

which is a standard differential equation representation of a second order linear

system [14]. t denotes the “time”, u(t) and y(t) are the system “input” and “out-

put”, respectively. Since u(t) ≡ 1, y(t) is the unit step response of the system

in “time” domain. Taking Laplace transform, F (s) = L[f(t)] =
∫∞
0

e−stf(t)dt,

on both sides of (11),

a
[
s2Y (s)− sy(0)− y′(0)

]− [sY (s)− y(0)] =
1

Rsh
U(s). (12)

Note from (7) and (8) that y(0) = IL, y′(0) = −Io/a − 1/Rsh and sU(s) = 1,

(12) is equivalent to

a
[
s2Y (s)− s2U(s)y(0)− sU(s)y′(0)

]− [sY (s)− sU(s)y(0)] =
1

Rsh
U(s).

Then the transfer function from Y (s) to U(s) is

G(s) =
Y (s)
U(s)

=
ay(0)s2 + [ay′(0)− y(0)]s + 1

Rsh

as2 − s

=
aILs2 − (Io + a

Rsh
+ IL)s + 1

Rsh

as2 − s
.
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The corresponding time domain differential equation is

a
d2y(t)
dt2

− dy(t)
dt

= aIL
d2u(t)

dt2
−

(
IL + Io +

a

Rsh

)
du(t)

dt
+

u(t)
Rsh

. (13)

It should be noted that (13) is different from (11) because all the initial con-

ditions have been taken into account. So (13) is the description of the same

system as described by (11) but with zero initial conditions. This aids in the

proposed integral-based identification method, which will be shown as follows.60

3. Integral-based linear identification

For an integer m ≥ 1, define the multiple integral [12] as

∫ (m)

[t1,t2]

y(t) =
∫ t2

t1

∫ τm

t1

· · ·
∫ τ2

t1︸ ︷︷ ︸
m

y(τ1)dτ1dτ2 · · ·dτm−1dτm.

Apply it to (13) with t1 = 0, t2 = t and m = 2,

ay(t)−aILu(t)+
(

IL + Io +
a

Rsh

)∫ (1)

[0,t]

u(t)− 1
Rsh

∫ (2)

[0,t]

u(t) =
∫ (1)

[0,t]

y(t). (14)

Let γ(t) =
∫ (1)

[0,t]
y(t) and

θ =




a

aIL(
IL + Io + a

Rsh

)

1
Rsh




, φ(t) =




y(t)

−u(t)
∫ (1)

[0,t]
u(t)

− ∫ (2)

[0,t]
u(t)




,

then (14) can be rewritten as

φT (t)θ = γ(t). (15)

Note that (15) holds for t = ti, i = 1, 2, · · · , N , where N is the the number of

data samples on the I-V curve, it yields from (15) that

Φθ = Γ,
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where Φ = [φ(t1), φ(t2), · · · , φ(tN )]T and Γ = [γ(t1), γ(t2), · · · , γ(tN )]T . Thus,

if ΦT Φ is nonsingular, the least square solution for θ by

θ =
(
ΦT Φ

)−1
ΦT Γ (16)

will minimise the following error

min
θ

(Γ− Φθ)T (Γ− Φθ).

The proof of the non singularity of ΦT Φ can be found in [12]. Once θ is deter-

mined from (16), the parameters of one-diode model can be obtained by

a = θ1,

IL =
θ2

θ1
,

Io = θ3 − θ2

θ1
− θ1θ4,

Rsh =
1
θ4

.

3.1. Determination of Rs

In order to calculate θ from (16), Φ and Γ must be known. As both of them

are integrals to t, t must be prior known. However, t = V + RsI, if Rs cannot

be determined, Φ and Γ become unknown so that θ cannot be calculated from65

(16).

There are many ways to determine Rs beforehand [11]. Recent developments

are: (1) partial shading method [1]; and (2) local ideality method [6]. All of

them either need multiple I-V curves or assume dominant exponential, which

is not suitable for our purpose here.70

It is well known that Rs impacts the shape of current and voltage curve near

the maximum power point [2]. If Rs increases, the MPP point will move to the

right and the error between the real and estimated I-V curves will be positive;

If Rs decreases, the MPP point will move to the left and the error between the

real and estimated I-V curves will be negative, as shown in Figure 2. Thus,
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Figure 2: Effect of series resistance for a single crystalline cell at standard operating conditions.

Rs can be used as a tuning parameter such that the root mean square error

between the real and estimated I-V curves is minimised, i.e.,

min
Rs

√√√√ 1
N

N∑

i=1

[ŷ(ti)− y(ti)]
2
.

It derives from (1) that

dI

dV

∣∣∣∣
oc

= − 1
Rs + 1

Io
a e

Voc
a + 1

Rsh

,

so

Rs +
1

Io

a e
Voc

a + 1
Rsh

= − 1
dI
dV

∣∣
oc

> Rs,

which implies that −1/ dI
dV

∣∣
oc

is the upper bound of Rs, i.e., Rupp
s = −1/ dI

dV

∣∣
oc

.

The lower bound of Rs can be zero, i.e., Rlow
s = 0. With such a band of Rs,

binary search algorithm is applied to determine Rs in the following way:

Step 1. Arbitrarily choose Rs from [Rlow
s , Rupp

s ] and calculate â, ÎL, Îo and R̂sh

from the proposed linear least square (16);75
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Step 2. Calculate from (1) that

ŷ(t) = ÎL − Îo

(
e

V +RsI
â − 1

)
− V + RsI

R̂sh

,

and the root mean square error (RMSE)

RMSE =

√√√√ 1
N

N∑

i=1

[ŷ(ti)− y(ti)]
2
.

Step 3. Calculate

ERR =
N∑

i=1

[ŷ(ti)− y(ti)] .

If ERR > 0, it implies a bigger estimation of Rs. Otherwise, it implies a smaller

estimation of Rs. Adjust Rs as follows:

Rs =





Rs + Rlow
s

2
, if ERR > 0;

Rs + Rupp
s

2
, otherwise.

Step 4. Update Rupp
s and Rlow

s according to the sign of ERR. If ERR > 0,

Rupp
s = Rs, otherwise, Rlow

s = Rs.

Step 5. If RMSE is less than some tolerance (Tol) or iterative cycle reaches

some preset number (n), stop the searching. Otherwise, go back to Step 2.

The flowchart of the binary searching algorithm is shown in Figure 3.80

4. Examples

The I-V characteristics of full-sized commercial modules were measured in

the PV module testing lab of Solar Energy Research Institute of Singapore

(SERIS). A pulsed solar simulator (PASAN IIIB) with a constant illumination

intensity plateau of about 12 ms is used. The data acquisition, which requires85

about 10 ms, occurs during the plateau period, whereby the light intensity varies

by less than ±1%. The intensity of the solar simulator is calibrated with a c-Si

reference cell certified by Fraunhofer ISE. If thin-film modules are measured,

spectral mismatch correction is applied. The overall uncertainty of module

power measurement is within ±2%.90

9



Figure 3: Flowchart of the binary searching algorithm
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4.1. Example 1 (STC I-V characteristics of c-Si modules)

The I-V characteristic of a crystalline PV module under STC from the PV

module testing lab of SERIS is shown in Figure 4.
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Figure 4: The I-V characteristic of a crystalline PV module calibrated by SERIS

Firstly, the upper bound of Rs (Ω) is calculated by

Rupp
s = − 1

dI
dV

∣∣
oc

= 1.0952.

Secondly, choose Rs = 1.0952 and apply the proposed binary searching with

Tol = 2%. After the searching stops, Rs = 0.655. It follows from (16) that

θ1 = 1.9891,

θ2 = 9.8295,

θ3 = 4.9434,

θ4 = 8.9631× 10−4,

⇒

a = 1.9891 (V),

IL = 4.9416 (A),

Io = 4.1785× 10−9 (A),

Rsh = 1.1157× 103 (Ω).

The comparison between the real measured I-V curve and the fitted one are

shown in Figure 5.95

Figure 6 illustrates the convergence of Rs and RMSE. It is easy to see that

Rs and RMSE converge fast within 30 searching steps only.
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Figure 6: Convergence of Rs and RMSE in the binary searching
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4.2. Example 2 (I-V characteristics family of c-Si modules)

The I-V characteristic family of a c-Si PV module under varying irradiance

from 400 W/m2 to 1200 W/m2 is shown in Figure 7. Similar to Example 1, the100

flash test data is also obtained from the PV module testing lab of SERIS.
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Figure 7: The I-V characteristic of a thin-film PV module calibrated by SERIS

Following the same procedure as shown in Example 1, the model parameters

are shown in Table 1. It is evident that IL increases with increasing irradiance.

The other model parameters like a, Io, Rs and Rsh generally agree with the

trends from the outdoor monitoring tests in Section 6. However, Io is relatively105

constant as it is largely dependent on the module temperature, which is not

controlled under normal lab indoor conditions. The comparison between the

real measured I-V curve and the fitted one is shown in Figure 8.

5. Comparison with nonlinear least square

For a comparison between the conventional method to the proposed linear110

approach, the nonlinear least square method is applied to solve (2) – (6) for

Example 1.
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Table 1: Results for I-V characteristics family (25◦C)

Irradiance Rsh IL Io Rs a

(W/m2) (Ω) (A) (A) (Ω) (V)
RMSE

400 2.6458× 103 2.9042 6.085× 10−8 0.2052 1.8960 0.0174

600 2.5658× 103 4.3457 6.8896× 10−8 0.2376 1.8959 0.0253

800 2.0222× 103 5.8179 7.9233× 10−8 0.2514 1.9070 0.0313

1000 1.1322× 103 7.3118 1.2012× 10−7 0.2518 1.9457 0.0429

1200 1.0141× 103 8.7951 1.4433× 10−7 0.2634 1.9542 0.0441
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Figure 8: Comparison of the I-V curve between measurement (straight line) and estimation

(round markers)
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It follows from (3) that

Rsh ≈ − 1
dI
dV

∣∣
sc

.

dI/dV at short-circuit is estimation from the linear fit for: (i) 0 < V < 4;

(ii) 0 < V < 8; (iii) 0 < V < 12; (iv) 0 < V < 16 (V). Initial values for the

other parameters are set to be: IL = 0, Io = 0, Rs = 0, a = 1. The results of115

nonlinear least square for the three different Rsh are shown in Table 2.

Table 2: Results from nonlinear least square

Case Rsh (Ω) IL (A) Io (A) Rs (Ω) a (V) Cycles RMSE

(i) 178.2578 0.0257 −4.6053× 10−12 −0.7825 1.8541 134 4.6771

(ii) 698.8465 7.6632× 10−4 −1.3278× 10−13 −0.9394 1.7887 132 4.6306

(iii) 1.1802× 103 4.9634 6.5754× 10−9 0.5653 2.1922 163 0.0265

(iv) 1.3184× 103 4.9631 8.2778× 10−9 0.5550 2.2171 154 0.0288

Iterations for Case (i) and (ii) have to be stopped because it is trapped by

the local optimum (local singularity) and the step size is less than 10−12. Case

(iii) and (iv) give the acceptable RMSE, but which one is the correct set of

parameters for one-diode model?120

This example shows the shortcomings of the conventional methods by solving

(2) – (6) with nonlinear least square:

• Only utilises the three points on the I-V curves (open-circuit, short-circuit,

MPP);

• Iteration convergence heavily depends on the initial conditions;125

• Solution is not unique, i.e., different sets of parameters may results in the

same acceptable fitting.

As compared to the nonlinear least square, the proposed method utilises the

full points on the I-V curve and provides the unique solution with a higher

accuracy.130
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6. Applications

In Sections 4 and 5, the improved accuracy and solution uniqueness of the

proposed method versus the conventional nonlinear least squares method, has

been examined. In comparison to the lab measurement data in Sections 4 and

5, outdoor monitoring data exhibit dynamic behaviours under varying environ-135

mental conditions. In this section, the applicability of the proposed method for

outdoor daily fluctuating conditions, will be illustrated.

6.1. Outdoor module performance monitoring

Outdoor module testing (OMT) is usually carried on by many PV panel

manufacturers and research institutes for the module performance evaluation140

under the real environments. For example, a OMT facility has been setup by

SERIS to measure the outdoor PV module performance in tropical Singapore,

which is located in the campus of the National University of Singapore (NUS).

The module under the OMT test was installed since August, 2010 with a fixed

tilt angle of 10 facing south. DC parameters including full I-V curves, Voc, Isc,145

Vmpp, Impp, Pmpp together with module temperature are measured and logged

every minute. Environmental parameters including in-plane solar irradiance G,

ambient temperature Tamb, wind speed and wind direction are logged simulta-

neously with the DC parameters. Between I-V measurements, electrical energy

is extracted from the module at its maximum power point (MPP). The uncer-150

tainty of all electrical measured parameters is within ±0.1% for full scale. With

these I-V data in time series, the diode model parameters can be identified by

the proposed method and correlated to the environmental factors like irradi-

ance, temperature, etc. This helps improvements of module design by linking

the environmental factors into diode model parameters directly.155

Figure9 shows the time series of irradiance (Gsi), ambient temperature

(Tamb) and module temperature on the back sheet (Tmod) on a typical day

from SERIS’ OMT testbed. The plot is centered around the solar noon, which

was at 13:10 on the 5th August 2010.
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Figure 9: Environmental factors of a typical day in SERIS’ OMT testbed

By applying the proposed method in Section 3, the time-varying one-diode160

model parameters IL, Io, a, Rs and Rsh for the same day are identified, as

shown in Figure10. The variation of the identified parameters in the one-diode

model in Figure 10 reflects the dynamics of the PV module under different

environmental operating conditions, which cannot be easily interpreted from

the I-V curve at each time instant.165

The relationships between the identified parameters and the environmental

operating conditions are further illustrated in Figures 11 to 14. A proportional

relationship between IL and irradiance intensity is observed in Figure 11. It is

also apparent that Io generally shows an increasing trend with rising module

temperature [15], as shown in Figure 12. This also agrees with the theoretical

temperature dependence of Io, as given by

Io = BT 3e−
Eg

kT

, where Eg is the band gap of silicon and B is a temperature independent

constant [6].

Figure 13 illustrates that a generally decreases with increasing irradiance

for Gsi < 300 W/m2 and increases beyond that, which is as reported in [16].
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Figure 10: Identified one-diode model parameters

When irradiance decreases in Figure 14, the series resistance Rs decreases and170

the shunt resistance Rsh increases, which is consistent with previous reported

results [17]. The decrease in Rs is due to the decreased thermal loss (I2Rs) with

decreasing irradiance.

7. Conclusion

A novel method is proposed in this paper to identify all the one-diode model175

parameters of PV panels from a single I-V curve in one instance. As compared

to the existing methods, the proposed approach is linear, simpler to be imple-

mented and much more accurate without any approximation. It establishes the

direct link between model parameters and I-V curves, which provides engineers

with a clear knowledge on how the PV cell/module is affected by the irradiance180
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and temperature. This is of importance in PV cell design and module assembly.
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